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36

Decision Theory

Decision theory is trivial, apart from computational details (just like playing
chess!).

You have a choice of various actions, a. The world may be in one of many
states x; which one occurs may be influenced by your action. The world’s
state has a probability distribution P (x | a). Finally, there is a utility function
U(x, a) which specifies the payoff you receive when the world is in state x and
you chose action a.

The task of decision theory is to select the action that maximizes the
expected utility,

E [U | a] =

∫

dKx U(x, a)P (x | a). (36.1)

That’s all. The computational problem is to maximize E [U | a] over a. [Pes-
simists may prefer to define a loss function L instead of a utility function U
and minimize the expected loss.]

Is there anything more to be said about decision theory?

Well, in a real problem, the choice of an appropriate utility function may
be quite difficult. Furthermore, when a sequence of actions is to be taken,
with each action providing information about x, we have to take into account
the effect that this anticipated information may have on our subsequent ac-
tions. The resulting mixture of forward probability and inverse probability
computations in a decision problem is distinctive. In a realistic problem such
as playing a board game, the tree of possible cogitations and actions that must
be considered becomes enormous, and ‘doing the right thing’ is not simple,
because the expected utility of an action cannot be computed exactly (Russell
and Wefald, 1991; Baum and Smith, 1993; Baum and Smith, 1997).

Let’s explore an example.

�
36.1 Rational prospecting

Suppose you have the task of choosing the site for a Tanzanite mine. Your
final action will be to select the site from a list of N sites. The nth site has
a net value called the return xn which is initially unknown, and will be found
out exactly only after site n has been chosen. [xn equals the revenue earned
from selling the Tanzanite from that site, minus the costs of buying the site,
paying the staff, and so forth.] At the outset, the return xn has a probability
distribution P (xn), based on the information already available.

Before you take your final action you have the opportunity to do some
prospecting. Prospecting at the nth site has a cost cn and yields data dn

which reduce the uncertainty about xn. [We’ll assume that the returns of
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452 36 — Decision Theory

the N sites are unrelated to each other, and that prospecting at one site only
yields information about that site and doesn’t affect the return from that site.]

Your decision problem is:

given the initial probability distributions P (x1), P (x2), . . . , P (xN ),
first, decide whether to prospect, and at which sites; then, in the
light of your prospecting results, choose which site to mine.

For simplicity, let’s make everything in the problem Gaussian and focus The notation
P (y) = Normal(y; µ, σ2) indicates
that y has Gaussian distribution
with mean µ and variance σ2.

on the question of whether to prospect once or not. We’ll assume our utility
function is linear in xn; we wish to maximize our expected return. The utility
function is

U = xna
, (36.2)

if no prospecting is done, where na is the chosen ‘action’ site; and, if prospect-
ing is done, the utility is

U = −cnp
+ xna

, (36.3)

where np is the site at which prospecting took place.
The prior distribution of the return of site n is

P (xn) = Normal(xn;µn, σ2
n). (36.4)

If you prospect at site n, the datum dn is a noisy version of xn:

P (dn |xn) = Normal(dn;xn, σ2). (36.5)

. Exercise 36.1.[2 ] Given these assumptions, show that the prior probability dis-
tribution of dn is

P (dn) = Normal(dn;µn, σ2+σ2
n) (36.6)

(mnemonic: when independent variables add, variances add), and that
the posterior distribution of xn given dn is

P (xn | dn) = Normal
(

xn;µ′

n, σ2
n

′
)

(36.7)

where

µ′

n =
dn/σ2 + µn/σ2

n

1/σ2 + 1/σ2
n

and
1

σ2
n
′
=

1

σ2
+

1

σ2
n

(36.8)

(mnemonic: when Gaussians multiply, precisions add).

To start with, let’s evaluate the expected utility if we do no prospecting (i.e.,
choose the site immediately); then we’ll evaluate the expected utility if we first
prospect at one site and then make our choice. From these two results we will
be able to decide whether to prospect once or zero times, and, if we prospect
once, at which site.

So, first we consider the expected utility without any prospecting.

Exercise 36.2.[2 ] Show that the optimal action, assuming no prospecting, is to
select the site with biggest mean

na = argmax
n

µn, (36.9)

and the expected utility of this action is

E [U | optimal n] = max
n

µn. (36.10)

[If your intuition says ‘surely the optimal decision should take into ac-
count the different uncertainties σn too?’, the answer to this question is
‘reasonable – if so, then the utility function should be nonlinear in x’.]
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36.2: Further reading 453

Now the exciting bit. Should we prospect? Once we have prospected at
site np, we will choose the site using the decision rule (36.9) with the value of
mean µnp

replaced by the updated value µ′

n given by (36.8). What makes the
problem exciting is that we don’t yet know the value of dn, so we don’t know
what our action na will be; indeed the whole value of doing the prospecting
comes from the fact that the outcome dn may alter the action from the one
that we would have taken in the absence of the experimental information.

