
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

42.11: Solutions 521

Solution to exercise 42.4 (p.508). Take a binary Hopfield network with 2 neu-
rons and let w12 = w21 = 1, and let the initial condition be x1 = 1, x2 = −1.
Then if the dynamics are synchronous, on every iteration both neurons will
flip their state. The dynamics do not converge to a fixed point.

Solution to exercise 42.12 (p.520). The key to this problem is to notice its
similarity to the construction of a binary symbol code. Starting from the
empty string, we can build a binary tree by repeatedly splitting a codeword
into two. Every codeword has an implicit probability 2−l, where l is the
depth of the codeword in the binary tree. Whenever we split a codeword in
two and create two new codewords whose length is increased by one, the two
new codewords each have implicit probability equal to half that of the old
codeword. For a complete binary code, the Kraft equality affirms that the
sum of these implicit probabilities is 1.

Similarly, in southeast, we can associate a ‘weight’ with each piece on the
board. If we assign a weight of 1 to any piece sitting on the top left square;
a weight of 1/2 to any piece on a square whose distance from the top left is
one; a weight of 1/4 to any piece whose distance from the top left is two; and
so forth, with ‘distance’ being the city-block distance; then every legal move
in southeast leaves unchanged the total weight of all pieces on the board.
Lyapunov functions come in two flavours: the function may be a function of
state whose value is known to stay constant; or it may be a function of state
that is bounded below, and whose value always decreases or stays constant.
The total weight is a Lyapunov function of the second type.

The starting weight is 1, so now we have a powerful tool: a conserved
function of the state. Is it possible to find a position in which the ten highest-
weight squares are vacant, and the total weight is 1? What is the total weight
if all the other squares on the board are occupied (figure 42.14)? The total

u

u

u

u

u

u

u

u

u

u

u

u

u

uu

.
.
.

. . .

. . .

.

.

.

.

.

.

Figure 42.14. A possible position
for the southeast puzzle?

weight would be
∑∞

l=4(l + 1)2−l, which is equal to 3/4. So it is impossible to
empty all ten of those squares.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

43

Boltzmann Machines

�
43.1 From Hopfield networks to Boltzmann machines

We have noticed that the binary Hopfield network minimizes an energy func-
tion

E(x) = −
1

2
xTWx (43.1)

and that the continuous Hopfield network with activation function xn =
tanh(an) can be viewed as approximating the probability distribution asso-
ciated with that energy function,

P (x |W) =
1

Z(W)
exp[−E(x)] =

1

Z(W)
exp

[

1

2
xTWx

]

. (43.2)

These observations motivate the idea of working with a neural network model
that actually implements the above probability distribution.

The stochastic Hopfield network or Boltzmann machine (Hinton and Se-
jnowski, 1986) has the following activity rule:

Activity rule of Boltzmann machine: after computing the activa-
tion ai (42.3),

set xi = +1 with probability
1

1 + e−2ai

else set xi = −1.
(43.3)

This rule implements Gibbs sampling for the probability distribution (43.2).

Boltzmann machine learning

Given a set of examples {x(n)}N
1 from the real world, we might be interested

in adjusting the weights W such that the generative model

P (x |W) =
1

Z(W)
exp

[

1

2
xTWx

]

(43.4)

is well matched to those examples. We can derive a learning algorithm by
writing down Bayes’ theorem to obtain the posterior probability of the weights
given the data:

P (W | {x(n)}N
1 }) =

[

N
∏

n=1

P (x(n) |W)

]

P (W)

P ({x(n)}N
1 })

. (43.5)

522

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

43.1: From Hopfield networks to Boltzmann machines 523

We concentrate on the first term in the numerator, the likelihood, and derive a
maximum likelihood algorithm (though there might be advantages in pursuing
a full Bayesian approach as we did in the case of the single neuron). We
differentiate the logarithm of the likelihood,

ln

[

N
∏

n=1

P (x(n) |W)

]

=

N
∑

n=1

[

1

2
x(n)TWx(n) − lnZ(W)

]

, (43.6)

with respect to wij, bearing in mind that W is defined to be symmetric with
wji = wij .

Exercise 43.1.[2] Show that the derivative of lnZ(W) with respect to wij is

∂

∂wij

lnZ(W) =
∑

x

xixjP (x |W) = 〈xixj〉P (x |W) . (43.7)

[This exercise is similar to exercise 22.12 (p.307).]

