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37

Bayesian Inference and Sampling Theory

There are two schools of statistics. Sampling theorists concentrate on having
methods guaranteed to work most of the time, given minimal assumptions.
Bayesians try to make inferences that take into account all available informa-
tion and answer the question of interest given the particular data set. As you
have probably gathered, I strongly recommend the use of Bayesian methods.

Sampling theory is the widely used approach to statistics, and most pa-
pers in most journals report their experiments using quantities like confidence
intervals, significance levels, and p-values. A p-value (e.g. p = 0.05) is the prob-
ability, given a null hypothesis for the probability distribution of the data, that
the outcome would be as extreme as, or more extreme than, the observed out-
come. Untrained readers – and perhaps, more worryingly, the authors of many
papers – usually interpret such a p-value as if it is a Bayesian probability (for
example, the posterior probability of the null hypothesis), an interpretation
that both sampling theorists and Bayesians would agree is incorrect.

In this chapter we study a couple of simple inference problems in order to
compare these two approaches to statistics.

While in some cases, the answers from a Bayesian approach and from sam-
pling theory are very similar, we can also find cases where there are significant
differences. We have already seen such an example in exercise 3.15 (p.59),
where a sampling theorist got a p-value smaller than 7%, and viewed this as
strong evidence against the null hypothesis, whereas the data actually favoured

the null hypothesis over the simplest alternative. On p.64, another example
was given where the p-value was smaller than the mystical value of 5%, yet the
data again favoured the null hypothesis. Thus in some cases, sampling theory
can be trigger-happy, declaring results to be ‘sufficiently improbable that the
null hypothesis should be rejected’, when those results actually weakly sup-
port the null hypothesis. As we will now see, there are also inference problems
where sampling theory fails to detect ‘significant’ evidence where a Bayesian
approach and everyday intuition agree that the evidence is strong. Most telling
of all are the inference problems where the ‘significance’ assigned by sampling
theory changes depending on irrelevant factors concerned with the design of
the experiment.

This chapter is only provided for those readers who are curious about the
sampling theory /Bayesian methods debate. If you find any of this chapter
tough to understand, please skip it. There is no point trying to understand
the debate. Just use Bayesian methods – they are much easier to understand
than the debate itself!
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�
37.1 A medical example

We are trying to reduce the incidence of an unpleasant disease
called microsoftus. Two vaccinations, A and B, are tested on
a group of volunteers. Vaccination B is a control treatment, a
placebo treatment with no active ingredients. Of the 40 subjects,
30 are randomly assigned to have treatment A and the other 10
are given the control treatment B. We observe the subjects for one
year after their vaccinations. Of the 30 in group A, one contracts
microsoftus. Of the 10 in group B, three contract microsoftus.

Is treatment A better than treatment B?

Sampling theory has a go

The standard sampling theory approach to the question ‘is A better than B?’
is to construct a statistical test. The test usually compares a hypothesis such
as

H1: ‘A and B have different effectivenesses’

with a null hypothesis such as

H0: ‘A and B have exactly the same effectivenesses as each other’.

A novice might object ‘no, no, I want to compare the hypothesis “A is better
than B” with the alternative “B is better than A”!’ but such objections are
not welcome in sampling theory.

Once the two hypotheses have been defined, the first hypothesis is scarcely
mentioned again – attention focuses solely on the null hypothesis. It makes me
laugh to write this, but it’s true! The null hypothesis is accepted or rejected
purely on the basis of how unexpected the data were to H0, not on how much
better H1 predicted the data. One chooses a statistic which measures how
much a data set deviates from the null hypothesis. In the example here, the
standard statistic to use would be one called χ2 (chi-squared). To compute
χ2, we take the difference between each data measurement and its expected

value assuming the null hypothesis to be true, and divide the square of that
difference by the variance of the measurement, assuming the null hypothesis to

be true. In the present problem, the four data measurements are the integers
FA+, FA−, FB+, and FB−, that is, the number of subjects given treatment A
who contracted microsoftus (FA+), the number of subjects given treatment A
who didn’t (FA−), and so forth. The definition of χ2 is:

χ2 =
∑

i

(Fi − 〈Fi〉)2
〈Fi〉

. (37.1)

Actually, in my elementary statistics book (Spiegel, 1988) I find Yates’s cor-
rection is recommended: If you want to know about Yates’s

correction, read a sampling theory
textbook. The point of this
chapter is not to teach sampling
theory; I merely mention Yates’s
correction because it is what a
professional sampling theorist
might use.

