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30

Efficient Monte Carlo Methods

This chapter discusses several methods for reducing random walk behaviour
in Metropolis methods. The aim is to reduce the time required to obtain
effectively independent samples. For brevity, we will say ‘independent samples’
when we mean ‘effectively independent samples’.

» 30.1 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo method is a Metropolis method, applicable
to continuous state spaces, that makes use of gradient information to reduce
random walk behaviour. [The Hamiltonian Monte Carlo method was originally
called hybrid Monte Carlo, for historical reasons.]

For many systems whose probability P(x) can be written in the form

(30.1)

not only E(x) but also its gradient with respect to x can be readily evaluated.
It seems wasteful to use a simple random-walk Metropolis method when this
gradient is available — the gradient indicates which direction one should go in
to find states that have higher probability!

Overview of Hamiltonian Monte Carlo

In the Hamiltonian Monte Carlo method, the state space x is augmented by
momentum variables p, and there is an alternation of two types of proposal.
The first proposal randomizes the momentum variable, leaving the state x un-
changed. The second proposal changes both x and p using simulated Hamil-
tonian dynamics as defined by the Hamiltonian

H(x,p) = E(x) + K(p), (30.2)

where K (p) is a ‘kinetic energy’ such as K(p) = p'p/2. These two proposals
are used to create (asymptotically) samples from the joint density

1 1

Pu(x,p) = 5 expl-H(x,p)] = - exp[-E(x)]exp[-K(p)].  (303)

This density is separable, so the marginal distribution of x is the desired
distribution exp[—FE(x)]/Z. So, simply discarding the momentum variables,
we obtain a sequence of samples {x(!)} that asymptotically come from P(x).

387
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388
g =gradE ( x) ; # set gradient using initial x
E = findE ( x ) ; # set objective function too
for 1 = 1:L # loop L times

p = randn ( size(x) ) ;
H=p> *xp/2+E;

Xnew = X ; gnew = g ;
for tau = 1:Tau

Xnew = xnew + epsilon * p ;
gnew = gradE ( xnew ) ;
p = p - epsilon * gnew / 2

endfor

Enew = findE ( xnew ) ;
Hnew = p’ * p / 2 + Enew ;
dH = Hnew - H ;

if ( accept )
g = gnew ; X = Xnew ;
endif
endfor

p = p - epsilon * gnew / 2 ;

# initial momentum is Normal(0,1)
# evaluate H(x,p)

# make
make

H

find

#
# make
#
# make

H

# find

Tau ‘leapfrog’ steps

half-step in p
step in x

new gradient
half-step in p

new value of H

# Decide whether to accept

if (dH < 0) accept =
elseif ( rand() < exp(-dH) ) accept =
else accept =
endif

E = Enew ;

Algorithm 30.1. Octave source
code for the Hamiltonian Monte
Carlo method.

Hamiltonian Monte Carlo

1

15 -1 05 0 05 1

Simple Metropolis

7

Figure 30.2. (a,b) Hamiltonian
Monte Carlo used to generate
samples from a bivariate Gaussian
with correlation p = 0.998. (c,d)
For comparison, a simple
random-walk Metropolis method,
given equal computer time.
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30.1: Hamiltonian Monte Carlo 389

Details of Hamiltonian Monte Carlo

The first proposal, which can be viewed as a Gibbs sampling update, draws a
new momentum from the Gaussian density exp[—K (p)]/Z k. This proposal is
always accepted. During the second, dynamical proposal, the momentum vari-
able determines where the state x goes, and the gradient of E(x) determines
how the momentum p changes, in accordance with the equations

X = p (30.4)

) OFE(x)

P = 5 (30.5)
Because of the persistent motion of x in the direction of the momentum p
during each dynamical proposal, the state of the system tends to move a
distance that goes linearly with the computer time, rather than as the square
root.

The second proposal is accepted in accordance with the Metropolis rule.
If the simulation of the Hamiltonian dynamics is numerically perfect then
the proposals are accepted every time, because the total energy H(x,p) is a
constant of the motion and so a in equation (29.31) is equal to one. If the
simulation is imperfect, because of finite step sizes for example, then some of
the dynamical proposals will be rejected. The rejection rule makes use of the
change in H(x,p), which is zero if the simulation is perfect. The occasional
rejections ensure that, asymptotically, we obtain samples (x®, p®) from the
required joint density Py (x,p).

The source code in figure 30.1 describes a Hamiltonian Monte Carlo method
that uses the ‘leapfrog’ algorithm to simulate the dynamics on the function
findE(x), whose gradient is found by the function gradE(x). Figure 30.2
shows this algorithm generating samples from a bivariate Gaussian whose en-
ergy function is E(x) = $x"Ax with

250.25 —249.75
A= { —249.75 250.25 } ’ (30.6)
corresponding to a variance—covariance matrix of
1 0.998
{ 0998 1 ] (30.7)

In figure 30.2a, starting from the state marked by the arrow, the solid line
represents two successive trajectories generated by the Hamiltonian dynamics.
The squares show the endpoints of these two trajectories. Each trajectory
consists of Tau = 19 ‘leapfrog’ steps with epsilon = 0.055. These steps are
indicated by the crosses on the trajectory in the magnified inset. After each
trajectory, the momentum is randomized. Here, both trajectories are accepted;
the errors in the Hamiltonian were only +0.016 and —0.06 respectively.
Figure 30.2b shows how a sequence of four trajectories converges from an
initial condition, indicated by the arrow, that is not close to the typical set
of the target distribution. The trajectory parameters Tau and epsilon were
randomized for each trajectory using uniform distributions with means 19 and
0.055 respectively. The first trajectory takes us to a new state, (—1.5,—0.5),
similar in energy to the first state. The second trajectory happens to end in
a state nearer the bottom of the energy landscape. Here, since the potential
energy E is smaller, the kinetic energy K = p?/2 is necessarily larger than it
was at the start of the trajectory. When the momentum is randomized before
the third trajectory, its kinetic energy becomes much smaller. After the fourth
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Gibbs sampling Overrelaxation Figure 30.3. Overrelaxation
(a) 1P T T L contrasted with Gibbs sampling

for a bivariate Gaussian with
correlation p = 0.998. (a) The
state sequence for 40 iterations,
each iteration involving one
update of both variables. The
overrelaxation method had

a = —0.98. (This excessively large
value is chosen to make it easy to
see how the overrelaxation method
reduces random walk behaviour.)
The dotted line shows the contour
XX !x = 1. (b) Detail of (a),
showing the two steps making up
each iteration. (c) Time-course of
the variable x; during 2000
iterations of the two methods.
The overrelaxation method had

a = —0.89. (After Neal (1995).)
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trajectory has been simulated, the state appears to have become typical of the
target density.

