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39

The Single Neuron as a Classifier

�
39.1 The single neuron

We will study a single neuron for two reasons. First, many neural network
models are built out of single neurons, so it is good to understand them in
detail. And second, a single neuron is itself capable of ‘learning’ – indeed,
various standard statistical methods can be viewed in terms of single neurons
– so this model will serve as a first example of a supervised neural network.

Definition of a single neuron

We will start by defining the architecture and the activity rule of a single
neuron, and we will then derive a learning rule.
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Figure 39.1. A single neuron

Architecture. A single neuron has a number I of inputs xi and one output

which we will here call y. (See figure 39.1.) Associated with each input
is a weight wi (i = 1, . . . , I). There may be an additional parameter
w0 of the neuron called a bias which we may view as being the weight
associated with an input x0 that is permanently set to 1. The single
neuron is a feedforward device – the connections are directed from the
inputs to the output of the neuron.

Activity rule. The activity rule has two steps.

1. First, in response to the imposed inputs x, we compute the activa-

tion of the neuron,

a =
∑

i

wixi, (39.1)

where the sum is over i = 0, . . . , I if there is a bias and i = 1, . . . , I
otherwise.

2. Second, the output y is set as a function f(a) of the activation.
The output is also called the activity of the neuron, not to be
confused with the activation a. There are several possible activation

activation activity
a → y(a)

functions; here are the most popular.

(a) Deterministic activation functions:

i. Linear.

y(a) = a. (39.2)

ii. Sigmoid (logistic function).

0

1

-5 0 5y(a) =
1

1 + e−a
(y ∈ (0, 1)). (39.3)
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472 39 — The Single Neuron as a Classifier

iii. Sigmoid (tanh).

-1
0
1

-5 0 5
y(a) = tanh(a) (y ∈ (−1, 1)). (39.4)

iv. Threshold function.

-1
0
1

-5 0 5y(a) = Θ(a) ≡

{

1 a > 0
−1 a ≤ 0.

(39.5)

(b) Stochastic activation functions: y is stochastically selected from
±1.

i. Heat bath.

y(a) =







1 with probability
1

1 + e−a

−1 otherwise.
(39.6)

ii. The Metropolis rule produces the output in a way that
depends on the previous output state y:

Compute ∆ = ay
If ∆ ≤ 0, flip y to the other state
Else flip y to the other state with probability e−∆.

�
39.2 Basic neural network concepts

A neural network implements a function y(x;w); the ‘output’ of the network,
y, is a nonlinear function of the ‘inputs’ x; this function is parameterized by
‘weights’ w.

We will study a single neuron which produces an output between 0 and 1
as the following function of x:

y(x;w) =
1

1 + e−w·x
. (39.7)

Exercise 39.1.
[1 ] In what contexts have we encountered the function y(x;w) =

1/(1 + e−w·x) already?

Motivations for the linear logistic function

In section 11.2 we studied ‘the best detection of pulses’, assuming that one
of two signals x0 and x1 had been transmitted over a Gaussian channel with
variance–covariance matrix A−1. We found that the probability that the source
signal was s=1 rather than s=0, given the received signal y, was

P (s=1 |y) =
1

1 + exp(−a(y))
, (39.8)

where a(y) was a linear function of the received vector,

a(y) = wTy + θ, (39.9)

with w ≡ A(x1 − x0).

The linear logistic function can be motivated in several other ways – see
the exercises.
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Figure 39.2. Output of a simple
neural network as a function of its
input.

Input space and weight space

For convenience let us study the case where the input vector x and the param-
eter vector w are both two-dimensional: x = (x1, x2), w = (w1, w2). Then we
can spell out the function performed by the neuron thus:

y(x;w) =
1

1 + e−(w1x1+w2x2)
. (39.10)

Figure 39.2 shows the output of the neuron as a function of the input vector,
for w = (0, 2). The two horizontal axes of this figure are the inputs x1 and x2,
with the output y on the vertical axis. Notice that on any line perpendicular
to w, the output is constant; and along a line in the direction of w, the output
is a sigmoid function.

We now introduce the idea of weight space, that is, the parameter space of
the network. In this case, there are two parameters w1 and w2, so the weight
space is two dimensional. This weight space is shown in figure 39.3. For a
selection of values of the parameter vector w, smaller inset figures show the
function of x performed by the network when w is set to those values. Each of
these smaller figures is equivalent to figure 39.2. Thus each point in w space
corresponds to a function of x. Notice that the gain of the sigmoid function
(the gradient of the ramp) increases as the magnitude of w increases.