χ2 =
∑

i

(|Fi − 〈Fi〉| − 0.5)2

〈Fi〉
. (37.2)

In this case, given the null hypothesis that treatments A and B are equally
effective, and have rates f+ and f− for the two outcomes, the expected counts
are:

〈FA+〉=f+NA 〈FA−〉= f−NA

〈FB+〉=f+NB 〈FB−〉=f−NB .
(37.3)
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The test accepts or rejects the null hypothesis on the basis of how big χ2 is.
To make this test precise, and give it a ‘significance level’, we have to work
out what the sampling distribution of χ2 is, taking into account the fact that The sampling distribution of a

statistic is the probability
distribution of its value under
repetitions of the experiment,
assuming that the null hypothesis
is true.

the four data points are not independent (they satisfy the two constraints
FA+ + FA− = NA and FB+ + FB− = NB) and the fact that the parameters
f± are not known. These three constraints reduce the number of degrees

of freedom in the data from four to one. [If you want to learn more about
computing the ‘number of degrees of freedom’, read a sampling theory book; in
Bayesian methods we don’t need to know all that, and quantities equivalent to
the number of degrees of freedom pop straight out of a Bayesian analysis when
they are appropriate.] These sampling distributions are tabulated by sampling
theory gnomes and come accompanied by warnings about the conditions under
which they are accurate. For example, standard tabulated distributions for χ2

are only accurate if the expected numbers Fi are about 5 or more.

Once the data arrive, sampling theorists estimate the unknown parameters
f± of the null hypothesis from the data:

f̂+ =
FA+ + FB+

NA + NB

, f̂− =
FA− + FB−

NA + NB

, (37.4)

and evaluate χ2. At this point, the sampling theory school divides itself into
two camps. One camp uses the following protocol: first, before looking at the
data, pick the significance level of the test (e.g. 5%), and determine the critical
value of χ2 above which the null hypothesis will be rejected. (The significance
level is the fraction of times that the statistic χ2 would exceed the critical
value, if the null hypothesis were true.) Then evaluate χ2, compare with the
critical value, and declare the outcome of the test, and its significance level
(which was fixed beforehand).

The second camp looks at the data, finds χ2, then looks in the table of
χ2-distributions for the significance level, p, for which the observed value of χ2

would be the critical value. The result of the test is then reported by giving
this value of p, which is the fraction of times that a result as extreme as the one
observed, or more extreme, would be expected to arise if the null hypothesis
were true.

Let’s apply these two methods. First camp: let’s pick 5% as our signifi-
cance level. The critical value for χ2 with one degree of freedom is χ2

0.05 = 3.84.
The estimated values of f± are

f+ = 1/10, f− = 9/10. (37.5)

The expected values of the four measurements are

〈FA+〉 = 3 (37.6)

〈FA−〉 = 27 (37.7)

〈FB+〉 = 1 (37.8)

〈FB−〉 = 9 (37.9)

and χ2 (as defined in equation (37.1)) is

χ2 = 5.93. (37.10)

Since this value exceeds 3.84, we reject the null hypothesis that the two treat-
ments are equivalent at the 0.05 significance level. However, if we use Yates’s
correction, we find χ2 = 3.33, and therefore accept the null hypothesis.
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Camp two runs a finger across the χ2 table found at the back of any good
sampling theory book and finds χ2

.10 = 2.71. Interpolating between χ2
.10 and

χ2
.05, camp two reports ‘the p-value is p = 0.07’.

Notice that this answer does not say how much more effective A is than B,
it simply says that A is ‘significantly’ different from B. And here, ‘significant’
means only ‘statistically significant’, not practically significant.

The man in the street, reading the statement that ‘the treatment was sig-
nificantly different from the control (p = 0.07)’, might come to the conclusion
that ‘there is a 93% chance that the treatments differ in effectiveness’. But
what ‘p = 0.07’ actually means is ‘if you did this experiment many times, and
the two treatments had equal effectiveness, then 7% of the time you would
find a value of χ2 more extreme than the one that happened here’. This has
almost nothing to do with what we want to know, which is how likely it is
that treatment A is better than B.