Figures 30.2(c) and (d) show a random-walk Metropolis method using a
Gaussian proposal density to sample from the same Gaussian distribution,
starting from the initial conditions of (a) and (b) respectively. In (c) the step
size was adjusted such that the acceptance rate was 58%. The number of
proposals was 38 so the total amount of computer time used was similar to
that in (a). The distance moved is small because of random walk behaviour.
In (d) the random-walk Metropolis method was used and started from the
same initial condition as (b) and given a similar amount of computer time.

» 30.2 Overrelaxation

The method of overrelaxation is a method for reducing random walk behaviour
in Gibbs sampling. Overrelaxation was originally introduced for systems in
which all the conditional distributions are Gaussian.

An example of a joint distribution that is not Gaussian but whose conditional
distributions are all Gaussian is P(z,y) = exp(—22y? — 2% — y?)/Z.
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30.2: Overrelaxation 391

Overrelaxation for Gaussian conditional distributions

(t+1)

In ordinary Gibbs sampling, one draws the new value x; of the current

variable z; from its conditional distribution, ignoring the old value xl@. The
state makes lengthy random walks in cases where the variables are strongly
correlated, as illustrated in the left-hand panel of figure 30.3. This figure uses
a correlated Gaussian distribution as the target density.

In Adler’s (1981) overrelaxation method, one instead samples xEtH) from
a Gaussian that is biased to the opposite side of the conditional distribution.
If the conditional distribution of x; is Normal(u, 0?) and the current value of

x; 1s x(t), then Adler’s method sets z; to

i =g o) )+ (1= 0?) o, (308)

where v ~ Normal(0, 1) and « is a parameter between —1 and 1, usually set to
a negative value. (If «v is positive, then the method is called under-relaxation.)

ﬁ% Exercise 30.1.[2 ] Show that this individual transition leaves invariant the con-
ditional distribution x; ~ Normal(u, 0?).

A single iteration of Adler’s overrelaxation, like one of Gibbs sampling, updates
each variable in turn as indicated in equation (30.8). The transition matrix
T(x';x) defined by a complete update of all variables in some fixed order does
not satisfy detailed balance. Each individual transition for one coordinate
just described does satisfy detailed balance — so the overall chain gives a valid
sampling strategy which converges to the target density P(x) — but when we
form a chain by applying the individual transitions in a fixed sequence, the
overall chain is not reversible. This temporal asymmetry is the key to why
overrelaxation can be beneficial. If, say, two variables are positively correlated,
then they will (on a short timescale) evolve in a directed manner instead of by
random walk, as shown in figure 30.3. This may significantly reduce the time
required to obtain independent samples.

Exercise 30.2.1%] The transition matrix T (x';x) defined by a complete update
of all variables in some fixed order does not satisfy detailed balance. If
the updates were in a random order, then T would be symmetric. Inves-
tigate, for the toy two-dimensional Gaussian distribution, the assertion
that the advantages of overrelaxation are lost if the overrelaxed updates
are made in a random order.

Ordered Overrelazation

The overrelaxation method has been generalized by Neal (1995) whose ordered
overrelaxation method is applicable to any system where Gibbs sampling is
used. In ordered overrelaxation, instead of taking one sample from the condi-
tional distribution P(z; | {x;};+;), we create K such samples 11(1)’ a:gz), o ,ZEK),
where K might be set to twenty or so. Often, generating K — 1 extra samples
adds a negligible computational cost to the initial computations required for
making the first sample. The points {acz(-k) } are then sorted numerically, and
the current value of z; is inserted into the sorted list, giving a list of K + 1
points. We give them ranks 0,1,2,..., K. Let x be the rank of the current
value of z; in the list. We set z to the value that is an equal distance from
the other end of the list, that is, the value with rank K — k. The role played
by Adler’s o parameter is here played by the parameter K. When K = 1, we
obtain ordinary Gibbs sampling. For practical purposes Neal estimates that
ordered overrelaxation may speed up a simulation by a factor of ten or twenty.
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» 30.3 Simulated annealing

A third technique for speeding convergence is simulated annealing. In simu-
lated annealing, a ‘temperature’ parameter is introduced which, when large,
allows the system to make transitions that would be improbable at temper-
ature 1. The temperature is set to a large value and gradually reduced to
1. This procedure is supposed to reduce the chance that the simulation gets
stuck in an unrepresentative probability island.

We asssume that we wish to sample from a distribution of the form

—E(x)
Z

P(x) = (30.9)
where E(x) can be evaluated. In the simplest simulated annealing method,
we instead sample from the distribution

PT (X) 1

and decrease T gradually to 1.
Often the energy function can be separated into two terms,

E(x) = Eo(x) + F1(x), (30.11)

of which the first term is ‘nice’ (for example, a separable function of x) and the
second is ‘nasty’. In these cases, a better simulated annealing method might
make use of the distribution

Pho) = gy e o B (3012
with T gradually decreasing to 1. In this way, the distribution at high tem-
peratures reverts to a well-behaved distribution defined by FEj.

Simulated annealing is often used as an optimization method, where the
aim is to find an x that minimizes F(x), in which case the temperature is
decreased to zero rather than to 1.

As a Monte Carlo method, simulated annealing as described above doesn’t
sample exactly from the right distribution, because there is no guarantee that
the probability of falling into one basin of the energy is equal to the total prob-
ability of all the states in that basin. The closely related ‘simulated tempering’
method (Marinari and Parisi, 1992) corrects the biases introduced by the an-
nealing process by making the temperature itself a random variable that is
updated in Metropolis fashion during the simulation. Neal’s (1998) ‘annealed
importance sampling’ method removes the biases introduced by annealing by
computing importance weights for each generated point.

» 30.4 Skilling’s multi-state leapfrog method

A fourth method for speeding up Monte Carlo simulations, due to John
Skilling, has a similar spirit to overrelaxation, but works in more dimensions.
This method is applicable to sampling from a distribution over a continuous
state space, and the sole requirement is that the energy F(x) should be easy
to evaluate. The gradient is not used. This leapfrog method is not intended to
be used on its own but rather in sequence with other Monte Carlo operators.

Instead of moving just one state vector x around the state space, as was
the case for all the Monte Carlo methods discussed thus far, Skilling’s leapfrog
method simultaneously maintains a set of S state vectors {x(®)}, where S
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30.4: Skilling’s multi-state leapfrog method 393

might be six or twelve. The aim is that all S of these vectors will represent
independent samples from the same distribution P(x).

Skilling’s leapfrog makes a proposal for the new state X(S)/, which is ac-
cepted or rejected in accordance with the Metropolis method, by leapfrogging
the current state x(®) over another state vector x(*):

x® = x® 4 (x® —x()) = 2x® — x(), (30.13)

All the other state vectors are left where they are, so the acceptance probability x(®)
depends only on the change in energy of x(®).
Which vector, t, is the partner for the leapfrog event can be chosen in
various ways. The simplest method is to select the partner at random from  x(s)
the other vectors. It might be better to choose t by selecting one of the
nearest neighbours x(¥) — nearest by any chosen distance function — as long
as one then uses an acceptance rule that ensures detailed balance by checking
whether point ¢ is still among the nearest neighbours of the new point, x®)',

Why the leapfrog is a good idea

Imagine that the target density P(x) has strong correlations — for example,
the density might be a needle-like Gaussian with width e and length Le, where
L > 1. As we have emphasized, motion around such a density by standard
methods proceeds by a slow random walk.