Now, the central idea of supervised neural networks is this. Given examples

of a relationship between an input vector x, and a target t, we hope to make
the neural network ‘learn’ a model of the relationship between x and t. A
successfully trained network will, for any given x, give an output y that is
close (in some sense) to the target value t. Training the network involves
searching in the weight space of the network for a value of w that produces a
function that fits the provided training data well.

Typically an objective function or error function is defined, as a function
of w, to measure how well the network with weights set to w solves the task.
The objective function is a sum of terms, one for each input/target pair {x, t},
measuring how close the output y(x;w) is to the target t. The training process
is an exercise in function minimization – i.e., adjusting w in such a way as to
find a w that minimizes the objective function. Many function-minimization
algorithms make use not only of the objective function, but also its gradient

with respect to the parameters w. For general feedforward neural networks
the backpropagation algorithm efficiently evaluates the gradient of the output
y with respect to the parameters w, and thence the gradient of the objective
function with respect to w.
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Figure 39.3. Weight space.
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�
39.3 Training the single neuron as a binary classifier

We assume we have a data set of inputs {x(n)}N
n=1 with binary labels {t(n)}N

n=1,
and a neuron whose output y(x;w) is bounded between 0 and 1. We can then
write down the following error function:

G(w) = −
∑

n

[

t(n) ln y(x(n);w) + (1 − t(n)) ln(1 − y(x(n);w))
]

. (39.11)

Each term in this objective function may be recognized as the information

content of one outcome. It may also be described as the relative entropy be-
tween the empirical probability distribution (t(n), 1− t(n)) and the probability
distribution implied by the output of the neuron (y, 1−y). The objective func-
tion is bounded below by zero and only attains this value if y(x(n);w) = t(n)

for all n.
We now differentiate this objective function with respect to w.

Exercise 39.2.[2 ] The backpropagation algorithm. Show that the derivative g =
∂G/∂w is given by:

gj =
∂G

∂wj

=
N

∑

n=1

−(t(n) − y(n))x
(n)
j . (39.12)

Notice that the quantity e(n) ≡ t(n) − y(n) is the error on example n – the
difference between the target and the output. The simplest thing to do with
a gradient of an error function is to descend it (even though this is often di-
mensionally incorrect, since a gradient has dimensions [1/parameter], whereas
a change in a parameter has dimensions [parameter]). Since the derivative
∂G/∂w is a sum of terms g(n) defined by

g
(n)
j ≡ −(t(n) − y(n))x

(n)
j (39.13)

for n = 1, . . . , N , we can obtain a simple on-line algorithm by putting each
input through the network one at a time, and adjusting w a little in a direction
opposite to g(n).

We summarize the whole learning algorithm.

The on-line gradient-descent learning algorithm

Architecture. A single neuron has a number I of inputs xi and one output

y. Associated with each input is a weight wi (i = 1, . . . , I).

Activity rule. 1. First, in response to the received inputs x (which may be
arbitrary real numbers), we compute the activation of the neuron,

a =
∑

i

wixi, (39.14)

where the sum is over i = 0, . . . , I if there is a bias and i = 1, . . . , I
otherwise.

2. Second, the output y is set as a sigmoid function of the activation.

y(a) =
1

1 + e−a
. (39.15)

This output might be viewed as stating the probability, according to the
neuron, that the given input is in class 1 rather than class 0.
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Learning rule. The teacher supplies a target value t ∈ {0, 1} which says
what the correct answer is for the given input. We compute the error

signal

e = t − y (39.16)

then adjust the weights w in a direction that would reduce the magnitude
of this error:

∆wi = ηexi, (39.17)

where η is the ‘learning rate’. Commonly η is set by trial and error to a
constant value or to a decreasing function of simulation time τ such as
η0/τ .

The activity rule and learning rule are repeated for each input/target pair
(x, t) that is presented. If there is a fixed data set of size N , we can cycle
through the data multiple times.

Batch learning versus on-line learning

Here we have described the on-line learning algorithm, in which a change in
the weights is made after every example is presented. An alternative paradigm
is to go through a batch of examples, computing the outputs and errors and
accumulating the changes specified in equation (39.17) which are then made
at the end of the batch.