Let me through, I’m a Bayesian

OK, now let’s infer what we really want to know. We scrap the hypothesis
that the two treatments have exactly equal effectivenesses, since we do not
believe it. There are two unknown parameters, pA+ and pB+, which are the
probabilities that people given treatments A and B, respectively, contract the
disease.

Given the data, we can infer these two probabilities, and we can answer
questions of interest by examining the posterior distribution.

The posterior distribution is

P (pA+, pB+ | {Fi}) =
P ({Fi} | pA+, pB+)P (pA+, pB+)

P ({Fi})
. (37.11)

The likelihood function is

P ({Fi} | pA+, pB+) =

(

NA

FA+

)

p
FA+

A+
p

FA−

A−

(

NB

FB+

)

p
FB+

B+
p

FB−

B−
(37.12)

=

(

30

1

)

p1
A+p29

A−

(

10

3

)

p3
B+p7

B−. (37.13)

What prior distribution should we use? The prior distribution gives us the
opportunity to include knowledge from other experiments, or a prior belief
that the two parameters pA+ and pB+, while different from each other, are
expected to have similar values.

Here we will use the simplest vanilla prior distribution, a uniform distri-
bution over each parameter.

P (pA+, pB+) = 1. (37.14)

We can now plot the posterior distribution. Given the assumption of a sepa-
rable prior on pA+ and pB+, the posterior distribution is also separable:

P (pA+, pB+ | {Fi}) = P (pA+ |FA+, FA−)P (pB+ |FB+, FB−). (37.15)

The two posterior distributions are shown in figure 37.1 (except the graphs
are not normalized) and the joint posterior probability is shown in figure 37.2.

If we want to know the answer to the question ‘how probable is it that pA+

is smaller than pB+?’, we can answer exactly that question by computing the
posterior probability

P (pA+ < pB+ |Data), (37.16)
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Figure 37.1. Posterior
probabilities of the two
effectivenesses. Treatment A –
solid line; B – dotted line.
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Figure 37.2. Joint posterior
probability of the two
effectivenesses – contour plot and
surface plot.

which is the integral of the joint posterior probability P (pA+, pB+ |Data)

pB+

pA+
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0

1

Figure 37.3. The proposition
pA+ < pB+ is true for all points in
the shaded triangle. To find the
probability of this proposition we
integrate the joint posterior
probability P (pA+, pB+ |Data)
(figure 37.2) over this region.

shown in figure 37.2 over the region in which pA+ < pB+, i.e., the shaded
triangle in figure 37.3. The value of this integral (obtained by a straightfor-
ward numerical integration of the likelihood function (37.13) over the relevant
region) is P (pA+ <pB+ |Data) = 0.990.

Thus there is a 99% chance, given the data and our prior assumptions,
that treatment A is superior to treatment B. In conclusion, according to our
Bayesian model, the data (1 out of 30 contracted the disease after vaccination
A, and 3 out of 10 contracted the disease after vaccination B) give very strong
evidence – about 99 to one – that treatment A is superior to treatment B.

In the Bayesian approach, it is also easy to answer other relevant questions.
For example, if we want to know ‘how likely is it that treatment A is ten times
more effective than treatment B?’, we can integrate the joint posterior proba-
bility P (pA+, pB+ |Data) over the region in which pA+ < 10 pB+ (figure 37.4).

pB+

pA+
0 1

0

1

Figure 37.4. The proposition
pA+ < 10 pB+ is true for all points
in the shaded triangle.

Model comparison

If there were a situation in which we really did want to compare the two
hypotheses H0: pA+ = pB+ and H1: pA+ 6= pB+, we can of course do this
directly with Bayesian methods also.

As an example, consider the data set:

D: One subject, given treatment A, subsequently contracted microsoftus.
One subject, given treatment B, did not.

Treatment A B

Got disease 1 0
Did not 0 1

Total treated 1 1
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How strongly does this data set favour H1 over H0?
We answer this question by computing the evidence for each hypothesis.

Let’s assume uniform priors over the unknown parameters of the models. The
first hypothesis H0: pA+ = pB+ has just one unknown parameter, let’s call it
p.

