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35

Random Inference Topics

�
35.1 What do you know if you are ignorant?

Example 35.1. A real variable x is measured in an accurate experiment. For
example, x might be the half-life of the neutron, the wavelength of light
emitted by a firefly, the depth of Lake Vostok, or the mass of Jupiter’s
moon Io.

What is the probability that the value of x starts with a ‘1’, like the
charge of the electron (in S.I. units),

e = 1.602 . . . × 10−19 C,

and the Boltzmann constant,

k = 1.380 66 . . . × 10−23 JK−1?

And what is the probability that it starts with a ‘9’, like the Faraday
constant,

F = 9.648 . . . × 104 Cmol−1?

What about the second digit? What is the probability that the mantissa
of x starts ‘1.1...’, and what is the probability that x starts ‘9.9...’?

Solution. An expert on neutrons, fireflies, Antarctica, or Jove might be able to
predict the value of x, and thus predict the first digit with some confidence, but
what about someone with no knowledge of the topic? What is the probability
distribution corresponding to ‘knowing nothing’?

One way to attack this question is to notice that the units of x have not
been specified. If the half-life of the neutron were measured in fortnights
instead of seconds, the number x would be divided by 1 209 600; if it were
measured in years, it would be divided by 3 × 107. Now, is our knowledge
about x, and, in particular, our knowledge of its first digit, affected by the
change in units? For the expert, the answer is yes; but let us take someone
truly ignorant, for whom the answer is no; their predictions about the first digit
of x are independent of the units. The arbitrariness of the units corresponds to
invariance of the probability distribution when x is multiplied by any number.

metres

6

1

2

3

4

5

6

7

8
9
10

20

30

40

50

60

70

80

inches

6

40

50

60

70

80
90
100

200

300

400

500

600

700

800
900
1000

2000

3000

feet

6

3

4

5

6

7

8
9
10

20

30

40

50

60

70

80
90
100

200

Figure 35.1. When viewed on a
logarithmic scale, scales using
different units are translated
relative to each other.

If you don’t know the units that a quantity is measured in, the probability
of the first digit must be proportional to the length of the corresponding piece
of logarithmic scale. The probability that the first digit of a number is 1 is
thus

p1 =
log 2 − log 1

log 10 − log 1
=

log 2

log 10
. (35.1)

445



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

446 35 — Random Inference Topics

Now, 210 = 1024 ' 103 = 1000, so without needing a calculator, we have
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. (35.2)

More generally, the probability that the first digit is d is

(log(d + 1) − log(d))/(log 10 − log 1) = log10(1 + 1/d). (35.3)

This observation about initial digits is known as Benford’s law. Ignorance
does not correspond to a uniform probability distribution over d. 2

. Exercise 35.2.[2 ] A pin is thrown tumbling in the air. What is the probability
distribution of the angle θ1 between the pin and the vertical at a moment
while it is in the air? The tumbling pin is photographed. What is the
probability distribution of the angle θ3 between the pin and the vertical
as imaged in the photograph?

. Exercise 35.3.[2 ] Record breaking. Consider keeping track of the world record
for some quantity x, say earthquake magnitude, or longjump distances
jumped at world championships. If we assume that attempts to break
the record take place at a steady rate, and if we assume that the under-
lying probability distribution of the outcome x, P (x), is not changing –
an assumption that I think is unlikely to be true in the case of sports
endeavours, but an interesting assumption to consider nonetheless – and
assuming no knowledge at all about P (x), what can be predicted about
successive intervals between the dates when records are broken?