Imagine now that our set of S points is lurking initially in a location that
is probable under the density, but in an inappropriately small ball of size e.
Now, under Skilling’s leapfrog method, a typical first move will take the point
a little outside the current ball, perhaps doubling its distance from the centre
of the ball. After all the points have had a chance to move, the ball will have
increased in size; if all the moves are accepted, the ball will be bigger by a
factor of two or so in all dimensions. The rejection of some moves will mean
that the ball containing the points will probably have elongated in the needle’s
long direction by a factor of, say, two. After another cycle through the points,
the ball will have grown in the long direction by another factor of two. So the
typical distance travelled in the long dimension grows ezponentially with the
number of iterations.

Now, maybe a factor of two growth per iteration is on the optimistic side;
but even if the ball only grows by a factor of, let’s say, 1.1 per iteration, the
growth is nevertheless exponential. It will only take a number of iterations
proportional to log L/log(1.1) for the long dimension to be explored.

> Exercise 30.3.[% P3%8] Discuss how the effectiveness of Skilling’s method scales
with dimensionality, using a correlated N-dimensional Gaussian distri-
bution as an example. Find an expression for the rejection probability,
assuming the Markov chain is at equilibrium. Also discuss how it scales
with the strength of correlation among the Gaussian variables. [Hint:
Skilling’s method is invariant under affine transformations, so the rejec-
tion probability at equilibrium can be found by looking at the case of a
separable Gaussian.]

This method has some similarity to the ‘adaptive direction sampling’ method
of Gilks et al. (1994) but the leapfrog method is simpler and can be applied
to a greater variety of distributions.
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» 30.5 Monte Carlo algorithms as communication channels

It may be a helpful perspective, when thinking about speeding up Monte Carlo
methods, to think about the information that is being communicated. Two
communications take place when a sample from P(x) is being generated.

First, the selection of a particular x from P(x) necessarily requires that
at least log 1/P(x) random bits be consumed. [Recall the use of inverse arith-
metic coding as a method for generating samples from given distributions
(section 6.3).]

Second, the generation of a sample conveys information about P(x) from
the subroutine that is able to evaluate P*(x) (and from any other subroutines
that have access to properties of P*(x)).

Consider a dumb Metropolis method, for example. In a dumb Metropolis
method, the proposals Q(x’;x) have nothing to do with P(x). Properties
of P(x) are only involved in the algorithm at the acceptance step, when the
ratio P*(x’)/P*(x) is computed. The channel from the true distribution P(x)
to the user who is interested in computing properties of P(x) thus passes
through a bottleneck: all the information about P is conveyed by the string of
acceptances and rejections. If P(x) were replaced by a different distribution
P,(x), the only way in which this change would have an influence is that the
string of acceptances and rejections would be changed. T am not aware of much
use being made of this information-theoretic view of Monte Carlo algorithms,
but I think it is an instructive viewpoint: if the aim is to obtain information
about properties of P(x) then presumably it is helpful to identify the channel
through which this information flows, and maximize the rate of information
transfer.

Example 30.4. The information-theoretic viewpoint offers a simple justification
for the widely-adopted rule of thumb, which states that the parameters of
a dumb Metropolis method should be adjusted such that the acceptance
rate is about one half. Let’s call the acceptance history, that is, the
binary string of accept or reject decisions, a. The information learned
about P(x) after the algorithm has run for T steps is less than or equal to
the information content of a, since all information about P is mediated
by a. And the information content of a is upper-bounded by T Ha(f),
where f is the acceptance rate. This bound on information acquired
about P is maximized by setting f = 1/2.

Another helpful analogy for a dumb Metropolis method is an evolutionary
one. Each proposal generates a progeny x’ from the current state x. These two
individuals then compete with each other, and the Metropolis method uses a
noisy survival-of-the-fittest rule. If the progeny x’ is fitter than the parent (i.e.,
P*(x') > P*(x), assuming the Q/Q factor is unity) then the progeny replaces
the parent. The survival rule also allows less-fit progeny to replace the parent,
sometimes. Insights about the rate of evolution can thus be applied to Monte
Carlo methods.

Exercise 30.5.1%] Let x € {0,1}% and let P(x) be a separable distribution,

P(x) =[] p(x,), (30.14)

with p(0) = pg and p(1) = p1, for example p; = 0.1. Let the proposal
density of a dumb Metropolis algorithm @ involve flipping a fraction m
of the G bits in the state x. Analyze how long it takes for the chain to
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converge to the target density as a function of m. Find the optimal m
and deduce how long the Metropolis method must run for.

Compare the result with the results for an evolving population under
natural selection found in Chapter 19.

The insight that the fastest progress that a standard Metropolis method
can make, in information terms, is about one bit per iteration, gives a strong
motivation for speeding up the algorithm. This chapter has already reviewed
several methods for reducing random-walk behaviour. Do these methods also
speed up the rate at which information is acquired?

Exercise 30.6.[4] Does Gibbs sampling, which is a smart Metropolis method
whose proposal distributions do depend on P(x), allow information about
P(x) to leak out at a rate faster than one bit per iteration? Find toy
examples in which this question can be precisely investigated.

Exercise 30.7.14] Hamiltonian Monte Carlo is another smart Metropolis method
in which the proposal distributions depend on P(x). Can Hamiltonian
Monte Carlo extract information about P(x) at a rate faster than one
bit per iteration?

Exercise 30.8.1°] Tn importance sampling, the weight w, = P* (x(’“))/Q*(x(T)),
a floating-point number, is computed and retained until the end of the
computation. In contrast, in the dumb Metropolis method, the ratio
a = P*(x')/P*(x) is reduced to a single bit (‘is a bigger than or smaller
than the random number »?’). Thus in principle importance sampling
preserves more information about P* than does dumb Metropolis. Can
you find a toy example in which this extra information does indeed lead
to faster convergence of importance sampling than Metropolis? Can
you design a Markov chain Monte Carlo algorithm that moves around
adaptively, like a Metropolis method, and that retains more useful in-
formation about the value of P*, like importance sampling?

In Chapter 19 we noticed that an evolving population of N individuals can
make faster evolutionary progress if the individuals engage in sexual reproduc-
tion. This observation motivates looking at Monte Carlo algorithms in which
multiple parameter vectors x are evolved and interact.