P (p |H0) = 1 p ∈ (0, 1). (37.17)

We’ll use the uniform prior over the two parameters of model H1 that we used
before:

P (pA+, pB+ |H1) = 1 pA+ ∈ (0, 1), pB+ ∈ (0, 1). (37.18)

Now, the probability of the data D under model H0 is the normalizing constant
from the inference of p given D:

P (D |H0) =

∫

dp P (D | p)P (p |H0) (37.19)

=

∫

dp p(1 − p) × 1 (37.20)

= 1/6. (37.21)

The probability of the data D under model H1 is given by a simple two-
dimensional integral:

P (D |H1) =

∫ ∫

dpA+ dpB+ P (D | pA+, pB+)P (pA+, pB+ |H1) (37.22)

=

∫

dpA+ pA+

∫

dpB+ (1 − pB+) (37.23)

= 1/2 × 1/2 (37.24)

= 1/4. (37.25)

Thus the evidence ratio in favour of model H1, which asserts that the two
effectivenesses are unequal, is

P (D |H1)

P (D |H0)
=

1/4

1/6
=

0.6

0.4
. (37.26)

So if the prior probability over the two hypotheses was 50:50, the posterior
probability is 60:40 in favour of H1. 2

Is it not easy to get sensible answers to well-posed questions using Bayesian
methods?

[The sampling theory answer to this question would involve the identical
significance test that was used in the preceding problem; that test would yield
a ‘not significant’ result. I think it is greatly preferable to acknowledge what
is obvious to the intuition, namely that the data D do give weak evidence in
favour of H1. Bayesian methods quantify how weak the evidence is.]

�
37.2 Dependence of p-values on irrelevant information

In an expensive laboratory, Dr. Bloggs tosses a coin labelled a and b twelve
times and the outcome is the string

aaabaaaabaab,

which contains three bs and nine as.
What evidence do these data give that the coin is biased in favour of a?
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Dr. Bloggs consults his sampling theory friend who says ‘let r be the num-
ber of bs and n = 12 be the total number of tosses; I view r as the random
variable and find the probability of r taking on the value r = 3 or a more
extreme value, assuming the null hypothesis pa = 0.5 to be true’. He thus
computes

P (r ≤ 3 |n=12,H0) =

3
∑

r=0

(

n

r

)

1/2
n

=
((

12

0

)

+
(

12

1

)

+
(

12

2

)

+
(

12

3

))

1/2
12

= 0.07, (37.27)

and reports ‘at the significance level of 5%, there is not significant evidence
of bias in favour of a’. Or, if the friend prefers to report p-values rather than
simply compare p with 5%, he would report ‘the p-value is 7%, which is not
conventionally viewed as significantly small’. If a two-tailed test seemed more
appropriate, he might compute the two-tailed area, which is twice the above
probability, and report ‘the p-value is 15%, which is not significantly small’.
We won’t focus on the issue of the choice between the one-tailed and two-tailed
tests, as we have bigger fish to catch.

Dr. Bloggs pays careful attention to the calculation (37.27), and responds
‘no, no, the random variable in the experiment was not r: I decided before
running the experiment that I would keep tossing the coin until I saw three
bs; the random variable is thus n’.

Such experimental designs are not unusual. In my experiments on error-
correcting codes I often simulate the decoding of a code until a chosen number
r of block errors (bs) has occurred, since the error on the inferred value of log pb

goes roughly as
√

r, independent of n.

Exercise 37.1.
[2 ] Find the Bayesian inference about the bias pa of the coin

given the data, and determine whether a Bayesian’s inferences depend
on what stopping rule was in force.

According to sampling theory, a different calculation is required in order
to assess the ‘significance’ of the result n = 12. The probability distribution
of n given H0 is the probability that the first n−1 tosses contain exactly r−1
bs and then the nth toss is a b.

P (n |H0, r) =

(

n−1

r−1

)

1/2
n
. (37.28)

The sampling theorist thus computes

P (n ≥ 12 | r =3,H0) = 0.03. (37.29)

He reports back to Dr. Bloggs, ‘the p-value is 3% – there is significant evidence
of bias after all!’