Batch learning for the single neuron classifier

For each input/target pair (x(n), t(n)) (n = 1, . . . , N), compute
y(n) = y(x(n);w), where

y(x;w) =
1

1 + exp(−
∑

i wixi)
, (39.18)

define e(n) = t(n) − y(n), and compute for each weight wi

g
(n)
i = −e(n)x

(n)
i . (39.19)

Then let
∆wi = −η

∑

n

g
(n)
i . (39.20)

This batch learning algorithm is a gradient descent algorithm, whereas the
on-line algorithm is a stochastic gradient descent algorithm. Source code
implementing batch learning is given in algorithm 39.5. This algorithm is
demonstrated in figure 39.4 for a neuron with two inputs with weights w1 and
w2 and a bias w0, performing the function

y(x;w) =
1

1 + e−(w0+w1x1+w2x2)
. (39.21)

The bias w0 is included, in contrast to figure 39.3, where it was omitted. The
neuron is trained on a data set of ten labelled examples.
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Figure 39.4. A single neuron learning to classify by gradient descent. The neuron has two weights w1

and w2 and a bias w0. The learning rate was set to η = 0.01 and batch-mode gradient
descent was performed using the code displayed in algorithm 39.5. (a) The training data.
(b) Evolution of weights w0, w1 and w2 as a function of number of iterations (on log scale).
(c) Evolution of weights w1 and w2 in weight space. (d) The objective function G(w) as a
function of number of iterations. (e) The magnitude of the weights EW (w) as a function of
time. (f–k) The function performed by the neuron (shown by three of its contours) after 30,
80, 500, 3000, 10 000 and 40 000 iterations. The contours shown are those corresponding to
a = 0,±1, namely y = 0.5, 0.27 and 0.73. Also shown is a vector proportional to (w1, w2).
The larger the weights are, the bigger this vector becomes, and the closer together are the
contours.
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Algorithm 39.5. Octave source
code for a gradient descent
optimizer of a single neuron,
batch learning, with optional
weight decay (rate alpha).
Octave notation: the instruction
a = x * w causes the (N × I)
matrix x consisting of all the
input vectors to be multiplied by
the weight vector w, giving the
vector a listing the activations for
all N input vectors; x’ means
x-transpose; the single command
y = sigmoid(a) computes the
sigmoid function of all elements of
the vector a.

global x ; # x is an N * I matrix containing all the input vectors

global t ; # t is a vector of length N containing all the targets

for l = 1:L # loop L times

a = x * w ; # compute all activations

y = sigmoid(a) ; # compute outputs

e = t - y ; # compute errors

g = - x’ * e ; # compute the gradient vector

w = w - eta * ( g + alpha * w ) ; # make step, using learning rate eta

# and weight decay alpha

endfor

function f = sigmoid ( v )

f = 1.0 ./ ( 1.0 .+ exp ( - v ) ) ;

endfunction

α = 0.01 α = 0.1 α = 1
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Figure 39.6. The influence of
weight decay on a single neuron’s
learning. The objective function is
M(w) = G(w) + αEW (w). The
learning method was as in
figure 39.4. (a) Evolution of
weights w0, w1 and w2. (b)
Evolution of weights w1 and w2 in
weight space shown by points,
contrasted with the trajectory
followed in the case of zero weight
decay, shown by a thin line (from
figure 39.4). Notice that for this
problem weight decay has an
effect very similar to ‘early
stopping’. (c) The objective
function M(w) and the error
function G(w) as a function of
number of iterations. (d) The
function performed by the neuron
after 40 000 iterations.
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�
39.4 Beyond descent on the error function: regularization

If the parameter η is set to an appropriate value, this algorithm works: the
algorithm finds a setting of w that correctly classifies as many of the examples
as possible.

If the examples are in fact linearly separable then the neuron finds this lin-
ear separation and its weights diverge to ever-larger values as the simulation
continues. This can be seen happening in figure 39.4(f–k). This is an exam-
ple of overfitting, where a model fits the data so well that its generalization
performance is likely to be adversely affected.

This behaviour may be viewed as undesirable. How can it be rectified?

An ad hoc solution to overfitting is to use early stopping, that is, use
an algorithm originally intended to minimize the error function G(w), then
prevent it from doing so by halting the algorithm at some point.

