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2.10: Solutions 41

Solution to exercise 2.14 (p.35). We wish to prove, given the property

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2), (2.60)

that, if
∑

pi = 1 and pi ≥ 0,

I
∑

i=1

pif(xi) ≥ f

(

I
∑

i=1

pixi

)

. (2.61)

We proceed by recursion, working from the right-hand side. (This proof does
not handle cases where some pi = 0; such details are left to the pedantic
reader.) At the first line we use the definition of convexity (2.60) with λ =

p1
∑

I

i=1
pi

= p1; at the second line, λ = p2
∑

I

i=2
pi

.

f

(

I
∑

i=1

pixi

)

= f

(

p1x1 +
I
∑

i=2

pixi

)

≤ p1f(x1) +

[

I
∑

i=2

pi

][

f

(

I
∑

i=2

pixi

/

I
∑

i=2

pi

)]

(2.62)

≤ p1f(x1) +

[

I
∑

i=2

pi

][

p2
∑I

i=2 pi

f (x2) +

∑I
i=3 pi

∑I
i=2 pi

f

(

I
∑

i=3

pixi

/

I
∑

i=3

pi

)]

,

and so forth. 2

Solution to exercise 2.16 (p.36).

(a) For the outcomes {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, the probabilities are P =
{ 1

36 , 2
36 , 3

36 , 4
36 , 5

36 , 6
36 , 5

36 , 4
36 , 3

36 , 2
36 , 1

36}.

(b) The value of one die has mean 3.5 and variance 35/12. So the sum of
one hundred has mean 350 and variance 3500/12 ' 292, and by the
central-limit theorem the probability distribution is roughly Gaussian
(but confined to the integers), with this mean and variance.

(c) In order to obtain a sum that has a uniform distribution we have to start
from random variables some of which have a spiky distribution with the
probability mass concentrated at the extremes. The unique solution is
to have one ordinary die and one with faces 6, 6, 6, 0, 0, 0.

(d) Yes, a uniform distribution can be created in several ways, for example To think about: does this uniform
distribution contradict the
central-limit theorem?

by labelling the rth die with the numbers {0, 1, 2, 3, 4, 5} × 6r.

Solution to exercise 2.17 (p.36).

a = ln
p

q
⇒

p

q
= ea (2.63)

and q = 1 − p gives

p

1 − p
= ea (2.64)

⇒ p =
ea

ea + 1
=

1

1 + exp(−a)
. (2.65)

The hyperbolic tangent is

tanh(a) =
ea − e−a

ea + e−a
(2.66)
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so

f(a) ≡
1

1 + exp(−a)
=

1

2

(

1 − e−a

1 + e−a
+ 1

)

=
1

2

(

ea/2 − e−a/2

ea/2 + e−a/2
+ 1

)

=
1

2
(tanh(a/2) + 1). (2.67)

In the case b = log2 p/q, we can repeat steps (2.63–2.65), replacing e by 2,
to obtain

p =
1

1 + 2−b
. (2.68)

Solution to exercise 2.18 (p.36).

P (x | y) =
P (y |x)P (x)

P (y)
(2.69)

⇒
P (x=1 | y)

P (x=0 | y)
=

P (y |x=1)

P (y |x=0)

P (x=1)

P (x=0)
(2.70)

⇒ log
P (x=1 | y)

P (x=0 | y)
= log

P (y |x=1)

P (y |x=0)
+ log

P (x=1)

P (x=0)
. (2.71)

Solution to exercise 2.19 (p.36). The conditional independence of d1 and d2

given x means

P (x, d1, d2) = P (x)P (d1 |x)P (d2 |x). (2.72)

This gives a separation of the posterior probability ratio into a series of factors,
one for each data point, times the prior probability ratio.

P (x=1 | {di})

P (x=0 | {di})
=

P ({di} |x=1)

P ({di} |x=0)

P (x=1)

P (x=0)
(2.73)

=
P (d1 |x=1)

P (d1 |x=0)

P (d2 |x=1)

P (d2 |x=0)

P (x=1)

P (x=0)
. (2.74)

Life in high-dimensional spaces

Solution to exercise 2.20 (p.37). The volume of a hypersphere of radius r in
N dimensions is in fact

V (r,N) =
πN/2

(N/2)!
rN , (2.75)

but you don’t need to know this. For this question all that we need is the
r-dependence, V (r,N) ∝ rN . So the fractional volume in (r − ε, r) is

rN − (r − ε)N

rN
= 1 −

(

1 −
ε

r

)N
. (2.76)

The fractional volumes in the shells for the required cases are:

N 2 10 1000

ε/r = 0.01 0.02 0.096 0.99996
ε/r = 0.5 0.75 0.999 1 − 2−1000

Notice that no matter how small ε is, for large enough N essentially all the
probability mass is in the surface shell of thickness ε.
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Solution to exercise 2.21 (p.37). pa =0.1, pb =0.2, pc =0.7. f(a)=10,
f(b)=5, and f(c)=10/7.