What do you think Dr. Bloggs should do? Should he publish the result,
with this marvellous p-value, in one of the journals that insists that all exper-
imental results have their ‘significance’ assessed using sampling theory? Or
should he boot the sampling theorist out of the door and seek a coherent
method of assessing significance, one that does not depend on the stopping
rule?

At this point the audience divides in two. Half the audience intuitively
feel that the stopping rule is irrelevant, and don’t need any convincing that
the answer to exercise 37.1 (p.463) is ‘the inferences about pa do not depend
on the stopping rule’. The other half, perhaps on account of a thorough
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training in sampling theory, intuitively feel that Dr. Bloggs’s stopping rule,
which stopped tossing the moment the third b appeared, may have biased the
experiment somehow. If you are in the second group, I encourage you to reflect
on the situation, and hope you’ll eventually come round to the view that is
consistent with the likelihood principle, which is that the stopping rule is not

relevant to what we have learned about pa.
As a thought experiment, consider some onlookers who (in order to save

money) are spying on Dr. Bloggs’s experiments: each time he tosses the coin,
the spies update the values of r and n. The spies are eager to make inferences
from the data as soon as each new result occurs. Should the spies’ beliefs
about the bias of the coin depend on Dr. Bloggs’s intentions regarding the
continuation of the experiment?

The fact that the p-values of sampling theory do depend on the stopping
rule (indeed, whole volumes of the sampling theory literature are concerned
with the task of assessing ‘significance’ when a complicated stopping rule is
required – ‘sequential probability ratio tests’, for example) seems to me a com-
pelling argument for having nothing to do with p-values at all. A Bayesian
solution to this inference problem was given in sections 3.2 and 3.3 and exer-
cise 3.15 (p.59).

Would it help clarify this issue if I added one more scene to the story?
The janitor, who’s been eavesdropping on Dr. Bloggs’s conversation, comes in
and says ‘I happened to notice that just after you stopped doing the experi-
ments on the coin, the Officer for Whimsical Departmental Rules ordered the
immediate destruction of all such coins. Your coin was therefore destroyed by
the departmental safety officer. There is no way you could have continued the
experiment much beyond n = 12 tosses. Seems to me, you need to recompute
your p-value?’

�
37.3 Confidence intervals

In an experiment in which data D are obtained from a system with an unknown
parameter θ, a standard concept in sampling theory is the idea of a confidence

interval for θ. Such an interval (θmin(D), θmax(D)) has associated with it a
confidence level such as 95% which is informally interpreted as ‘the probability
that θ lies in the confidence interval’.

Let’s make precise what the confidence level really means, then give an
example. A confidence interval is a function (θmin(D), θmax(D)) of the data
set D. The confidence level of the confidence interval is a property that we can
compute before the data arrive. We imagine generating many data sets from a
particular true value of θ, and calculating the interval (θmin(D), θmax(D)), and
then checking whether the true value of θ lies in that interval. If, averaging
over all these imagined repetitions of the experiment, the true value of θ lies
in the confidence interval a fraction f of the time, and this property holds for
all true values of θ, then the confidence level of the confidence interval is f .

For example, if θ is the mean of a Gaussian distribution which is known
to have standard deviation 1, and D is a sample from that Gaussian, then
(θmin(D), θmax(D)) = (D−2, D+2) is a 95% confidence interval for θ.

Let us now look at a simple example where the meaning of the confidence
level becomes clearer. Let the parameter θ be an integer, and let the data be
a pair of points x1, x2, drawn independently from the following distribution:

P (x | θ) =







1/2 x = θ
1/2 x = θ + 1
0 for other values of x.

(37.30)



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

37.4: Some compromise positions 465

For example, if θ were 39, then we could expect the following data sets:

D = (x1, x2) = (39, 39) with probability 1/4;
(x1, x2) = (39, 40) with probability 1/4;
(x1, x2) = (40, 39) with probability 1/4;
(x1, x2) = (40, 40) with probability 1/4.

(37.31)

We now consider the following confidence interval:

[θmin(D), θmax(D)] = [min(x1, x2),min(x1, x2)]. (37.32)

For example, if (x1, x2) = (40, 39), then the confidence interval for θ would be
[θmin(D), θmax(D)] = [39, 39].

Let’s think about this confidence interval. What is its confidence level?
By considering the four possibilities shown in (37.31), we can see that there
is a 75% chance that the confidence interval will contain the true value. The
confidence interval therefore has a confidence level of 75%, by definition.