From the expression for the new mean in terms of dn (36.8), and the known
variance of dn (36.6), we can compute the probability distribution of the key
quantity, µ′

n, and can work out the expected utility by integrating over all
possible outcomes and their associated actions.

Exercise 36.3.
[2 ] Show that the probability distribution of the new mean µ′

n

(36.8) is Gaussian with mean µn and variance

s2 ≡ σ2
n

σ2
n

σ2 + σ2
n

. (36.11)

Consider prospecting at site n. Let the biggest mean of the other sites be
µ1. When we obtain the new value of the mean, µ′

n, we will choose site n and
get an expected return of µ′

n if µ′

n > µ1, and we will choose site 1 and get an
expected return of µ1 if µ′

n < µ1.
So the expected utility of prospecting at site n, then picking the best site,

is

E [U |prospect at n] = −cn + P (µ′

n < µ1)µ1 +

∫

∞

µ1

dµ′

n µ′

n Normal(µ′

n;µn, s2).

(36.12)
The difference in utility between prospecting and not prospecting is the

quantity of interest, and it depends on what we would have done without
prospecting; and that depends on whether µ1 is bigger than µn.

E [U |no prospecting] =

{

−µ1 if µ1 ≥ µn

−µn if µ1 ≤ µn.
(36.13)

So

E [U |prospect at n] − E [U |no prospecting]

=















−cn +

∫

∞

µ1

dµ′

n (µ′

n − µ1)Normal(µ′

n;µn, s2) if µ1 ≥ µn

−cn +

∫ µ1

−∞

dµ′

n (µ1 − µ′

n)Normal(µ′

n;µn, s2) if µ1 ≤ µn.
(36.14)

We can plot the change in expected utility due to prospecting (omitting
cn) as a function of the difference (µn − µ1) (horizontal axis) and the initial
standard deviation σn (vertical axis). In the figure the noise variance is σ2 = 1.
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Figure 36.1. Contour plot of the
gain in expected utility due to
prospecting. The contours are
equally spaced from 0.1 to 1.2 in
steps of 0.1. To decide whether it
is worth prospecting at site n, find
the contour equal to cn (the cost
of prospecting); all points
[(µn−µ1), σn] above that contour
are worthwhile.

�
36.2 Further reading

If the world in which we act is a little more complicated than the prospecting
problem – for example, if multiple iterations of prospecting are possible, and
the cost of prospecting is uncertain – then finding the optimal balance between
exploration and exploitation becomes a much harder computational problem.
Reinforcement learning addresses approximate methods for this problem (Sut-
ton and Barto, 1998).
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�
36.3 Further exercises

. Exercise 36.4.[2 ] The four doors problem.

A new game show uses rules similar to those of the three doors (exer-
cise 3.8 (p.57)), but there are four doors, and the host explains: ‘First
you will point to one of the doors, and then I will open one of the other
doors, guaranteeing to choose a non-winner. Then you decide whether
to stick with your original pick or switch to one of the remaining doors.
Then I will open another non-winner (but never the current pick). You
will then make your final decision by sticking with the door picked on
the previous decision or by switching to the only other remaining door.’

What is the optimal strategy? Should you switch on the first opportu-
nity? Should you switch on the second opportunity?

. Exercise 36.5.[3 ] One of the challenges of decision theory is figuring out ex-
actly what the utility function is. The utility of money, for example, is
notoriously nonlinear for most people.

In fact, the behaviour of many people cannot be captured by a coher-
ent utility function, as illustrated by the Allais paradox, which runs as
follows.

Which of these choices do you find most attractive?

A. £1 million guaranteed.
B. 89% chance of £1 million;

10% chance of £2.5 million;
1% chance of nothing.

Now consider these choices:
C. 89% chance of nothing;

11% chance of £1 million.
D. 90% chance of nothing;

10% chance of £2.5 million.

Many people prefer A to B, and, at the same time, D to C. Prove
that these preferences are inconsistent with any utility function U(x)
for money.

Exercise 36.6.[4 ] Optimal stopping.

A large queue of N potential partners is waiting at your door, all asking
to marry you. They have arrived in random order. As you meet each
partner, you have to decide on the spot, based on the information so
far, whether to marry them or say no. Each potential partner has a
desirability dn, which you find out if and when you meet them. You
must marry one of them, but you are not allowed to go back to anyone
you have said no to.

There are several ways to define the precise problem.

(a) Assuming your aim is to maximize the desirability dn, i.e., your
utility function is dn̂, where n̂ is the partner selected, what strategy
should you use?

