
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

41

Learning as Inference

�
41.1 Neural network learning as inference

In Chapter 39 we trained a simple neural network as a classifier by minimizing
an objective function

M(w) = G(w) + αEW (w) (41.1)

made up of an error function

G(w) = −
∑

n

[

t(n) ln y(x(n);w) + (1 − t(n)) ln(1 − y(x(n);w))
]

(41.2)

and a regularizer

EW (w) =
1

2

∑

i

w2
i . (41.3)

This neural network learning process can be given the following probabilistic
interpretation.

We interpret the output y(x;w) of the neuron literally as defining (when
its parameters w are specified) the probability that an input x belongs to class
t = 1, rather than the alternative t = 0. Thus y(x;w) ≡ P (t=1 |x,w). Then
each value of w defines a different hypothesis about the probability of class 1
relative to class 0 as a function of x.

We define the observed data D to be the targets {t} – the inputs {x} are
assumed to be given, and not to be modelled. To infer w given the data, we
require a likelihood function and a prior probability over w. The likelihood
function measures how well the parameters w predict the observed data; it is
the probability assigned to the observed t values by the model with parameters
set to w. Now the two equations

P (t = 1 |w,x) = y
P (t = 0 |w,x) = 1 − y

(41.4)

can be rewritten as the single equation

P (t |w,x) = yt(1 − y)1−t = exp[t ln y + (1 − t) ln(1 − y)] . (41.5)

So the error function G can be interpreted as minus the log likelihood:

P (D |w) = exp[−G(w)]. (41.6)

Similarly the regularizer can be interpreted in terms of a log prior proba-
bility distribution over the parameters:

P (w |α) =
1

ZW (α)
exp(−αEW). (41.7)

492

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

41.2: Illustration for a neuron with two weights 493

If EW is quadratic as defined above, then the corresponding prior distribution
is a Gaussian with variance σ2

W
= 1/α, and 1/ZW (α) is equal to (α/2π)K/2,

where K is the number of parameters in the vector w.
The objective function M(w) then corresponds to the inference of the

parameters w, given the data:

P (w |D,α) =
P (D |w)P (w |α)

P (D |α)
(41.8)

=
e−G(w) e−αEW (w)/ZW (α)

P (D |α)
(41.9)

=
1

ZM
exp(−M(w)). (41.10)

So the w found by (locally) minimizing M(w) can be interpreted as the (locally)
most probable parameter vector, w∗. From now on we will refer to w∗ as wMP.

Why is it natural to interpret the error functions as log probabilities? Error
functions are usually additive. For example, G is a sum of information con-
tents, and EW is a sum of squared weights. Probabilities, on the other hand,
are multiplicative: for independent events X and Y , the joint probability is
P (x, y) = P (x)P (y). The logarithmic mapping maintains this correspondence.

The interpretation of M(w) as a log probability has numerous benefits,
some of which we will discuss in a moment.

�
41.2 Illustration for a neuron with two weights

In the case of a neuron with just two inputs and no bias,

y(x;w) =
1

1 + e−(w1x1+w2x2)
, (41.11)

we can plot the posterior probability of w, P (w |D,α) ∝ exp(−M(w)). Imag-
ine that we receive some data as shown in the left column of figure 41.1. Each
data point consists of a two-dimensional input vector x and a t value indicated
by × (t = 1) or 2 (t = 0). The likelihood function exp(−G(w)) is shown as a
function of w in the second column. It is a product of functions of the form
(41.11).

The product of traditional learning is a point in w-space, the estimator w∗,
which maximizes the posterior probability density. In contrast, in the Bayesian
view, the product of learning is an ensemble of plausible parameter values
(bottom right of figure 41.1). We do not choose one particular hypothesis w;
rather we evaluate their posterior probabilities. The posterior distribution is
obtained by multiplying the likelihood by a prior distribution over w space
(shown as a broad Gaussian at the upper right of figure 41.1). The posterior
ensemble (within a multiplicative constant) is shown in the third column of
figure 41.1, and as a contour plot in the fourth column. As the amount of data
increases (from top to bottom), the posterior ensemble becomes increasingly
concentrated around the most probable value w∗.

�
41.3 Beyond optimization: making predictions

Let us consider the task of making predictions with the neuron which we
trained as a classifier in section 39.3. This was a neuron with two inputs and
a bias.

y(x;w) =
1

1 + e−(w0+w1x1+w2x2)
. (41.12)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

494 41 — Learning as Inference

Figure 41.1. The Bayesian interpretation and generalization of traditional neural network learning.
Evolution of the probability distribution over parameters as data arrive.