Now, what if the data we acquire are (x1, x2) = (29, 29)? Well, we can
compute the confidence interval, and it is [29, 29]. So shall we report this
interval, and its associated confidence level, 75%? This would be correct
by the rules of sampling theory. But does this make sense? What do we
actually know in this case? Intuitively, or by Bayes’ theorem, it is clear that θ
could either be 29 or 28, and both possibilities are equally likely (if the prior
probabilities of 28 and 29 were equal). The posterior probability of θ is 50%
on 29 and 50% on 28.

What if the data are (x1, x2) = (29, 30)? In this case, the confidence
interval is still [29, 29], and its associated confidence level is 75%. But in this
case, by Bayes’ theorem, or common sense, we are 100% sure that θ is 29.

In neither case is the probability that θ lies in the ‘75% confidence interval’
equal to 75%!

Thus

1. the way in which many people interpret the confidence levels of sampling
theory is incorrect;

2. given some data, what people usually want to know (whether they know
it or not) is a Bayesian posterior probability distribution.

Are all these examples contrived? Am I making a fuss about nothing?
If you are sceptical about the dogmatic views I have expressed, I encourage
you to look at a case study: look in depth at exercise 35.4 (p.446) and the
reference (Kepler and Oprea, 2001), in which sampling theory estimates and
confidence intervals for a mutation rate are constructed. Try both methods
on simulated data – the Bayesian approach based on simply computing the
likelihood function, and the confidence interval from sampling theory; and let
me know if you don’t find that the Bayesian answer is always better than the
sampling theory answer; and often much, much better. This suboptimality
of sampling theory, achieved with great effort, is why I am passionate about
Bayesian methods. Bayesian methods are straightforward, and they optimally
use all the information in the data.

�
37.4 Some compromise positions

Let’s end on a conciliatory note. Many sampling theorists are pragmatic –
they are happy to choose from a selection of statistical methods, choosing
whichever has the ‘best’ long-run properties. In contrast, I have no problem
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with the idea that there is only one answer to a well-posed problem; but it’s
not essential to convert sampling theorists to this viewpoint: instead, we can
offer them Bayesian estimators and Bayesian confidence intervals, and request
that the sampling theoretical properties of these methods be evaluated. We
don’t need to mention that the methods are derived from a Bayesian per-
spective. If the sampling properties are good then the pragmatic sampling
theorist will choose to use the Bayesian methods. It is indeed the case that
many Bayesian methods have good sampling-theoretical properties. Perhaps
it’s not surprising that a method that gives the optimal answer for each indi-
vidual case should also be good in the long run!

Another piece of common ground can be conceded: while I believe that
most well-posed inference problems have a unique correct answer, which can
be found by Bayesian methods, not all problems are well-posed. A common
question arising in data modelling is ‘am I using an appropriate model?’ Model
criticism, that is, hunting for defects in a current model, is a task that may
be aided by sampling theory tests, in which the null hypothesis (‘the current
model is correct’) is well defined, but the alternative model is not specified.
One could use sampling theory measures such as p-values to guide one’s search
for the aspects of the model most in need of scrutiny.

Further reading

My favourite reading on this topic includes (Jaynes, 1983; Gull, 1988; Loredo,
1990; Berger, 1985; Jaynes, 2003). Treatises on Bayesian statistics from the
statistics community include (Box and Tiao, 1973; O’Hagan, 1994).

�
37.5 Further exercises

. Exercise 37.2.
[3C ] A traffic survey records traffic on two successive days. On

Friday morning, there are 12 vehicles in one hour. On Saturday morn-
ing, there are 9 vehicles in half an hour. Assuming that the vehicles are
Poisson distributed with rates λF and λS (in vehicles per hour) respec-
tively,

(a) is λS greater than λF ?

(b) by what factor is λS bigger or smaller than λF ?

. Exercise 37.3.
[3C ] Write a program to compare treatments A and B given

data FA+, FA−, FB+, FB− as described in section 37.1. The outputs
of the program should be (a) the probability that treatment A is more
effective than treatment B; (b) the probability that pA+ < 10 pB+; (c)
the probability that pB+ < 10 pA+.