» 30.6 Multi-state methods

In a multi-state method, multiple parameter vectors x are maintained; they
evolve individually under moves such as Metropolis and Gibbs; there are also
interactions among the vectors. The intention is either that eventually all the
vectors x should be samples from P(x) (as illustrated by Skilling’s leapfrog
method), or that information associated with the final vectors x should allow
us to approximate expectations under P(x), as in importance sampling.

Genetic methods

Genetic algorithms are not often described by their proponents as Monte Carlo
algorithms, but I think this is the correct categorization, and an ideal genetic
algorithm would be one that can be proved to be a valid Monte Carlo algorithm
that converges to a specified density.
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I’ll use R to denote the number of vectors in the population. We aim to
have P*({x("}f) = [T P*(x(")). A genetic algorithm involves moves of two or
three types.

First, individual moves in which one state vector is perturbed, x(") — x(’")l7
which could be performed using any of the Monte Carlo methods we have
mentioned so far.

Second, we allow crossover moves of the form x,y — x’,y’; in a typical
crossover move, the progeny x’ receives half his state vector from one parent,
x, and half from the other, y; the secret of success in a genetic algorithm is
that the parameter x must be encoded in such a way that the crossover of
two independent states x and y, both of which have good fitness P*, should
have a reasonably good chance of producing progeny who are equally fit. This
constraint is a hard one to satisfy in many problems, which is why genetic
algorithms are mainly talked about and hyped up, and rarely used by serious
experts. Having introduced a crossover move x,y — x’,y’, we need to choose
an acceptance rule. One easy way to obtain a valid algorithm is to accept or
reject the crossover proposal using the Metropolis rule with P*({X(T)}{%) as
the target density — this involves comparing the fitnesses before and after the
crossover using the ratio

P )P (y)

Pr(x)P*(y)
If the crossover operator is reversible then we have an easy proof that this
procedure satisfies detailed balance and so is a valid component in a chain
converging to P*({x("}£).

(30.15)

> Exercise 30.9.1%] Discuss whether the above two operators, individual varia-
tion and crossover with the Metropolis acceptance rule, will give a more
efficient Monte Carlo method than a standard method with only one
state vector and no crossover.

The reason why the sexual community could acquire information faster than
the asexual community in Chapter 19 was because the crossover operation
produced diversity with standard deviation /G, then the Blind Watchmaker
was able to convey lots of information about the fitness function by killing
off the less fit offspring. The above two operators do not offer a speed-up of
VG compared with standard Monte Carlo methods because there is no killing.
What’s required, in order to obtain a speed-up, is two things: multiplication
and death; and at least one of these must operate selectively. Either we must
kill off the less-fit state vectors, or we must allow the more-fit state vectors to
give rise to more offspring. While it’s easy to sketch these ideas, it is hard to
define a valid method for doing it.

Exercise 30.10.1%] Design a birth rule and a death rule such that the chain
converges to P*({x("}1).

I believe this is still an open research problem.

Particle filters

Particle filters, which are particularly popular in inference problems involving
temporal tracking, are multistate methods that mix the ideas of importance
sampling and Markov chain Monte Carlo. See Isard and Blake (1996), Isard
and Blake (1998), Berzuini et al. (1997), Berzuini and Gilks (2001), Doucet
et al. (2001).



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

30.7: Methods that do not necessarily help 397

» 30.7 Methods that do not necessarily help

It is common practice to use many initial conditions for a particular Markov
chain (figure 29.19). If you are worried about sampling well from a complicated
density P(x), can you ensure the states produced by the simulations are well
distributed about the typical set of P(x) by ensuring that the initial points
are ‘well distributed about the whole state space’?

The answer is, unfortunately, no. In hierarchical Bayesian models, for
example, a large number of parameters {x,} may be coupled together via an-
other parameter 5 (known as a hyperparameter). For example, the quantities
{zy} might be independent noise signals, and 5 might be the inverse-variance
of the noise source. The joint distribution of 8 and {z, } might be

N

P(B{za}) = P@B) ][] PlanlB)

n

Il
—

1 —Ba2)2
Z(3) ¢ ’

=

= P()

Il
_

n

where Z(8) = /27/8 and P(f) is a broad distribution describing our igno-
rance about the noise level. For simplicity, let’s leave out all the other variables
— data and such — that might be involved in a realistic problem. Let’s imagine
that we want to sample effectively from P(8,{z,}) by Gibbs sampling — alter-
nately sampling 3 from the conditional distribution P (3 |z, ) then sampling all
the x,, from their conditional distributions P(z,, | 3). [The resulting marginal
distribution of 3 should asymptotically be the broad distribution P(23).]

If N is large then the conditional distribution of § given any particular
setting of {z,,} will be tightly concentrated on a particular most-probable value
of 8, with width proportional to 1/\/N Progress up and down the (-axis will
therefore take place by a slow random walk with steps of size o 1/ V'N.

So, to the initialization strategy. Can we finesse our slow convergence
problem by using initial conditions located ‘all over the state space’? Sadly,
no. If we distribute the points {x,} widely, what we are actually doing is
favouring an initial value of the noise level 1/4 that is large. The random
walk of the parameter # will thus tend, after the first drawing of (3 from
P(B|xy), always to start off from one end of the S-axis.

Further reading

The Hamiltonian Monte Carlo method (Duane et al., 1987) is reviewed in Neal
(1993b). This excellent tome also reviews a huge range of other Monte Carlo
methods, including the related topics of simulated annealing and free energy
estimation.

» 30.8 Further exercises

Exercise 30.11.14] An important detail of the Hamiltonian Monte Carlo method
is that the simulation of the Hamiltonian dynamics, while it may be in-
accurate, must be perfectly reversible, in the sense that if the initial con-
dition (x,p) goes to (x’, p’), then the same simulator must take (x’, —p’)
to (x, —p), and the inaccurate dynamics must conserve state-space vol-
ume. [The leapfrog method in algorithm 30.1 satisfies these rules.]

Explain why these rules must be satisfied and create an example illus-
trating the problems that arise if they are not.
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Exercise 30.12.14] A multi-state idea for slice sampling. Investigate the follow-
ing multi-state method for slice sampling. As in Skilling’s multi-state

leapfrog method (section 30.4), maintain a set of S state vectors {x(*)}.
Update one state vector x(*) by one-dimensional slice sampling in a di- .
rection y determined by picking two other state vectors x(*) and x(®) S x (@)
at random and setting y = x() —x(®)_ Investigate this method on toy
problems such as a highly-correlated multivariate Gaussian distribution. x(®) .( w)

Bear in mind that if S — 1 is smaller than the number of dimensions ’ X

N then this method will not be ergodic by itself, so it may need to be
mixed with other methods. Are there classes of problems that are better
solved by this slice-sampling method than by the standard methods for
picking y such as cycling through the coordinate axes or picking u at
random from a Gaussian distribution?