�
35.2 The Luria–Delbrück distribution

Exercise 35.4.[3C, p.449] In their landmark paper demonstrating that bacteria
could mutate from virus sensitivity to virus resistance, Luria and Delbrück
(1943) wanted to estimate the mutation rate in an exponentially-growing pop-
ulation from the total number of mutants found at the end of the experi-
ment. This problem is difficult because the quantity measured (the number
of mutated bacteria) has a heavy-tailed probability distribution: a mutation
occuring early in the experiment can give rise to a huge number of mutants.
Unfortunately, Luria and Delbrück didn’t know Bayes’ theorem, and their way
of coping with the heavy-tailed distribution involves arbitrary hacks leading to
two different estimators of the mutation rate. One of these estimators (based
on the mean number of mutated bacteria, averaging over several experiments)
has appallingly large variance, yet sampling theorists continue to use it and
base confidence intervals around it (Kepler and Oprea, 2001). In this exercise
you’ll do the inference right.

In each culture, a single bacterium that is not resistant gives rise, after g
generations, to N = 2g descendants, all clones except for differences arising
from mutations. The final culture is then exposed to a virus, and the number
of resistant bacteria n is measured. According to the now accepted mutation
hypothesis, these resistant bacteria got their resistance from random mutations
that took place during the growth of the colony. The mutation rate (per cell
per generation), a, is about one in a hundred million. The total number of
opportunities to mutate is N , since

∑g−1

i=0
2i ' 2g = N . If a bacterium mutates

at the ith generation, its descendants all inherit the mutation, and the final
number of resistant bacteria contributed by that one ancestor is 2g−i.
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35.3: Inferring causation 447

Given M separate experiments, in each of which a colony of size N is
created, and where the measured numbers of resistant bacteria are {nm}M

m=1
,

what can we infer about the mutation rate, a?

Make the inference given the following dataset from Luria and Delbrück,
for N = 2.4 × 108: {nm} = {1, 0, 3, 0, 0, 5, 0, 5, 0, 6, 107, 0, 0, 0, 1, 0, 0, 64, 0, 35}.
[A small amount of computation is required to solve this problem.]

�
35.3 Inferring causation

Exercise 35.5.[2, p.450] In the Bayesian graphical model community, the task
of inferring which way the arrows point – that is, which nodes are parents,
and which children – is one on which much has been written.

Inferring causation is tricky because of ‘likelihood equivalence’. Two graph-
ical models are likelihood-equivalent if for any setting of the parameters of
either, there exists a setting of the parameters of the other such that the two
joint probability distributions of all observables are identical. An example of
a pair of likelihood-equivalent models are A → B and B → A. The model
A → B asserts that A is the parent of B, or, in very sloppy terminology, ‘A
causes B’. An example of a situation where ‘B → A’ is true is the case where
B is the variable ‘burglar in house’ and A is the variable ‘alarm is ringing’.
Here it is literally true that B causes A. But this choice of words is confusing if
applied to another example, R → D, where R denotes ‘it rained this morning’
and D denotes ‘the pavement is dry’. ‘R causes D’ is confusing. I’ll therefore
use the words ‘B is a parent of A’ to denote causation. Some statistical meth-
ods that use the likelihood alone are unable to use data to distinguish between
likelihood-equivalent models. In a Bayesian approach, on the other hand, two
likelihood-equivalent models may nevertheless be somewhat distinguished, in
the light of data, since likelihood-equivalence does not force a Bayesian to use
priors that assign equivalent densities over the two parameter spaces of the
models.

However, many Bayesian graphical modelling folks, perhaps out of sym-
pathy for their non-Bayesian colleagues, or from a latent urge not to appear
different from them, deliberately discard this potential advantage of Bayesian
methods – the ability to infer causation from data – by skewing their models
so that the ability goes away; a widespread orthodoxy holds that one should
identify the choices of prior for which ‘prior equivalence’ holds, i.e., the priors
such that models that are likelihood-equivalent also have identical posterior
probabilities; and then one should use one of those priors in inference and
prediction. This argument motivates the use, as the prior over all probability
vectors, of specially-constructed Dirichlet distributions.

In my view it is a philosophical error to use only those priors such that
causation cannot be inferred. Priors should be set to describe one’s assump-
tions; when this is done, it’s likely that interesting inferences about causation
can be made from data.