Data set Likelihood Probability of parameters

N = 0 (constant)

-5 0 5

-5

0

5

w1

w2

-5 0 5

-5

0

5

w1

w2

N = 2

-10

-5

0

5

10

-10 -5 0 5 10

x
2

x1

-5 0 5

-5

0

50.5

w1

w2

-5 0 5

-5

0

5

w1

w2

-5 0 5

-5

0

5

w1

w2

N = 4

-10

-5

0

5

10

-10 -5 0 5 10

x
2

x1

-5 0 5

-5

0

50.05

0.1

w1

w2

-5 0 5

-5

0

5

w1

w2

-5 0 5

-5

0

5

w1

w2

N = 6

-10

-5

0

5

10

-10 -5 0 5 10

x
2

x1

-5 0 5

-5

0

5

0.05

w1

w2

-5 0 5

-5

0

5

w1

w2

-5 0 5

-5

0

5

w1

w2

Figure 41.2. Making predictions. (a) The function performed by an optimized neuron wMP (shown by
three of its contours) trained with weight decay, α = 0.01 (from figure 39.6). The contours
shown are those corresponding to a = 0,±1, namely y = 0.5, 0.27 and 0.73. (b) Are these
predictions more reasonable? (Contours shown are for y = 0.5, 0.27, 0.73, 0.12 and 0.88.)
(c) The posterior probability of w (schematic); the Bayesian predictions shown in (b) were
obtained by averaging together the predictions made by each possible value of the weights
w, with each value of w receiving a vote proportional to its probability under the posterior
ensemble. The method used to create (b) is described in section 41.4.

(a)

A

B

(b)

A

B

0 5 10
0

5

10

(c)

wMP

2

w

2w

1

Samples from
P(w|D,H)

1

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

41.3: Beyond optimization: making predictions 495

When we last played with it, we trained it by minimizing the objective function

M(w) = G(w) + αE(w). (41.13)

The resulting optimized function for the case α = 0.01 is reproduced in fig-
ure 41.2a.

We now consider the task of predicting the class t(N+1) corresponding to a
new input x(N+1). It is common practice, when making predictions, simply to
use a neural network with its weights fixed to their optimized value wMP, but
this is not optimal, as can be seen intuitively by considering the predictions
shown in figure 41.2a. Are these reasonable predictions? Consider new data
arriving at points A and B. The best-fit model assigns both of these examples
probability 0.2 of being in class 1, because they have the same value of wMP ·x.
If we really knew that w was equal to wMP, then these predictions would be
correct. But we do not know w. The parameters are uncertain. Intuitively we
might be inclined to assign a less confident probability (closer to 0.5) at B than
at A, as shown in figure 41.2b, since point B is far from the training data. The
best-fit parameters wMP often give over-confident predictions. A non-Bayesian
approach to this problem is to downweight all predictions uniformly, by an
empirically determined factor (Copas, 1983). This is not ideal, since intuition
suggests the strength of the predictions at B should be downweighted more
than those at A. A Bayesian viewpoint helps us to understand the cause of
the problem, and provides a straightforward solution. In a nutshell, we obtain
Bayesian predictions by taking into account the whole posterior ensemble,
shown schematically in figure 41.2c.

The Bayesian prediction of a new datum t(N+1) involves marginalizing over
the parameters (and over anything else about which we are uncertain). For
simplicity, let us assume that the weights w are the only uncertain quantities
– the weight decay rate α and the model H itself are assumed to be fixed.
Then by the sum rule, the predictive probability of a new target t(N+1) at a
location x(N+1) is:

P (t(N+1) |x(N+1), D, α) =

∫

dKwP (t(N+1) |x(N+1),w, α)P (w |D,α), (41.14)

where K is the dimensionality of w, three in the toy problem. Thus the
predictions are obtained by weighting the prediction for each possible w,

P (t(N+1) =1 |x(N+1),w, α) = y(x(N+1);w)
P (t(N+1) =0 |x(N+1),w, α) = 1 − y(x(N+1);w),

(41.15)

with a weight given by the posterior probability of w, P (w |D,α), which we
most recently wrote down in equation (41.10). This posterior probability is