» 30.9 Solutions

Solution to exercise 30.3 (p.393). Consider the spherical Gaussian distribution
where all components have mean zero and variance 1. In one dimension, the
nth, if x%l) leapfrogs over xg), we obtain the proposed coordinate

(VY = 222 — 21, (30.16)

n

(1) (2)

Assuming that x;,’ and z;,”’ are Gaussian random variables from Normal(0, 1),
(L(ql))’ is Gaussian from Normal(0, 02), where 02 = 224 (—1)? = 5. The change
in energy contributed by this one dimension will be

1

5 |20 =) - @))?] = 2)? - 2ePal) (30.17)

so the typical change in energy is 2((x$12))2> = 2. This positive change is bad
news. In N dimensions, the typical change in energy when a leapfrog move is
made, at equilibrium, is thus +2/N. The probability of acceptance of the move
scales as

e N, (30.18)

This implies that Skilling’s method, as described, is not effective in very high-
dimensional problems — at least, not once convergence has occurred. Nev-
ertheless it has the impressive advantage that its convergence properties are
independent of the strength of correlations between the variables — a property
that not even the Hamiltonian Monte Carlo and overrelaxation methods offer.
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About Chapter 31

Some of the neural network models that we will encounter are related to Ising
models, which are idealized magnetic systems. It is not essential to understand
the statistical physics of Ising models to understand these neural networks, but
I hope you’ll find them helpful.

Ising models are also related to several other topics in this book. We will
use exact tree-based computation methods like those introduced in Chapter
25 to evaluate properties of interest in Ising models. Ising models offer crude
models for binary images. And Ising models relate to two-dimensional con-
strained channels (cf. Chapter 17): a two-dimensional bar-code in which a
black dot may not be completely surrounded by black dots, and a white dot
may not be completely surrounded by white dots, is similar to an antiferro-
magnetic Ising model at low temperature. Evaluating the entropy of this Ising
model is equivalent to evaluating the capacity of the constrained channel for
conveying bits.

If you would like to jog your memory on statistical physics and thermody-
namics, you might find Appendix B helpful. I also recommend the book by
Reif (1965).

399
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31

Ising Models

An Ising model is an array of spins (e.g., atoms that can take states £1) that
are magnetically coupled to each other. If one spin is, say, in the +1 state
then it is energetically favourable for its immediate neighbours to be in the
same state, in the case of a ferromagnetic model, and in the opposite state, in
the case of an antiferromagnet. In this chapter we discuss two computational
techniques for studying Ising models.

Let the state x of an Ising model with N spins be a vector in which each
component x,, takes values —1 or +1. If two spins m and n are neighbours we
write (m,n) € N. The coupling between neighbouring spins is J. We define
Jmn = J if m and n are neighbours and J,,,,, = 0 otherwise. The energy of a
state x is

1
B(x;J,H) = - |5 > Jmn@man + Y Hay |, (31.1)

where H is the applied field. If J > 0 then the model is ferromagnetic, and
if J < 0 it is antiferromagnetic. We've included the factor of /2 because each
pair is counted twice in the first sum, once as (m,n) and once as (n,m). At
equilibrium at temperature T', the probability that the state is x is

1
P H=——— —BE(x;J, H 1.2
(18,9, H) = 5 expl e J, H), (31.2)
where 8 = 1/kpT, kg is Boltzmann’s constant, and
Z(8,J,H) =Y exp-BE(x; J, H)] . (31.3)
X

Relevance of Ising models

Ising models are relevant for three reasons.

Ising models are important first as models of magnetic systems that have
a phase transition. The theory of universality in statistical physics shows that
all systems with the same dimension (here, two), and the same symmetries,
have equivalent critical properties, i.e., the scaling laws shown by their phase
transitions are identical. So by studying Ising models we can find out not only
about magnetic phase transitions but also about phase transitions in many
other systems.

Second, if we generalize the energy function to

1
E(x:J.h) =~ |5 > TonTmTn + > hnwn | (31.4)
m,n n

where the couplings J,,, and applied fields h, are not constant, we obtain
a family of models known as ‘spin glasses’ to physicists, and as ‘Hopfield

400
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networks’ or ‘Boltzmann machines’ to the neural network community. In some
of these models, all spins are declared to be neighbours of each other, in which
case physicists call the system an ‘infinite-range’ spin glass, and networkers
call it a ‘fully connected’ network.
Third, the Ising model is also useful as a statistical model in its own right.
In this chapter we will study Ising models using two different computational
techniques.

Some remarkable relationships in statistical physics

We would like to get as much information as possible out of our computations.
Consider for example the heat capacity of a system, which is defined to be

_ 9=
= o7 F. (31.5)

where

B= %Z exp(—BE(x)) B(x). (31.6)

To work out the heat capacity of a system, we might naively guess that we have
to increase the temperature and measure the energy change. Heat capacity,
however, is intimately related to energy fluctuations at constant temperature.
Let’s start from the partition function,

Z =Y exp(-BE(x)). (31.7)

The mean energy is obtained by differentiation with respect to g:

alnz = l x) exp(—BE(x)) = —E. (31.8)

A further differentiation spits out the variance of the energy:

21, .
81—22 ZZE exp(—BE(x)) — E? = (B?) — E*> = var(E). (31.9)

But the heat capacity is also the derivative of E with respect to temperature:

8E 0 oz 821nZ85

— = — = —var(E)(—1/kpT?). 1.1
So for any system at temperature 7,
_ var(E) 9
C= T kpfB* var(E). (31.11)

Thus if we can observe the variance of the energy of a system at equilibrium,
we can estimate its heat capacity.

I find this an almost paradoxical relationship. Consider a system with
a finite set of states, and imagine heating it up. At high temperature, all
states will be equiprobable, so the mean energy will be essentially constant
and the heat capacity will be essentially zero. But on the other hand, with
all states being equiprobable, there will certainly be fluctuations in energy.
So how can the heat capacity be related to the fluctuations? The answer is
in the words ‘essentially zero’ above. The heat capacity is not quite zero at

high temperature, it just tends to zero. And it tends to zero as Vkar—(Tz), with
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the quantity var(E) tending to a constant at high temperatures. This 1/7"2
behaviour of the heat capacity of finite systems at high temperatures is thus
very general.

The 1/T? factor can be viewed as an accident of history. If only tem-
perature scales had been defined using 6 = kBLT, then the definition of heat
capacity would be

cW = Z—? = var(E), (31.12)

and heat capacity and fluctuations would be identical quantities.

> Exercise 31.1.[%] [We will call the entropy of a physical system S rather than
H, while we are in a statistical physics chapter; we set kg = 1.]

The entropy of a system whose states are x, at temperature T’ = 1/0, is

§ =3 p(x)In1/p(x)] (31.13)

where
1
p(0) = 5 expl-AEG)] (31.14)
(a) Show that
S=mZ(B)+ BEB) (31.15)

where E(f3) is the mean energy of the system.

(b) Show that

oF
§=—or (31.16)

where the free energy F = —kT'In Z and kT = 1/0.

