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29.12: Solutions 385

What is its expectation, averaged under the distribution Q = Q∗/ZQ of the
point x(r)?

〈wr〉 =

∫

dxQ(x)
P ∗(x)

Q∗(x)
=

∫

dx
1

ZQ
P ∗(x) =

ZP

ZQ
. (29.54)

So the expectation of the denominator is

〈

∑

r

wr

〉

= R
ZP

ZQ
. (29.55)

As long as the variance of wr is finite, the denominator, divided by R, will
converge to ZP /ZQ as R increases. [In fact, the estimate converges to the
right answer even if this variance is infinite, as long as the expectation is
well-defined.] Similarly, the expectation of one term in the numerator is

〈wrφ(x)〉 =

∫

dxQ(x)
P ∗(x)

Q∗(x)
φ(x) =

∫

dx
1

ZQ
P ∗(x)φ(x) =

ZP

ZQ
Φ, (29.56)

where Φ is the expectation of φ under P . So the numerator, divided by R,
converges to ZP

ZQ
Φ with increasing R. Thus Φ̂ converges to Φ.

The numerator and the denominator are unbiased estimators of RZP /ZQ

and RZP /ZQΦ respectively, but their ratio Φ̂ is not necessarily an unbiased
estimator for finite R.

Solution to exercise 29.2 (p.363). When the true density P is multimodal, it is
unwise to use importance sampling with a sampler density fitted to one mode,
because on the rare occasions that a point is produced that lands in one of
the other modes, the weight associated with that point will be enormous. The
estimates will have enormous variance, but this enormous variance may not
be evident to the user if no points in the other modes have been seen.

Solution to exercise 29.5 (p.371). The posterior distribution for the syndrome
decoding problem is a pathological distribution from the point of view of Gibbs
sampling. The factor

�
[Hn = z] is 1 only on a small fraction of the space of

possible vectors n, namely the 2K points that correspond to the valid code-
words. No two codewords are adjacent, so similarly, any single bit flip from
a viable state n will take us to a state with zero probability and so the state
will never move in Gibbs sampling.

A general code has exactly the same problem. The points corresponding
to valid codewords are relatively few in number and they are not adjacent (at
least for any useful code). So Gibbs sampling is no use for syndrome decoding
for two reasons. First, finding any reasonably good hypothesis is difficult, and
as long as the state is not near a valid codeword, Gibbs sampling cannot help
since none of the conditional distributions is defined; and second, once we are
in a valid hypothesis, Gibbs sampling will never take us out of it.

One could attempt to perform Gibbs sampling using the bits of the original
message s as the variables. This approach would not get locked up in the way
just described, but, for a good code, any single bit flip would substantially
alter the reconstructed codeword, so if one had found a state with reasonably
large likelihood, Gibbs sampling would take an impractically large time to
escape from it.

Solution to exercise 29.12 (p.380). Each Metropolis proposal will take the
energy of the state up or down by some amount. The total change in energy
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386 29 — Monte Carlo Methods

when B proposals are concatenated will be the end-point of a random walk
with B steps in it. This walk might have mean zero, or it might have a
tendency to drift upwards (if most moves increase the energy and only a few
decrease it). In general the latter will hold, if the acceptance rate f is small:
the mean change in energy from any one move will be some ∆E > 0 and so
the acceptance probability for the concatenation of B moves will be of order
1/(1 + exp(−B∆E)), which scales roughly as fB. The mean-square-distance
moved will be of order fBBε2, where ε is the typical step size. In contrast,
the mean-square-distance moved when the moves are considered individually
will be of order fBε2.
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Figure 29.20. Importance
sampling in one dimension. For
R = 1000, 104, and 105, the
normalizing constant of a
Gaussian distribution (known in
fact to be 1) was estimated using
importance sampling with a
sampler density of standard
deviation σq (horizontal axis).
The same random number seed
was used for all runs. The three
plots show (a) the estimated
normalizing constant; (b) the
empirical standard deviation of
the R weights; (c) 30 of the
weights.

Solution to exercise 29.13 (p.382). The weights are w = P (x)/Q(x) and x is
drawn from Q. The mean weight is

∫

dx Q(x) [P (x)/Q(x)] =

∫

dx P (x) = 1, (29.57)

assuming the integral converges. The variance is

var(w) =

∫

dx Q(x)

[

P (x)

Q(x)
− 1

]2

(29.58)

=

∫

dx
P (x)2

Q(x)
− 2P (x) + Q(x) (29.59)

=

[
∫

dx
ZQ

Z2
P

exp

(

−x2

2

(

2

σ2
p

− 1

σ2
q

))]

− 1, (29.60)

where ZQ/Z2
P = σq/(

√
2πσ2

p). The integral in (29.60) is finite only if the
coefficient of x2 in the exponent is positive, i.e., if

σ2
q >

1

2
σ2

p. (29.61)

If this condition is satisfied, the variance is

var(w) =
σq√
2πσ2

p

√
2π

(

2

σ2
p

− 1

σ2
q

)

−
1

2

− 1 =
σ2

q

σp

(

2σ2
q − σ2

p

)1/2
− 1. (29.62)

As σq approaches the critical value – about 0.7σp – the variance becomes
infinite. Figure 29.20 illustrates these phenomena for σp = 1 with σq varying
from 0.1 to 1.5. The same random number seed was used for all runs, so
the weights and estimates follow smooth curves. Notice that the empirical

standard deviation of the R weights can look quite small and well-behaved
(say, at σq ' 0.3) when the true standard deviation is nevertheless infinite.