P (w |D,α) =
1

ZM
exp(−M(w)), (41.16)

where

ZM =

∫

dKw exp(−M(w)). (41.17)

In summary, we can get the Bayesian predictions if we can find a way of
computing the integral

P (t(N+1) =1 |x(N+1), D, α) =

∫

dKw y(x(N+1);w)
1

ZM
exp(−M(w)), (41.18)

which is the average of the output of the neuron at x(N+1) under the posterior
distribution of w.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

496 41 — Learning as Inference

(a)

Dumb Metropolis

x(1)

Q(x;x(1))

P ∗(x)

ε

(b)

Gradient descent

−ηg

(c)

Langevin

Figure 41.3. One step of the
Langevin method in two
dimensions (c), contrasted with a
traditional ‘dumb’ Metropolis
method (a) and with gradient
descent (b). The proposal density
of the Langevin method is given
by ‘gradient descent with noise’.

Implementation

How shall we compute the integral (41.18)? For our toy problem, the weight
space is three dimensional; for a realistic neural network the dimensionality
K might be in the thousands.

Bayesian inference for general data modelling problems may be imple-
mented by exact methods (Chapter 25), by Monte Carlo sampling (Chapter
29), or by deterministic approximate methods, for example, methods that
make Gaussian approximations to P (w |D,α) using Laplace’s method (Chap-
ter 27) or variational methods (Chapter 33). For neural networks there are few
exact methods. The two main approaches to implementing Bayesian inference
for neural networks are the Monte Carlo methods developed by Neal (1996)
and the Gaussian approximation methods developed by MacKay (1991).

�
41.4 Monte Carlo implementation of a single neuron

First we will use a Monte Carlo approach in which the task of evaluating the
integral (41.18) is solved by treating y(x(N+1);w) as a function f of w whose
mean we compute using

〈f(w)〉 ' 1

R

∑

r

f(w(r)) (41.19)

where {w(r)} are samples from the posterior distribution 1
ZM

exp(−M(w)) (cf.
equation (29.6)). We obtain the samples using a Metropolis method (section
29.4). As an aside, a possible disadvantage of this Monte Carlo approach is
that it is a poor way of estimating the probability of an improbable event, i.e.,
a P (t |D,H) that is very close to zero, if the improbable event is most likely
to occur in conjunction with improbable parameter values.

How to generate the samples {w(r)}? Radford Neal introduced the Hamil-

tonian Monte Carlo method to neural networks. We met this sophisticated
Metropolis method, which makes use of gradient information, in Chapter 30.
The method we now demonstrate is a simple version of Hamiltonian Monte
Carlo called the Langevin Monte Carlo method.

The Langevin Monte Carlo method

The Langevin method (algorithm 41.4) may be summarized as ‘gradient de-
scent with added noise’, as shown pictorially in figure 41.3. A noise vector p

is generated from a Gaussian with unit variance. The gradient g is computed,

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

41.4: Monte Carlo implementation of a single neuron 497

Algorithm 41.4. Octave source
code for the Langevin Monte
Carlo method. To obtain the
Hamiltonian Monte Carlo method,
we repeat the four lines marked *

multiple times (algorithm 41.8).

g = gradM (w) ; # set gradient using initial w

M = findM (w) ; # set objective function too

for l = 1:L # loop L times

p = randn (size(w)) ; # initial momentum is Normal(0,1)

H = p’ * p / 2 + M ; # evaluate H(w,p)

* p = p - epsilon * g / 2 ; # make half-step in p

* wnew = w + epsilon * p ; # make step in w

* gnew = gradM (wnew) ; # find new gradient

* p = p - epsilon * gnew / 2 ; # make half-step in p

Mnew = findM (wnew) ; # find new objective function

Hnew = p’ * p / 2 + Mnew ; # evaluate new value of H

dH = Hnew - H ; # decide whether to accept

if (dH < 0) accept = 1 ;

elseif (rand() < exp(-dH)) accept = 1 ; # compare with a uniform

else accept = 0 ; # variate

endif

if (accept) g = gnew ; w = wnew ; M = Mnew ; endif

endfor

function gM = gradM (w) # gradient of objective function

a = x * w ; # compute activations

y = sigmoid(a) ; # compute outputs

e = t - y ; # compute errors

g = - x’ * e ; # compute the gradient of G(w)

gM = alpha * w + g ;

endfunction

function M = findM (w) # objective function

G = - (t’ * log(y) + (1-t’) * log(1-y)) ;