» 31.1 Ising models — Monte Carlo simulation

In this section we study two-dimensional planar Ising models using a simple
Gibbs-sampling method. Starting from some initial state, a spin n is selected
at random, and the probability that it should be +1 given the state of the
other spins and the temperature is computed,

1

P(+1lb,) = ——————— 31.17
where 8 = 1/kgT and b, is the local field
bo= Y Jin+H (31.18)

m:(m,n)eN

[The factor of 2 appears in equation (31.17) because the two spin states are
{+1,—1} rather than {4+1,0}.] Spin n is set to +1 with that probability,
and otherwise to —1; then the next spin to update is selected at random.
After sufficiently many iterations, this procedure converges to the equilibrium
distribution (31.2). An alternative to the Gibbs sampling formula (31.17) is
the Metropolis algorithm, in which we consider the change in energy that
results from flipping the chosen spin from its current state x,,,

AE = 2z,b,, (31.19)

and adopt this change in configuration with probability

1 AE <0

exp(—BAE) AE > 0. (31.20)

P(accept; AE, 8) = {
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This procedure has roughly double the probability of accepting energetically |
unfavourable moves, so may be a more efficient sampler — but at very low tem- |
peratures the relative merits of Gibbs sampling and the Metropolis algorithm |
may be subtle. o—

—0—0—0—o0—

|
o
o
o
o
|

—0—0—0—0—

Rectangular geometry

I first simulated an Ising model with the rectangular geometry shown in fig- model.

ure 31.1, and with periodic boundary conditions. A line between two spins T
indicates that they are neighbours. I set the external field H = 0 and con-
sidered the two cases J = £1, which are a ferromagnet and antiferromagnet
respectively.

I started at a large temperature (T'= 33, 3 =0.03) and changed the temper-
ature every [ iterations, first decreasing it gradually to T'=0.1, 3 =10, then
increasing it gradually back to a large temperature again. This procedure
gives a crude check on whether ‘equilibrium has been reached’ at each tem-
perature; if not, we’d expect to see some hysteresis in the graphs we plot. It
also gives an idea of the reproducibility of the results, if we assume that the two
runs, with decreasing and increasing temperature, are effectively independent
of each other. 2.5

At each temperature I recorded the mean energy per spin and the standard
deviation of the energy, and the mean square value of the magnetization m,

m==> o (31.21)

2.4
One tricky decision that has to be made is how soon to start taking these

measurements after a new temperature has been established; it is difficult to

detect ‘equilibrium’ — or even to give a clear definition of a system’s being ‘at
equilibrium’! [But in Chapter 32 we will see a solution to this problem.] My

crude strategy was to let the number of iterations at each temperature, I, be

a few hundred times the number of spins N, and to discard the first /3 of 2.3
those iterations. With N =100, I found I needed more than 100 000 iterations

to reach equilibrium at any given temperature.

Results for small N with J = 1.

I simulated an | x [ grid for [ = 4,5,...,10,40,64. Let’s have a quick think 2
about what results we expect. At low temperatures the system is expected Figure 31.2. Sample states of
to be in a ground state. The rectangular Ising model with J = 1 has two rectangular Ising models with
ground states, the all +1 state and the all —1 state. The energy per spin of J =1 at a sequence of
either ground state is —2. At high temperatures, the spins are independent,  temperatures T
all states are equally probable, and the energy is expected to fluctuate around
a mean of 0 with a standard deviation proportional to 1/\/N
Let’s look at some results. In all figures temperature 7' is shown with
kg = 1. The basic picture emerges with as few as 16 spins (figure 31.3,
top): the energy rises monotonically. As we increase the number of spins to
100 (figure 31.3, bottom) some new details emerge. First, as expected, the
fluctuations at large temperature decrease as 1/v/N. Second, the fluctuations
at intermediate temperature become relatively bigger. This is the signature
of a ‘collective phenomenon’, in this case, a phase transition. Only systems
with infinite IV show true phase transitions, but with N = 100 we are getting
a hint of the critical fluctuations. Figure 31.5 shows details of the graphs for
N =100 and N = 4096. Figure 31.2 shows a sequence of typical states from
the simulation of N = 4096 spins at a sequence of decreasing temperatures.




N Mean energy and fluctuations Mean square magnetization
0.5 T T 1 T
0 ;LJ‘FFTWWWW 5 0s | i
g
0.5 e g
. o5t 1 & sl J
) =
2 ©
. ar 1 8 o4} R
S
n
g
16 5 1 ¢ o2f B
2 L | 0 L L
1 10 1 1
Temperature Temperature
0.5 T 1 T
5 08 g
g
I
E é’ 06 —
2 ©
. 1 8 o4} R
&
| §
100 2 o2t d

1
Temperature

10
Temperature

Contrast with Schottky anomaly

A peak in the heat capacity, as a function of temperature, occurs in any system
that has a finite number of energy levels; a peak is not in itself evidence of a
phase transition. Such peaks were viewed as anomalies in classical thermody-
namics, since ‘normal’ systems with infinite numbers of energy levels (such as
a particle in a box) have heat capacities that are either constant or increasing
functions of temperature. In contrast, systems with a finite number of levels
produced small blips in the heat capacity graph (figure 31.4).

Let us refresh our memory of the simplest such system, a two-level system
with states © = 0 (energy 0) and = 1 (energy ¢). The mean energy is

exp(—fe) 1

F = = 1.22
D= T exp(=50 ~ T exp(9 122

and the derivative with respect to (3 is
dB/df = —& PP 31.23
[0 = =i exp B0 (31:2)

So the heat capacity is
dE 1 €2 exp(Qe)

C = dB/AT = = (o = b o i oGO (31.24)

and the fluctuations in energy are given by var(E) = CkgT? = —dE/dS,
which was evaluated in (31.23). The heat capacity and fluctuations are plotted
in figure 31.6. The take-home message at this point is that whilst Schottky
anomalies do have a peak in the heat capacity, there is no peak in their
fluctuations; the variance of the energy simply increases monotonically with
temperature to a value proportional to the number of independent spins. Thus
it is a peak in the fluctuations that is interesting, rather than a peak in the
heat capacity. The Ising model has such a peak in its fluctuations, as can be
seen in the second row of figure 31.5.

Rectangular Ising model with J = —1

What do we expect to happen in the case J = —1?7 The ground states of an
infinite system are the two checkerboard patterns (figure 31.7), and they have
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Figure 31.3. Monte Carlo
simulations of rectangular Ising
models with J = 1. Mean energy
and fluctuations in energy as a
function of temperature (left).
Mean square magnetization as a
function of temperature (right).
In the top row, N = 16, and the
bottom, N = 100. For even larger
N, see later figures.