In this exercise, you’ll make an example of such an inference.

Consider the toy problem where A and B are binary variables. The two
models are HA→B and HB→A. HA→B asserts that the marginal probabil-
ity of A comes from a beta distribution with parameters (1, 1), i.e., the uni-
form distribution; and that the two conditional distributions P (b | a=0) and
P (b | a=1) also come independently from beta distributions with parameters
(1, 1). The other model assigns similar priors to the marginal probability of
B and the conditional distributions of A given B. Data are gathered, and the
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448 35 — Random Inference Topics

counts, given F = 1000 outcomes, are

a=0 a=1
b=0 760 5 765
b=1 190 45 235

950 50

(35.4)

What are the posterior probabilities of the two hypotheses?

Hint: it’s a good idea to work this exercise out symbolically in order to spot
all the simplifications that emerge.

Ψ(x) =
d

dx
ln Γ(x) ' ln(x) −

1

2x
+ O(1/x2). (35.5)

The topic of inferring causation is a complex one. The fact that Bayesian
inference can sensibly be used to infer the directions of arrows in graphs seems
to be a neglected view, but it is certainly not the whole story. See Pearl (2000)
for discussion of many other aspects of causality.

�
35.4 Further exercises

Exercise 35.6.[3 ] Photons arriving at a photon detector are believed to be emit-
ted as a Poisson process with a time-varying rate,

λ(t) = exp(a + b sin(ωt + φ)), (35.6)

where the parameters a, b, ω, and φ are known. Data are collected during
the time t = 0 . . . T . Given that N photons arrived at times {tn}

N
n=1

,
discuss the inference of a, b, ω, and φ. [Further reading: Gregory and
Loredo (1992).]

. Exercise 35.7.[2 ] A data file consisting of two columns of numbers has been
printed in such a way that the boundaries between the columns are
unclear. Here are the resulting strings.

891.10.0 912.20.0 874.10.0 870.20.0 836.10.0 861.20.0
903.10.0 937.10.0 850.20.0 916.20.0 899.10.0 907.10.0
924.20.0 861.10.0 899.20.0 849.10.0 887.20.0 840.10.0
849.20.0 891.10.0 916.20.0 891.10.0 912.20.0 875.10.0
898.20.0 924.10.0 950.20.0 958.10.0 971.20.0 933.10.0
966.20.0 908.10.0 924.20.0 983.10.0 924.20.0 908.10.0
950.20.0 911.10.0 913.20.0 921.25.0 912.20.0 917.30.0
923.50.0

Discuss how probable it is, given these data, that the correct parsing of
each item is:

(a) 891.10.0 → 891. 10.0, etc.

(b) 891.10.0 → 891.1 0.0, etc.

[A parsing of a string is a grammatical interpretation of the string. For
example, ‘Punch bores’ could be parsed as ‘Punch (noun) bores (verb)’,
or ‘Punch (imperative verb) bores (plural noun)’.]

. Exercise 35.8.[2 ] In an experiment, the measured quantities {xn} come inde-
pendently from a biexponential distribution with mean µ,

P (x |µ) =
1

Z
exp(− |x − µ|) ,
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where Z is the normalizing constant, Z = 2. The mean µ is not known.
An example of this distribution, with µ = 1, is shown in figure 35.2.

-3 -2 -1 0 1 2 3

Figure 35.2. The biexponential
distribution P (x |µ = 1).

Assuming the four datapoints are

{xn} = {0, 0.9, 2, 6}, 0 1 2 3 4 5 6 7 8

what do these data tell us about µ? Include detailed sketches in your
answer. Give a range of plausible values of µ.