EW = w’ * w / 2 ;

M = G + alpha * EW ;

endfunction

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

498 41 — Learning as Inference

Figure 41.5. A single neuron learning under the Langevin Monte Carlo method. (a) Evolution of
weights w0, w1 and w2 as a function of number of iterations. (b) Evolution of weights w1

and w2 in weight space. Also shown by a line is the evolution of the weights using the
optimizer of figure 39.6. (c) The error function G(w) as a function of number of iterations.
Also shown is the error function during the optimization of figure 39.6. (d) The objective
function M(x) as a function of number of iterations. See also figures 41.6 and 41.7.

(a)

-30

-25

-20

-15

-10

-5

0

5

10

0 10000 20000 30000 40000

(b)

-3
-2
-1
0
1
2
3
4
5

-1 0 1 2 3 4 5 6 7

(c)

0

2

4

6

8

10

12

14

0 10000 20000 30000 40000

G(w) - Langevin
G(w) - optimizer

(d)

0

2

4

6

8

10

12

0 10000 20000 30000 40000

M(w) - Langevin
M(w) - optimizer

and a step in w is made, given by

∆w = −1
2ε

2g + εp. (41.20)

Notice that if the εp term were omitted this would simply be gradient descent
with learning rate η = 1

2ε
2. This step in w is accepted or rejected depending

on the change in the value of the objective function M(w) and on the change
in gradient, with a probability of acceptance such that detailed balance holds.

The Langevin method has one free parameter, ε, which controls the typical
step size. If ε is set to too large a value, moves may be rejected. If it is set to
a very small value, progress around the state space will be slow.

Demonstration of Langevin method

The Langevin method is demonstrated in figures 41.5, 41.6 and 41.7. Here, the
objective function is M(w) = G(w) + αEW (w), with α = 0.01. These figures
include, for comparison, the results of the previous optimization method using
gradient descent on the same objective function (figure 39.6). It can be seen
that the mean evolution of w is similar to the evolution of the parameters
under gradient descent. The Monte Carlo method appears to have converged
to the posterior distribution after about 10 000 iterations.

The average acceptance rate during this simulation was 93%; only 7% of
the proposed moves were rejected. Probably, faster progress around the state
space would have been made if a larger step size ε had been used, but the
value was chosen so that the ‘descent rate’ η = 1

2ε
2 matched the step size of

the earlier simulations.

Making Bayesian predictions

From iteration 10,000 to 40,000, the weights were sampled every 1000 itera-
tions and the corresponding functions of x are plotted in figure 41.6. There
is a considerable variety of plausible functions. We obtain a Monte Carlo ap-
proximation to the Bayesian predictions by averaging these thirty functions of
x together. The result is shown in figure 41.7 and contrasted with the predic-
tions given by the optimized parameters. The Bayesian predictions become
satisfyingly moderate as we move away from the region of highest data density.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

41.4: Monte Carlo implementation of a single neuron 499

Figure 41.6. Samples obtained by
the Langevin Monte Carlo
method. The learning rate was set
to η = 0.01 and the weight decay
rate to α = 0.01. The step size is
given by ε =

√
2η. The function

performed by the neuron is shown
by three of its contours every 1000
iterations from iteration 10 000 to
40 000. The contours shown are
those corresponding to a = 0,±1,
namely y = 0.5, 0.27 and 0.73.
Also shown is a vector
proportional to (w1, w2).

Figure 41.7. Bayesian predictions found by the Langevin Monte Carlo method compared with the
predictions using the optimized parameters. (a) The predictive function obtained by av-
eraging the predictions for 30 samples uniformly spaced between iterations 10 000 and
40 000, shown in figure 41.6. The contours shown are those corresponding to a = 0,±1,±2,
namely y = 0.5, 0.27, 0.73, 0.12 and 0.88. (b) For contrast, the predictions given by the
‘most probable’ setting of the neuron’s parameters, as given by optimization of M(w).