A more principled solution to overfitting makes use of regularization. Reg-
ularization involves modifying the objective function in such a way as to in-
corporate a bias against the sorts of solution w which we dislike. In the above
example, what we dislike is the development of a very sharp decision bound-
ary in figure 39.4k; this sharp boundary is associated with large weight values,
so we use a regularizer that penalizes large weight values. We modify the
objective function to:

M(w) = G(w) + αEW (w) (39.22)

where the simplest choice of regularizer is the weight decay regularizer

EW (w) =
1

2

∑

i

w2
i . (39.23)

The regularization constant α is called the weight decay rate. This additional
term favours small values of w and decreases the tendency of a model to overfit
fine details of the training data. The quantity α is known as a hyperparameter.
Hyperparameters play a role in the learning algorithm but play no role in the
activity rule of the network.

Exercise 39.3.
[1 ] Compute the derivative of M(w) with respect to wi. Why is

the above regularizer known as the ‘weight decay’ regularizer?

The gradient descent source code of algorithm 39.5 implements weight decay.
This gradient descent algorithm is demonstrated in figure 39.6 using weight
decay rates α = 0.01, 0.1, and 1. As the weight decay rate is increased
the solution becomes biased towards broader sigmoid functions with decision
boundaries that are closer to the origin.

Note

Gradient descent with a step size η is in general not the most efficient way to
minimize a function. A modification of gradient descent known as momentum,
while improving convergence, is also not recommended. Most neural network
experts use more advanced optimizers such as conjugate gradient algorithms.
[Please do not confuse momentum, which is sometimes given the symbol α,
with weight decay.]
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�
39.5 Further exercises

More motivations for the linear neuron

. Exercise 39.4.[2 ] Consider the task of recognizing which of two Gaussian distri-
butions a vector z comes from. Unlike the case studied in section 11.2,
where the distributions had different means but a common variance–
covariance matrix, we will assume that the two distributions have ex-
actly the same mean but different variances. Let the probability of z
given s (s ∈ {0, 1}) be

P (z | s) =

I
∏

i=1

Normal(zi; 0, σ
2
si), (39.24)

where σ2
si is the variance of zi when the source symbol is s. Show that

P (s=1 | z) can be written in the form

P (s=1 | z) =
1

1 + exp(−wTx + θ)
, (39.25)

where xi is an appropriate function of zi, xi = g(zi).

Exercise 39.5.
[2 ] The noisy LED.

4

1

7

2

5 6

3

c(2) = c(3) = c(8) =

Consider an LED display with 7 elements numbered as shown above. The
state of the display is a vector x. When the controller wants the display
to show character number s, e.g. s=2, each element xj (j = 1, . . . , 7)
either adopts its intended state cj(s), with probability 1−f , or is flipped,
with probability f . Let’s call the two states of x ‘+1’ and ‘−1’.

(a) Assuming that the intended character s is actually a 2 or a 3, what
is the probability of s, given the state x? Show that P (s=2 |x)
can be written in the form

P (s=2 |x) =
1

1 + exp(−wTx + θ)
, (39.26)

and compute the values of the weights w in the case f = 0.1.

(b) Assuming that s is one of {0, 1, 2, . . . , 9}, with prior probabilities
ps, what is the probability of s, given the state x? Put your answer
in the form

P (s |x) =
eas

∑

s′

ea
s
′

, (39.27)

where {as} are functions of {cj(s)} and x.

Could you make a better alphabet of 10 characters for a noisy LED, i.e.,
an alphabet less susceptible to confusion?

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Table 39.7. An alternative
15-character alphabet for the
7-element LED display.

. Exercise 39.6.
[2 ] A (3, 1) error-correcting code consists of the two codewords

x(1) = (1, 0, 0) and x(2) = (0, 0, 1). A source bit s ∈ {1, 2} having proba-
bility distribution {p1, p2} is used to select one of the two codewords for
transmission over a binary symmetric channel with noise level f . The
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received vector is r. Show that the posterior probability of s given r can
be written in the form

P (s=1 | r) =
1

1 + exp
(

−w0 −
∑3

n=1 wnrn

) ,

and give expressions for the coefficients {wn}
3
n=1 and the bias, w0.

Describe, with a diagram, how this optimal decoder can be expressed in
terms of a ‘neuron’.