(b) Assuming you wish very much to marry the most desirable person
(i.e., your utility function is 1 if you achieve that, and zero other-
wise); what strategy should you use?
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(c) Assuming you wish very much to marry the most desirable person,
and that your strategy will be ‘strategy M ’:

Strategy M – Meet the first M partners and say no to all
of them. Memorize the maximum desirability dmax among
them. Then meet the others in sequence, waiting until a
partner with dn > dmax comes along, and marry them.
If none more desirable comes along, marry the final Nth
partner (and feel miserable).

– what is the optimal value of M?

Exercise 36.7.[3 ] Regret as an objective function?

The preceding exercise (parts b and c) involved a utility function based
on regret. If one married the tenth most desirable candidate, the utility
function asserts that one would feel regret for having not chosen the
most desirable.

Many people working in learning theory and decision theory use ‘mini-
mizing the maximal possible regret’ as an objective function, but does
this make sense?

Action
Buy Don’t

Outcome buy

No win −1 0
Wins +9 0

Table 36.2. Utility in the lottery
ticket problem.

Imagine that Fred has bought a lottery ticket, and offers to sell it to you
before it’s known whether the ticket is a winner. For simplicity say the
probability that the ticket is a winner is 1/100, and if it is a winner, it
is worth £10. Fred offers to sell you the ticket for £1. Do you buy it?

The possible actions are ‘buy’ and ‘don’t buy’. The utilities of the four
possible action–outcome pairs are shown in table 36.2. I have assumed
that the utility of small amounts of money for you is linear. If you don’t
buy the ticket then the utility is zero regardless of whether the ticket
proves to be a winner. If you do buy the ticket you end up either losing

Action
Buy Don’t

Outcome buy

No win 1 0
Wins 0 9

Table 36.3. Regret in the lottery
ticket problem.

one pound (with probability 99/100) or gaining nine (with probability
1/100). In the minimax regret community, actions are chosen to mini-
mize the maximum possible regret. The four possible regret outcomes
are shown in table 36.3. If you buy the ticket and it doesn’t win, you
have a regret of £1, because if you had not bought it you would have
been £1 better off. If you do not buy the ticket and it wins, you have
a regret of £9, because if you had bought it you would have been £9
better off. The action that minimizes the maximum possible regret is
thus to buy the ticket.

Discuss whether this use of regret to choose actions can be philosophi-
cally justified.

The above problem can be turned into an investment portfolio decision
problem by imagining that you have been given one pound to invest in
two possible funds for one day: Fred’s lottery fund, and the cash fund. If
you put £f1 into Fred’s lottery fund, Fred promises to return £9f1 to you
if the lottery ticket is a winner, and otherwise nothing. The remaining
£f0 (with f0 = 1 − f1) is kept as cash. What is the best investment?
Show that the minimax regret community will invest f1 = 9/10 of their
money in the high risk, high return lottery fund, and only f0 = 1/10 in
cash. Can this investment method be justified?

Exercise 36.8.[3 ] Gambling oddities (from Cover and Thomas (1991)). A horse
race involving I horses occurs repeatedly, and you are obliged to bet
all your money each time. Your bet at time t can be represented by



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

456 36 — Decision Theory

a normalized probability vector b multiplied by your money m(t). The
odds offered by the bookies are such that if horse i wins then your return
is m(t+1) = bioim(t). Assuming the bookies’ odds are ‘fair’, that is,

∑

i

1

oi

= 1, (36.15)

and assuming that the probability that horse i wins is pi, work out the
optimal betting strategy if your aim is Cover’s aim, namely, to maximize
the expected value of log m(T ). Show that the optimal strategy sets b

equal to p, independent of the bookies’ odds o. Show that when this
strategy is used, the money is expected to grow exponentially as:

2nW (b,p) (36.16)

where W =
∑

i pi log bioi.

If you only bet once, is the optimal strategy any different?

Do you think this optimal strategy makes sense? Do you think that it’s
‘optimal’, in common language, to ignore the bookies’ odds? What can
you conclude about ‘Cover’s aim’?

Exercise 36.9.
[3 ] Two ordinary dice are thrown repeatedly; the outcome of

each throw is the sum of the two numbers. Joe Shark, who says that 6
and 8 are his lucky numbers, bets even money that a 6 will be thrown
before the first 7 is thrown. If you were a gambler, would you take the
bet? What is your probability of winning? Joe then bets even money
that an 8 will be thrown before the first 7 is thrown. Would you take
the bet?

Having gained your confidence, Joe suggests combining the two bets into
a single bet: he bets a larger sum, still at even odds, that an 8 and a
6 will be thrown before two 7s have been thrown. Would you take the
bet? What is your probability of winning?