E [f(x)] = 0.1 × 10 + 0.2 × 5 + 0.7 × 10/7 = 3. (2.77)

For each x, f(x) = 1/P (x), so

E [1/P (x)] = E [f(x)] = 3. (2.78)

Solution to exercise 2.22 (p.37). For general X,

E [1/P (x)] =
∑

x∈AX

P (x)1/P (x) =
∑

x∈AX

1 = |AX |. (2.79)

Solution to exercise 2.23 (p.37). pa =0.1, pb =0.2, pc =0.7. g(a)= 0, g(b)=1,
and g(c)= 0.

E [g(x)] = pb = 0.2. (2.80)

Solution to exercise 2.24 (p.37).

P (P (x)∈ [0.15, 0.5]) = pb = 0.2. (2.81)

P

(∣

∣

∣

∣

log
P (x)

0.2

∣

∣

∣

∣

> 0.05

)

= pa + pc = 0.8. (2.82)

Solution to exercise 2.25 (p.37). This type of question can be approached in
two ways: either by differentiating the function to be maximized, finding the
maximum, and proving it is a global maximum; this strategy is somewhat
risky since it is possible for the maximum of a function to be at the boundary
of the space, at a place where the derivative is not zero. Alternatively, a
carefully chosen inequality can establish the answer. The second method is
much neater.

Proof by differentiation (not the recommended method). Since it is slightly
easier to differentiate ln 1/p than log2 1/p, we temporarily define H(X) to be
measured using natural logarithms, thus scaling it down by a factor of log2 e.

H(X) =
∑

i

pi ln
1

pi
(2.83)

∂H(X)

∂pi
= ln

1

pi
− 1 (2.84)

we maximize subject to the constraint
∑

i pi = 1 which can be enforced with
a Lagrange multiplier:

G(p) ≡ H(X) + λ

(

∑

i

pi − 1

)

(2.85)

∂G(p)

∂pi
= ln

1

pi
− 1 + λ. (2.86)

At a maximum,

ln
1

pi
− 1 + λ = 0 (2.87)

⇒ ln
1

pi
= 1 − λ, (2.88)

so all the pi are equal. That this extremum is indeed a maximum is established
by finding the curvature:

∂2G(p)

∂pi∂pj
= −

1

pi
δij , (2.89)

which is negative definite. 2
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Proof using Jensen’s inequality (recommended method). First a reminder of
the inequality.

If f is a convex^ function and x is a random variable then:

E [f(x)] ≥ f (E [x]) .

If f is strictly convex^ and E [f(x)] =f (E [x]), then the random
variable x is a constant (with probability 1).

The secret of a proof using Jensen’s inequality is to choose the right func-
tion and the right random variable. We could define

f(u) = log
1

u
= − log u (2.90)

(which is a convex function) and think of H(X) =
∑

pi log
1
pi

as the mean of
f(u) where u = P (x), but this would not get us there – it would give us an
inequality in the wrong direction. If instead we define

u = 1/P (x) (2.91)

then we find:

H(X) = −E [f(1/P (x))] ≤ −f (E [1/P (x)]) ; (2.92)

now we know from exercise 2.22 (p.37) that E [1/P (x)] = |AX |, so

H(X) ≤ −f (|AX |) = log |AX |. (2.93)

Equality holds only if the random variable u = 1/P (x) is a constant, which
means P (x) is a constant for all x. 2

Solution to exercise 2.26 (p.37).

DKL(P ||Q) =
∑

x

P (x) log
P (x)

Q(x)
. (2.94)

We prove Gibbs’ inequality using Jensen’s inequality. Let f(u) = log 1/u and

u = Q(x)

P (x)
. Then

DKL(P ||Q) = E [f(Q(x)/P (x))] (2.95)

≥ f

(

∑

x

P (x)
Q(x)

P (x)

)

= log

(

1
∑

x Q(x)

)

= 0, (2.96)

with equality only if u = Q(x)
P (x) is a constant, that is, if Q(x) = P (x). 2

Second solution. In the above proof the expectations were with respect to
the probability distribution P (x). A second solution method uses Jensen’s

inequality with Q(x) instead. We define f(u) = u log u and let u = P (x)
Q(x) .

Then

DKL(P ||Q) =
∑

x

Q(x)
P (x)

Q(x)
log

P (x)

Q(x)
=
∑

x

Q(x)f

(

P (x)

Q(x)

)

(2.97)

≥ f

(

∑

x

Q(x)
P (x)

Q(x)

)

= f(1) = 0, (2.98)

with equality only if u = P (x)
Q(x) is a constant, that is, if Q(x) = P (x). 2



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

2.10: Solutions 45

Solution to exercise 2.28 (p.38).