�
35.5 Solutions

Solution to exercise 35.4 (p.446). A population of size N has N opportunities
to mutate. The probability of the number of mutations that occurred, r, is
roughly Poisson

P (r | a,N) = e−aN (aN)r

r!
. (35.7)

(This is slightly inaccurate because the descendants of a mutant cannot them-
selves undergo the same mutation.) Each mutation gives rise to a number of
final mutant cells ni that depends on the generation time of the mutation. If
multiplication went like clockwork then the probability of ni being 1 would
be 1/2, the probability of 2 would be 1/4, the probability of 4 would be 1/8,
and P (ni) = 1/(2n) for all ni that are powers of two. But we don’t expect
the mutant progeny to divide in exact synchrony, and we don’t know the pre-
cise timing of the end of the experiment compared to the division times. A
smoothed version of this distribution that permits all integers to occur is

P (ni) =
1

Z

1

n2

i

, (35.8)

where Z = π2/6 = 1.645. [This distribution’s moments are all wrong, since
ni can never exceed N , but who cares about moments? – only sampling
theory statisticians who are barking up the wrong tree, constructing ‘unbiased
estimators’ such as â = (n̄/N)/ log N . The error that we introduce in the
likelihood function by using the approximation to P (ni) is negligible.]

The observed number of mutants n is the sum

n =

r∑

i=1

ni. (35.9)

The probability distribution of n given r is the convolution of r identical
distributions of the form (35.8). For example,

P (n | r =2) =
n−1∑

n1=1

1

Z2

1

n2
1

1

(n − n1)2
for n ≥ 2. (35.10)

The probability distribution of n given a, which is what we need for the
Bayesian inference, is given by summing over r.

P (n | a) =

N∑

r=0

P (n | r)P (r | a,N). (35.11)

This quantity can’t be evaluated analytically, but for small a, it’s easy to
evaluate to any desired numerical precision by explicitly summing over r from
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r = 0 to some rmax, with P (n | r) also being found for each r by rmax explicit
convolutions for all required values of n; if rmax = nmax, the largest value
of n encountered in the data, then P (n | a) is computed exactly; but for this
question’s data, rmax = 9 is plenty for an accurate result; I used rmax =
74 to make the graphs in figure 35.3. Octave source code is available.1
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Figure 35.3. Likelihood of the
mutation rate a on a linear scale
and log scale, given Luria and
Delbruck’s data. Vertical axis:
likelihood/10−23; horizontal axis:
a.

Incidentally, for data sets like the one in this exercise, which have a substantial
number of zero counts, very little is lost by making Luria and Delbruck’s second
approximation, which is to retain only the count of how many n were equal to
zero, and how many were non-zero. The likelihood function found using this
weakened data set,

L(a) = (e−aN )11(1 − e−aN )9, (35.12)

is scarcely distinguishable from the likelihood computed using full information.

Solution to exercise 35.5 (p.447). From the six terms of the form

P (F |αm) =

∏
i Γ(Fi + αmi)

Γ(
∑

i Fi + α)

Γ(α)∏
i Γ(αmi)

, (35.13)

most factors cancel and all that remains is

P (HA→B |Data)

P (HB→A |Data)
=

(765 + 1)(235 + 1)

(950 + 1)(50 + 1)
=

3.8

1
. (35.14)

There is modest evidence in favour of HA→B because the three probabilities
inferred for that hypothesis (roughly 0.95, 0.8, and 0.1) are more typical of
the prior than are the three probabilities inferred for the other (0.24, 0.008,
and 0.19). This statement sounds absurd if we think of the priors as ‘uniform’
over the three probabilities – surely, under a uniform prior, any settings of the
probabilities are equally probable? But in the natural basis, the logit basis,
the prior is proportional to p(1 − p), and the posterior probability ratio can
be estimated by

0.95 × 0.05 × 0.8 × 0.2 × 0.1 × 0.9

0.24 × 0.76 × 0.008 × 0.992 × 0.19 × 0.81
'

3

1
, (35.15)

which is not exactly right, but it does illustrate where the preference for A → B
is coming from.

1www.inference.phy.cam.ac.uk/itprnn/code/octave/luria0.m