T

Figure 31.4. Schematic diagram to
explain the meaning of a Schottky
anomaly. The curve shows the
heat capacity of two gases as a
function of temperature. The
lower curve shows a normal gas
whose heat capacity is an
increasing function of
temperature. The upper curve has
a small peak in the heat capacity,
which is known as a Schottky
anomaly (at least in Cambridge).
The peak is produced by the gas
having magnetic degrees of
freedom with a finite number of
accessible states.
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N =100 N = 4096 Figure 31.5. Detail of Monte Carlo
simulations of rectangular Ising
models with J = 1. (a) Mean
energy and fluctuations in energy
as a function of temperature. (b)
Fluctuations in energy (standard
deviation). (¢) Mean square
magnetization. (d) Heat capacity.
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energy per spin —2, like the ground states of the J =1 model. Can this analogy
be pressed further? A moment’s reflection will confirm that the two systems
are equivalent to each other under a checkerboard symmetry operation. If you
take an infinite J = 1 system in some state and flip all the spins that lie on
the black squares of an infinite checkerboard, and set J = —1 (figure 31.8),
then the energy is unchanged. (The magnetization changes, of course.) So all
thermodynamic properties of the two systems are expected to be identical in
the case of zero applied field.

But there is a subtlety lurking here. Have you spotted it? We are simu-
lating finite grids with periodic boundary conditions. If the size of the grid in
any direction is odd, then the checkerboard operation is no longer a symme-
try operation relating J = +1 to J = —1, because the checkerboard doesn’t
match up at the boundaries. This means that for systems of odd size, the
ground state of a system with J = —1 will have degeneracy greater than 2,
and the energy of those ground states will not be as low as —2 per spin. So we
expect qualitative differences between the cases J = %1 in odd-sized systems.
These differences are expected to be most prominent for small systems. The
frustrations are introduced by the boundaries, and the length of the boundary
grows as the square root of the system size, so the fractional influence of this
boundary-related frustration on the energy and entropy of the system will de-
crease as 1/ V/N. Figure 31.9 compares the energies of the ferromagnetic and
antiferromagnetic models with N = 25. Here, the difference is striking.

J=+1 J=-1

0.5 T T 0.5 T T

;¥TTT o 11111

Temperature

Temperature

Triangular Ising model

We can repeat these computations for a triangular Ising model. Do we expect
the triangular Ising model with J = £1 to show different physical properties
from the rectangular Ising model? Presumably the J = 1 model will have
broadly similar properties to its rectangular counterpart. But the case J = —1
is radically different from what’s gone before. Think about it: there is no
unfrustrated ground state; in any state, there must be frustrations — pairs of
neighbours who have the same sign as each other. Unlike the case of the
rectangular model with odd size, the frustrations are not introduced by the
periodic boundary conditions. Every set of three mutually neighbouring spins
must be in a state of frustration, as shown in figure 31.10. (Solid lines show
‘happy’ couplings which contribute —|J| to the energy; dashed lines show
‘unhappy’ couplings which contribute |J|.) Thus we certainly expect different
behaviour at low temperatures. In fact we might expect this system to have
a non-zero entropy at absolute zero. (‘Triangular model violates third law of
thermodynamics!’)

Let’s look at some results. Sample states are shown in figure 31.12, and
figure 31.11 shows the energy, fluctuations, and heat capacity for N = 4096.
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g

Figure 31.7. The two ground
states of a rectangular Ising model
with J = —1.

J=-1 J=+1

B 5

Figure 31.8. Two states of
rectangular Ising models with
J = =1 that have identical energy.

Figure 31.9. Monte Carlo
simulations of rectangular Ising
models with J = £1 and N = 25.
Mean energy and fluctuations in
energy as a function of

temperature.
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Figure 31.10. In an
antiferromagnetic triangular Ising
model, any three neighbouring
spins are frustrated. Of the eight
possible configurations of three
spins, six have energy —|J| (a),
and two have energy 3|J| (b).
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Note how different the results for J = 41 are. There is no peak at all in
the standard deviation of the energy in the case J = —1. This indicates that
the antiferromagnetic system does not have a phase transition to a state with
long-range order.
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» 31.2 Direct computation of partition function of Ising models

We now examine a completely different approach to Ising models. The trans-
fer matrix method is an exact and abstract approach that obtains physical
properties of the model from the partition function

Z(8,3,b) =Y exp[-BE(x;J,b)], (31.25)

where the summation is over all states x, and the inverse temperature is
B =1/T. [As usual, Let kg = 1.] The free energy is given by F' = —%ln Z.
The number of states is 2%V, so direct computation of the partition function
is not possible for large N. To avoid enumerating all global states explicitly,
we can use a trick similar to the sum—product algorithm discussed in Chapter
25. We concentrate on models that have the form of a long thin strip of width
W with periodic boundary conditions in both directions, and we iterate along
the length of our model, working out a set of partial partition functions at one
location [ in terms of partial partition functions at the previous location [ — 1.
Each iteration involves a summation over all the states at the boundary. This
operation is exponential in the width of the strip, W. The final clever trick
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d i d Figure 31.12. Sample states of
triangular Ising models with J =1
¢ . 4 and J = —1. High temperatures
2 . . at the top; low at the bottom.



31.2: Direct computation of partition function of Ising models

is to note that if the system is translation-invariant along its length then we
need to do only one iteration in order to find the properties of a system of any
length.

The computational task becomes the evaluation of an S x S matrix, where
S is the number of microstates that need to be considered at the boundary,
and the computation of its eigenvalues. The eigenvalue of largest magnitude
gives the partition function for an infinite-length thin strip.

Here is a more detailed explanation. Label the states of the C' columns of
the thin strip s1,s2,...,Sc, with each s an integer from 0 to 2 —1. The rth
bit of s. indicates whether the spin in row 7, column ¢ is up or down. The
partition function is

Z = ) exp(—PE(x)) (31.26)
C
- ZZ...ZGXp(ﬂZE(SC,SC+1)>, (31.27)

where E(s., sc+1) is an appropriately defined energy, and, if we want periodic
boundary conditions, sc4 is defined to be s;. One definition for & is:

E(ScySet1) = Z J Ty + i Z J Topxn + % Z J Ty, (31.28)
(m,n)eN: (m,n)eN: (m,n)eN:
méec,nec+1 mece,nec mec+1l,nec+1

This definition of the energy has the nice property that (for the rectangular
Ising model) it defines a matrix that is symmetric in its two indices s¢, Scy1-
The factors of 1/4 are needed because vertical links are counted four times.
Let us define

My = exp(=pE(s,s")) - (31.29)
Then continuing from equation (31.27),
C
Z =302 [H MSc,Sc+1] (31.30)
51 s2 sc Le=1
= Trace [M] (31.31)
(31.32)

= > ug,
a

where {ua}izl are the eigenvalues of M. As the length of the strip C increases,
Z becomes dominated by the largest eigenvalue pimax:

Z — S, (31.33)

So the free energy per spin in the limit of an infinite thin strip is given by:
f=—-kTmZ/(WC)=—kTCn pimax/(WC) = —kT In pimpax/W.  (31.34)

It’s really neat that all the thermodynamic properties of a long thin strip can
be obtained from just the largest eigenvalue of this matrix M!