H(X) = H2(f) + fH2(g) + (1 − f)H2(h). (2.99)

Solution to exercise 2.29 (p.38). The probability that there are x−1 tails and
then one head (so we get the first head on the xth toss) is

P (x) = (1 − f)x−1f. (2.100)

If the first toss is a tail, the probability distribution for the future looks just
like it did before we made the first toss. Thus we have a recursive expression
for the entropy:

H(X) = H2(f) + (1 − f)H(X). (2.101)

Rearranging,
H(X) = H2(f)/f. (2.102)

Solution to exercise 2.34 (p.38). The probability of the number of tails t is

P (t) =

(

1

2

)t 1

2
for t ≥ 0. (2.103)

The expected number of heads is 1, by definition of the problem. The expected
number of tails is

E [t] =
∞
∑

t=0

t

(

1

2

)t 1

2
, (2.104)

which may be shown to be 1 in a variety of ways. For example, since the
situation after one tail is thrown is equivalent to the opening situation, we can
write down the recurrence relation

E [t] =
1

2
(1 + E [t]) +

1

2
0 ⇒ E [t] = 1. (2.105)

The probability distribution of the ‘estimator’ f̂ = 1/(1 + t), given that
f = 1/2, is plotted in figure 2.12. The probability of f̂ is simply the probability
of the corresponding value of t.

P (f̂)

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

f̂

Figure 2.12. The probability
distribution of the estimator
f̂ = 1/(1 + t), given that f = 1/2.

Solution to exercise 2.35 (p.38).

(a) The mean number of rolls from one six to the next six is six (assuming
we start counting rolls after the first of the two sixes). The probability
that the next six occurs on the rth roll is the probability of not getting
a six for r − 1 rolls multiplied by the probability of then getting a six:

P (r1 = r) =

(

5

6

)r−1 1

6
, for r ∈ {1, 2, 3, . . .}. (2.106)

This probability distribution of the number of rolls, r, may be called an
exponential distribution, since

P (r1 = r) = e−αr/Z, (2.107)

where α = ln(6/5), and Z is a normalizing constant.

(b) The mean number of rolls from the clock until the next six is six.

(c) The mean number of rolls, going back in time, until the most recent six
is six.
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(d) The mean number of rolls from the six before the clock struck to the six
after the clock struck is the sum of the answers to (b) and (c), less one,
that is, eleven.

(e) Rather than explaining the difference between (a) and (d), let me give
another hint. Imagine that the buses in Poissonville arrive indepen-
dently at random (a Poisson process), with, on average, one bus every
six minutes. Imagine that passengers turn up at bus-stops at a uniform
rate, and are scooped up by the bus without delay, so the interval be-
tween two buses remains constant. Buses that follow gaps bigger than
six minutes become overcrowded. The passengers’ representative com-
plains that two-thirds of all passengers found themselves on overcrowded
buses. The bus operator claims, ‘no, no – only one third of our buses
are overcrowded’. Can both these claims be true?

0
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0.1

0.15

0 5 10 15 20

Figure 2.13. The probability
distribution of the number of rolls
r1 from one 6 to the next (falling
solid line),

P (r1 = r) =

(

5

6

)

r−1
1

6
,

and the probability distribution
(dashed line) of the number of
rolls from the 6 before 1pm to the
next 6, rtot,

P (rtot = r) = r

(

5

6

)

r−1(

1

6

)2

.

The probability P (r1 > 6) is
about 1/3; the probability
P (rtot > 6) is about 2/3. The
mean of r1 is 6, and the mean of
rtot is 11.

Solution to exercise 2.38 (p.39).

Binomial distribution method. From the solution to exercise 1.2, pB =
3f2(1 − f) + f3.

Sum rule method. The marginal probabilities of the eight values of r are
illustrated by:

P (r=000) = 1/2(1 − f)3 + 1/2f3, (2.108)

P (r=001) = 1/2f(1 − f)2 + 1/2f2(1 − f) = 1/2f(1 − f). (2.109)

The posterior probabilities are represented by

P (s=1 | r=000) =
f3

(1 − f)3 + f3
(2.110)

and

P (s=1 | r=001) =
(1 − f)f2

f(1 − f)2 + f2(1 − f)
= f. (2.111)

The probabilities of error in these representative cases are thus

P (error | r=000) =
f3

(1 − f)3 + f3
(2.112)

and
P (error | r=001) = f. (2.113)

Notice that while the average probability of error of R3 is about 3f2, the
probability (given r) that any particular bit is wrong is either about f3

or f .

The average error probability, using the sum rule, is

P (error) =
∑

r

P (r)P (error | r)

= 2[1/2(1 − f)3 + 1/2f3]
f3

(1 − f)3 + f3
+ 6[1/2f(1 − f)]f.

So

The first two terms are for the
cases r = 000 and 111; the
remaining 6 are for the other
outcomes, which share the same
probability of occurring and
identical error probability, f .

P (error) = f3 + 3f2(1 − f).

Solution to exercise 2.39 (p.40). The entropy is 9.7 bits per word.