The derivative of the log likelihood is therefore:

∂

∂wij

lnP ({x(n)}N
1 } |W) =

N
∑

n=1

[

x
(n)
i x

(n)
j − 〈xixj〉P (x |W)

]

(43.8)

= N
[

〈xixj〉Data − 〈xixj〉P (x |W)

]

. (43.9)

This gradient is proportional to the difference of two terms. The first term is
the empirical correlation between xi and xj ,

〈xixj〉Data ≡
1

N

N
∑

n=1

[

x
(n)
i x

(n)
j

]

, (43.10)

and the second term is the correlation between xi and xj under the current
model,

〈xixj〉P (x |W) ≡
∑

x

xixjP (x |W). (43.11)

The first correlation 〈xixj〉Data is readily evaluated – it is just the empirical
correlation between the activities in the real world. The second correlation,
〈xixj〉P (x |W), is not so easy to evaluate, but it can be estimated by Monte
Carlo methods, that is, by observing the average value of xixj while the ac-
tivity rule of the Boltzmann machine, equation (43.3), is iterated.

In the special case W = 0, we can evaluate the gradient exactly because,
by symmetry, the correlation 〈xixj〉P (x |W) must be zero. If the weights are
adjusted by gradient descent with learning rate η, then, after one iteration,
the weights will be

wij = η
N

∑

n=1

[

x
(n)
i x

(n)
j

]

, (43.12)

precisely the value of the weights given by the Hebb rule, equation (16.5), with
which we trained the Hopfield network.

Interpretation of Boltzmann machine learning

One way of viewing the two terms in the gradient (43.9) is as ‘waking’ and
‘sleeping’ rules. While the network is ‘awake’, it measures the correlation
between xi and xj in the real world, and weights are increased in proportion.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

524 43 — Boltzmann Machines

While the network is ‘asleep’, it ‘dreams’ about the world using the generative
model (43.4), and measures the correlations between xi and xj in the model
world; these correlations determine a proportional decrease in the weights. If
the second-order correlations in the dream world match the correlations in the
real world, then the two terms balance and the weights do not change.

(a) (b)

Figure 43.1. The ‘shifter’
ensembles. (a) Four samples from
the plain shifter ensemble. (b)
Four corresponding samples from
the labelled shifter ensemble.

Criticism of Hopfield networks and simple Boltzmann machines

Up to this point we have discussed Hopfield networks and Boltzmann machines
in which all of the neurons correspond to visible variables xi. The result
is a probabilistic model that, when optimized, can capture the second-order
statistics of the environment. [The second-order statistics of an ensemble
P (x) are the expected values 〈xixj〉 of all the pairwise products xixj .] The
real world, however, often has higher-order correlations that must be included
if our description of it is to be effective. Often the second-order correlations
in themselves may carry little or no useful information.

Consider, for example, the ensemble of binary images of chairs. We can
imagine images of chairs with various designs – four-legged chairs, comfy
chairs, chairs with five legs and wheels, wooden chairs, cushioned chairs, chairs
with rockers instead of legs. A child can easily learn to distinguish these images
from images of carrots and parrots. But I expect the second-order statistics of
the raw data are useless for describing the ensemble. Second-order statistics
only capture whether two pixels are likely to be in the same state as each
other. Higher-order concepts are needed to make a good generative model of
images of chairs.

A simpler ensemble of images in which high-order statistics are important
is the ‘shifter ensemble’, which comes in two flavours. Figure 43.1a shows a
few samples from the ‘plain shifter ensemble’. In each image, the bottom eight
pixels are a copy of the top eight pixels, either shifted one pixel to the left,
or unshifted, or shifted one pixel to the right. (The top eight pixels are set
at random.) This ensemble is a simple model of the visual signals from the
two eyes arriving at early levels of the brain. The signals from the two eyes
are similar to each other but may differ by small translations because of the
varying depth of the visual world. This ensemble is simple to describe, but its
second-order statistics convey no useful information. The correlation between
one pixel and any of the three pixels above it is 1/3. The correlation between
any other two pixels is zero.

Figure 43.1b shows a few samples from the ‘labelled shifter ensemble’.
Here, the problem has been made easier by including an extra three neu-
rons that label the visual image as being an instance of either the ‘shift left’,
‘no shift’, or ‘shift right’ sub-ensemble. But with this extra information, the
ensemble is still not learnable using second-order statistics alone. The second-
order correlation between any label neuron and any image neuron is zero. We
need models that can capture higher-order statistics of an environment.