(a)

0 5 10
0

5

10

(b)

0 5 10
0

5

10

0 5 10
0

5

10

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

500 41 — Learning as Inference

Algorithm 41.8. Octave source
code for the Hamiltonian Monte
Carlo method. The algorithm is
identical to the Langevin method
in algorithm 41.4, except for the
replacement of the four lines
marked * in that algorithm by the
fragment shown here.

wnew = w ;

gnew = g ;

for tau = 1:Tau

p = p - epsilon * gnew / 2 ; # make half-step in p

wnew = wnew + epsilon * p ; # make step in w

gnew = gradM (wnew) ; # find new gradient

p = p - epsilon * gnew / 2 ; # make half-step in p

endfor

Langevin -30
-25
-20
-15
-10
-5
0
5

10

0 2000 4000 6000 8000 10000

HMC -40
-35
-30
-25
-20
-15
-10
-5
0
5

0 2000 4000 6000 8000 10000

Figure 41.9. Comparison of
sampling properties of the
Langevin Monte Carlo method
and the Hamiltonian Monte Carlo
(HMC) method. The horizontal
axis is the number of gradient
evaluations made. Each figure
shows the weights during the first
10,000 iterations. The rejection
rate during this Hamiltonian
Monte Carlo simulation was 8%.

The Bayesian classifier is better able to identify the points where the classi-
fication is uncertain. This pleasing behaviour results simply from a mechanical
application of the rules of probability.

Optimization and typicality

A final observation concerns the behaviour of the functions G(w) and M(w)
during the Monte Carlo sampling process, compared with the values of G and
M at the optimum wMP (figure 41.5). The function G(w) fluctuates around
the value of G(wMP), though not in a symmetrical way. The function M(w)
also fluctuates, but it does not fluctuate around M(wMP) – obviously it cannot,
because M is minimized at wMP, so M could not go any smaller – furthermore,
M only rarely drops close to M(wMP). In the language of information theory,
the typical set of w has different properties from the most probable state wMP.

A general message therefore emerges – applicable to all data models, not
just neural networks: one should be cautious about making use of optimized
parameters, as the properties of optimized parameters may be unrepresen-
tative of the properties of typical, plausible parameters; and the predictions
obtained using optimized parameters alone will often be unreasonably over-
confident.

Reducing random walk behaviour using Hamiltonian Monte Carlo

As a final study of Monte Carlo methods, we now compare the Langevin Monte
Carlo method with its big brother, the Hamiltonian Monte Carlo method. The
change to Hamiltonian Monte Carlo is simple to implement, as shown in algo-
rithm 41.8. Each single proposal makes use of multiple gradient evaluations

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

41.5: Implementing inference with Gaussian approximations 501

along a dynamical trajectory in w,p space, where p are the extra ‘momentum’
variables of the Langevin and Hamiltonian Monte Carlo methods. The num-
ber of steps ‘Tau’ was set at random to a number between 100 and 200 for each
trajectory. The step size ε was kept fixed so as to retain comparability with
the simulations that have gone before; it is recommended that one randomize
the step size in practical applications, however.

Figure 41.9 compares the sampling properties of the Langevin and Hamil-
tonian Monte Carlo methods. The autocorrelation of the state of the Hamil-
tonian Monte Carlo simulation falls much more rapidly with simulation time
than that of the Langevin method. For this toy problem, Hamiltonian Monte
Carlo is at least ten times more efficient in its use of computer time.

�
41.5 Implementing inference with Gaussian approximations

Physicists love to take nonlinearities and locally linearize them, and they love
to approximate probability distributions by Gaussians. Such approximations
offer an alternative strategy for dealing with the integral

P (t(N+1) =1 |x(N+1), D, α) =

∫

dKw y(x(N+1);w)
1

ZM
exp(−M(w)), (41.21)

which we just evaluated using Monte Carlo methods.
We start by making a Gaussian approximation to the posterior probability.

We go to the minimum ofM(w) (using a gradient-based optimizer) and Taylor-
expand M there:

M(w) 'M(wMP) +
1

2
(w −wMP)TA(w −wMP) + · · · , (41.22)

where A is the matrix of second derivatives, also known as the Hessian, defined
by

Aij ≡
∂2

∂wi∂wj
M(w)

∣

∣

∣

∣

w=wMP

. (41.23)

We thus define our Gaussian approximation:

Q(w;wMP,A) = [det(A/2π)]1/2 exp

[

−1

2
(w −wMP)TA(w −wMP)

]

. (41.24)

We can think of the matrix A as defining error bars on w. To be precise, Q
is a normal distribution whose variance–covariance matrix is A−1.