Computations

I computed the partition functions of long-thin-strip Ising models with the
geometries shown in figure 31.14.

As in the last section, I set the applied field H to zero and considered the
two cases J = +1 which are a ferromagnet and antiferromagnet respectively. 1
computed the free energy per spin, f(3,J, H) = F/N for widths from W = 2
to 8 as a function of § for H = 0.
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Figure 31.13. Illustration to help
explain the definition (31.28).
E(s2, s3) counts all the
contributions to the energy in the
rectangle. The total energy is
given by stepping the rectangle
along. Each horizontal bond
inside the rectangle is counted
once; each vertical bond is
half-inside the rectangle (and will
be half-inside an adjacent
rectangle) so half its energy is
included in £(s2, s3); the factor of
1/4 appears in the second term
because m and n both run over all
nodes in column ¢, so each bond is
visited twice.

For the state shown here,
So = (100)2, S3 = (110)2, the
horizontal bonds contribute +.J to
E(s2, s3), and the vertical bonds
contribute —J/2 on the left and
—J/2 on the right, assuming
periodic boundary conditions
between top and bottom. So
5(82, 83) =0.
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Computational ideas:

Only the largest eigenvalue is needed. There are several ways of getting this
quantity, for example, iterative multiplication of the matrix by an initial vec-
tor. Because the matrix is all positive we know that the principal eigenvector
is all positive too (Frobenius—Perron theorem), so a reasonable initial vector is
(1,1,...,1). This iterative procedure may be faster than explicit computation
of all eigenvalues. I computed them all anyway, which has the advantage that
we can find the free energy of finite length strips — using equation (31.32) — as
well as infinite ones.

Ferromagnets of width 8

Antiferromagnets of width 8

Triangular —
Rectangular

T T T

Triangular —
Rectangular -----

3k \\\\ B

> s
o N
5 4+ N 4
& et - .
8 5 F i
[ 5| i \\
6 A
6 | - 2L
-7 k& I I I I 8 1 1 1 1
0 2 4 6 8 10 0 2 4 6 8 10
Temperature Temperature

Comments on graphs:

For large temperatures all Ising models should show the same behaviour: the
free energy is entropy-dominated, and the entropy per spin is In(2). The mean
energy per spin goes to zero. The free energy per spin should tend to —In(2)/5.
The free energies are shown in figure 31.15.

One of the interesting properties we can obtain from the free energy is
the degeneracy of the ground state. As the temperature goes to zero, the
Boltzmann distribution becomes concentrated in the ground state. If the
ground state is degenerate (i.e., there are multiple ground states with identical

Entropy

0.2 Triangular(-) —
Rectangular -----
01k Triangular(+) -----
0 x’/,—'\'/' ! ! !
0 2 4 6 8 10
Temperature

Figure 31.14. Two long-thin-strip
Ising models. A line between two
spins indicates that they are
neighbours. The strips have width
W and infinite length.

Figure 31.15. Free energy per spin
of long-thin-strip Ising models.
Note the non-zero gradient at

T =0 in the case of the triangular
antiferromagnet.

Figure 31.16. Entropies (in nats)
of width 8 Ising systems as a
function of temperature, obtained
by differentiating the free energy
curves in figure 31.15. The
rectangular ferromagnet and
antiferromagnet have identical
thermal properties. For the
triangular systems, the upper
curve (—) denotes the
antiferromagnet and the lower
curve (+) the ferromagnet.
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Figure 31.17. Mean energy versus
temperature of long thin strip
Ising models with width 8.
Compare with figure 31.3.

15 |
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1 10
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0.8 | 7/ O\ 08 | Iath & (+) ==~ 2 i . .
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& i % .
g 06p 06 - Y : ferromagnet and antiferromagnet.
S oal ; % Compare with figure 31.11.
£
0.2
0
0.2 L 0.2 . .
10 1 10
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energy) then the entropy as T' — 0 is non-zero. We can find the entropy from
the free energy using S = —90F/0T.

The entropy of the triangular antiferromagnet at absolute zero appears to
be about 0.3, that is, about half its high temperature value (figure 31.16).
The mean energy as a function of temperature is plotted in figure 31.17. It is
evaluated using the identity (E) = —01In Z/90.

Figure 31.18 shows the estimated heat capacity (taking raw derivatives of
the mean energy) as a function of temperature for the triangular models with
widths 4 and 8. Figure 31.19 shows the fluctuations in energy as a function of
temperature. All of these figures should show smooth graphs; the roughness of
the curves is due to inaccurate numerics. The nature of any phase transition
is not obvious, but the graphs seem compatible with the assertion that the
ferromagnet shows, and the antiferromagnet does not show a phase transition.

The pictures of the free energy in figure 31.15 give some insight into how
we could predict the transition temperature. We can see how the two phases
of the ferromagnetic systems each have simple free energies: a straight sloping
line through F' = 0, T = 0 for the high temperature phase, and a horizontal
line for the low temperature phase. (The slope of each line shows what the
entropy per spin of that phase is.) The phase transition occurs roughly at
the intersection of these lines. So we predict the transition temperature to be
linearly related to the ground state energy.

; R‘ectangular Ferromagnet 16 Triangular Ising’ModeIs Figure 3119 Energy Variances,
6l i 1| : 7 per spin, of (a) rectangular model;
sk ' | 12h widha — 4 (b) triangular models with
idth 8 (-) - - .
i/ 0 wdha) E different widths, (4) and (—)
4r i b width 8 (+) .
n . s ] \ 8l H E denoting ferromagnet and
= - Wil — B i . .
g width 8 —— / 6| i T A antiferromagnet. Compare with
2r ay 4t R figure 31.11.
1r . oL
0 0
1 L 2 I L
1 10 1 10

Temperature Temperature
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Comparison with the Monte Carlo results

The agreement between the results of the two experiments seems very good.
The two systems simulated (the long thin strip and the periodic square) are
not quite identical. Omne could a more accurate comparison by finding all
eigenvalues for the strip of width W and computing > A" to get the partition
function of a W x W patch.

» 31.3 Exercises

> Exercise 31.2.14] What would be the best way to extract the entropy from the
Monte Carlo simulations? What would be the best way to obtain the
entropy and the heat capacity from the partition function computation?

g% Exercise 31.3.1°] An Ising model may be generalized to have a coupling Jy,,
between any spins m and n, and the value of J,,, could be different for each
m and n. In the special case where all the couplings are positive we know
that the system has two ground states, the all-up and all-down states. For a
more general setting of J,,,,, it is conceivable that there could be many ground

states.
Imagine that it is required to make a spin system whose local minima are
a given list of states x(1),X(2),...,X(5). Can you think of a way of setting J

such that the chosen states are low energy states? You are allowed to adjust
all the {J,,,} to whatever values you wish.