So, how can we develop such models? One idea might be to create models
that directly capture higher-order correlations, such as:

P ′(x |W,V, . . .) =
1

Z ′
exp





1

2

∑

ij

wijxixj +
1

6

∑

ij

vijkxixjxk + · · ·



 .

(43.13)
Such higher-order Boltzmann machines are equally easy to simulate using
stochastic updates, and the learning rule for the higher-order parameters vijk

is equivalent to the learning rule for wij .

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

43.2: Boltzmann machine with hidden units 525

. Exercise 43.2.[2] Derive the gradient of the log likelihood with respect to vijk.

It is possible that the spines found on biological neurons are responsible for
detecting correlations between small numbers of incoming signals. However,
to capture statistics of high enough order to describe the ensemble of images
of chairs well would require an unimaginable number of terms. To capture
merely the fourth-order statistics in a 128 × 128 pixel image, we need more
than 107 parameters.

So measuring moments of images is not a good way to describe their un-
derlying structure. Perhaps what we need instead or in addition are hidden

variables, also known to statisticians as latent variables. This is the important
innovation introduced by Hinton and Sejnowski (1986). The idea is that the
high-order correlations among the visible variables are described by includ-
ing extra hidden variables and sticking to a model that has only second-order
interactions between its variables; the hidden variables induce higher-order
correlations between the visible variables.

�
43.2 Boltzmann machine with hidden units

We now add hidden neurons to our stochastic model. These are neurons that
do not correspond to observed variables; they are free to play any role in the
probabilistic model defined by equation (43.4). They might actually take on
interpretable roles, effectively performing ‘feature extraction’.

Learning in Boltzmann machines with hidden units

The activity rule of a Boltzmann machine with hidden units is identical to that
of the original Boltzmann machine. The learning rule can again be derived
by maximum likelihood, but now we need to take into account the fact that
the states of the hidden units are unknown. We will denote the states of the
visible units by x, the states of the hidden units by h, and the generic state
of a neuron (either visible or hidden) by yi, with y ≡ (x,h). The state of the
network when the visible neurons are clamped in state x(n) is y(n) ≡ (x(n),h).
The likelihood of W given a single data example x(n) is

P (x(n) |W) =
∑

h

P (x(n),h |W) =
∑

h

1

Z(W)
exp

[

1

2
[y(n)]TWy(n)

]

,

(43.14)
where

Z(W) =
∑

x,h

exp

[

1

2
yTWy

]

. (43.15)

Equation (43.14) may also be written

P (x(n) |W) =
Z

x(n)(W)

Z(W)
(43.16)

where

Z
x(n)(W) =

∑

h

exp

[

1

2
[y(n)]TWy(n)

]

. (43.17)

Differentiating the likelihood as before, we find that the derivative with re-
spect to any weight wij is again the difference between a ‘waking’ term and a
‘sleeping’ term,

∂

∂wij

lnP ({x(n)}N
1 |W) =

∑

n

{

〈yiyj〉P (h |x(n),W) − 〈yiyj〉P (x,h |W)

}

.

(43.18)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

526 43 — Boltzmann Machines

The first term 〈yiyj〉P (h |x(n),W) is the correlation between yi and yj if the

Boltzmann machine is simulated with the visible variables clamped to x(n)

and the hidden variables freely sampling from their conditional distribution.
The second term 〈yiyj〉P (x,h |W) is the correlation between yi and yj when

the Boltzmann machine generates samples from its model distribution.
Hinton and Sejnowski demonstrated that non-trivial ensembles such as

the labelled shifter ensemble can be learned using a Boltzmann machine with
hidden units. The hidden units take on the role of feature detectors that spot
patterns likely to be associated with one of the three shifts.

The Boltzmann machine is time-consuming to simulate because the compu-
tation of the gradient of the log likelihood depends on taking the difference of
two gradients, both found by Monte Carlo methods. So Boltzmann machines
are not in widespread use. It is an area of active research to create models
that embody the same capabilities using more efficient computations (Hinton
et al., 1995; Dayan et al., 1995; Hinton and Ghahramani, 1997; Hinton, 2001;
Hinton and Teh, 2001).

�
43.3 Exercise

. Exercise 43.3.[3] Can the ‘bars and stripes’ ensemble (figure 43.2) be learned

Figure 43.2. Four samples from
the ‘bars and stripes’ ensemble.
Each sample is generated by first
picking an orientation, horizontal
or vertical; then, for each row of
spins in that orientation (each bar
or stripe respectively), switching

all spins on with probability 1/2.

by a Boltzmann machine with no hidden units? [You may be surprised!]