Exercise 41.1.
[2] Show that the second derivative of M(w) with respect to w

is given by

∂2

∂wi∂wj
M(w) =

N
∑

n=1

f ′(a(n))x
(n)
i x

(n)
j + αδij , (41.25)

where f ′(a) is the first derivative of f(a) ≡ 1/(1 + e−a), which is

f ′(a) =
d

da
f(a) = f(a)(1 − f(a)), (41.26)

and
a(n) =

∑

j

wjx
(n)
j . (41.27)

Having computed the Hessian, our task is then to perform the integral (41.21)
using our Gaussian approximation.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

502 41 — Learning as Inference

(a)

ψ(a, s2)

� ���
��� �

�
���

� �

�
	

���

�
�

��� � �
�
� �

��� � �
�

���
��� �

�
���

� �

�
	

���

�
�� �

� �
�

(b)

� �
� ��� � ��� �

��� �

��� �

��� 	

���

�
Figure 41.10. The marginalized
probability, and an approximation
to it. (a) The function ψ(a, s2),
evaluated numerically. In (b) the
functions ψ(a, s2) and φ(a, s2)
defined in the text are shown as a
function of a for s2 = 4. From
MacKay (1992b).

(a)

-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6

(b)

0 5 10
0

5

10

A

B

0 5 10
0

5

10 Figure 41.11. The Gaussian
approximation in weight space
and its approximate predictions in
input space. (a) A projection of
the Gaussian approximation onto
the (w1, w2) plane of weight
space. The one- and
two-standard-deviation contours
are shown. Also shown are the
trajectory of the optimizer, and
the Monte Carlo method’s
samples. (b) The predictive
function obtained from the
Gaussian approximation and
equation (41.30). (cf. figure 41.2.)

Calculating the marginalized probability

The output y(x;w) depends on w only through the scalar a(x;w), so we can
reduce the dimensionality of the integral by finding the probability density of
a. We are assuming a locally Gaussian posterior probability distribution over
w = wMP + ∆w, P (w |D,α) ' (1/ZQ) exp(− 1

2∆wTA∆w). For our single
neuron, the activation a(x;w) is a linear function of w with ∂a/∂w = x, so
for any x, the activation a is Gaussian-distributed.

. Exercise 41.2.
[2] Assuming w is Gaussian-distributed with mean wMP and

variance–covariance matrix A−1, show that the probability distribution
of a(x) is

P (a |x, D, α) = Normal(aMP, s
2) =

1√
2πs2

exp

(

−(a− aMP)2

2s2

)

,

(41.28)
where aMP =a(x;wMP) and s2 =xTA−1x.

This means that the marginalized output is:

P (t=1 |x, D, α) = ψ(aMP, s
2) ≡

∫

da f(a) Normal(aMP, s
2). (41.29)

This is to be contrasted with y(x;wMP)=f(aMP), the output of the most prob-
able network. The integral of a sigmoid times a Gaussian can be approximated
by:

ψ(aMP, s
2) ' φ(aMP, s

2) ≡ f(κ(s)aMP) (41.30)

with κ = 1/
√

1 + πs2/8 (figure 41.10).

Demonstration

Figure 41.11 shows the result of fitting a Gaussian approximation at the op-
timum wMP, and the results of using that Gaussian approximation and equa-

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

41.5: Implementing inference with Gaussian approximations 503

tion (41.30) to make predictions. Comparing these predictions with those of
the Langevin Monte Carlo method (figure 41.7) we observe that, whilst quali-
tatively the same, the two are clearly numerically different. So at least one of
the two methods is not completely accurate.

. Exercise 41.3.
[2] Is the Gaussian approximation to P (w |D,α) too heavy-tailed

or too light-tailed, or both? It may help to consider P (w |D,α) as a
function of one parameter wi and to think of the two distributions on
a logarithmic scale. Discuss the conditions under which the Gaussian
approximation is most accurate.

Why marginalize?

If the output is immediately used to make a (0/1) decision and the costs asso-
ciated with error are symmetrical, then the use of marginalized outputs under
this Gaussian approximation will make no difference to the performance of the
classifier, compared with using the outputs given by the most probable param-
eters, since both functions pass through 0.5 at aMP =0. But these Bayesian
outputs will make a difference if, for example, there is an option of saying ‘I
don’t know’, in addition to saying ‘I guess 0’ and ‘I guess 1’. And even if
there are just the two choices ‘0’ and ‘1’, if the costs associated with error are
unequal, then the decision boundary will be some contour other than the 0.5
contour, and the boundary will be affected by marginalization.

