
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

44

Supervised Learning in Multilayer

Networks

�
44.1 Multilayer perceptrons

No course on neural networks could be complete without a discussion of su-
pervised multilayer networks, also known as backpropagation networks.

The multilayer perceptron is a feedforward network. It has input neurons,
hidden neurons and output neurons. The hidden neurons may be arranged
in a sequence of layers. The most common multilayer perceptrons have a
single hidden layer, and are known as ‘two-layer’ networks, the number ‘two’
counting the number of layers of neurons not including the inputs.

Such a feedforward network defines a nonlinear parameterized mapping
from an input x to an output y = y(x;w,A). The output is a continuous
function of the input and of the parameters w; the architecture of the net, i.e.,
the functional form of the mapping, is denoted by A. Feedforward networks
can be ‘trained’ to perform regression and classification tasks.

Regression networks

Hiddens

Inputs

Outputs

Figure 44.1. A typical two-layer
network, with six inputs, seven
hidden units, and three outputs.
Each line represents one weight.

In the case of a regression problem, the mapping for a network with one hidden
layer may have the form:

Hidden layer: a
(1)
j =

∑

l

w
(1)
jl

xl + θ
(1)
j ; hj = f (1)(a

(1)
j) (44.1)

Output layer: a
(2)
i =

∑

j

w
(2)
ij hj + θ

(2)
i ; yi = f (2)(a

(2)
i) (44.2)

where, for example, f (1)(a) = tanh(a), and f (2)(a) = a. Here l runs over
the inputs x1, . . . , xL, j runs over the hidden units, and i runs over the out-
puts. The ‘weights’ w and ‘biases’ θ together make up the parameter vector
w. The nonlinear sigmoid function f (1) at the hidden layer gives the neu-
ral network greater computational flexibility than a standard linear regression
model. Graphically, we can represent the neural network as a set of layers of
connected neurons (figure 44.1).

What sorts of functions can these networks implement?

Just as we explored the weight space of the single neuron in Chapter 39,
examining the functions it could produce, let us explore the weight space of
a multilayer network. In figures 44.2 and 44.3 I take a network with one
input and one output and a large number H of hidden units, set the biases

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-2 -1 0 1 2 3 4 5

Figure 44.2. Samples from the
prior over functions of a one-input
network. For each of a sequence of
values of σbias = 8, 6, 4, 3, 2, 1.6,
1.2, 0.8, 0.4, 0.3, 0.2, and
σin = 5σw

bias
, one random function

is shown. The other
hyperparameters of the network
were H = 400, σw

out = 0.05.

527

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

528 44 — Supervised Learning in Multilayer Networks

Hidden layer

Input

Output

t t t t t t�
�

��@
@

@@

t

y

@
@

@@�
�

��

t

x
��������

t

1

-σbias
� σin

� σout

-10

-5

0

5

10

-2 -1 0 1 2 3 4

O
ut

pu
t

Input

∼ σbias/σin

√
Hσout ∼ 1/σin

Figure 44.3. Properties of a
function produced by a random
network. The vertical scale of a
typical function produced by the
network with random weights is of
order

√
Hσout; the horizontal

range in which the function varies
significantly is of order σbias/σin;
and the shortest horizontal length
scale is of order 1/σin. The
function shown was produced by
making a random network with
H = 400 hidden units, and
Gaussian weights with σbias = 4,
σin = 8, and σout = 0.5.

and weights θ
(1)
j , w

(1)
jl

, θ
(2)
i and w

(2)
ij to random values, and plot the resulting

function y(x). I set the hidden units’ biases θ
(1)
j to random values from a

Gaussian with zero mean and standard deviation σbias; the input-to-hidden

weights w
(1)
jl

to random values with standard deviation σin; and the bias and

output weights θ
(2)
i and w

(2)
ij to random values with standard deviation σout.

The sort of functions that we obtain depend on the values of σbias, σin

and σout. As the weights and biases are made bigger we obtain more complex
functions with more features and a greater sensitivity to the input variable.
The vertical scale of a typical function produced by the network with random
weights is of order

√
Hσout; the horizontal range in which the function varies

significantly is of order σbias/σin; and the shortest horizontal length scale is of
order 1/σin.

Radford Neal (1996) has also shown that in the limit as H → ∞ the
statistical properties of the functions generated by randomizing the weights are
independent of the number of hidden units; so, interestingly, the complexity of
the functions becomes independent of the number of parameters in the model.
What determines the complexity of the typical functions is the characteristic
magnitude of the weights. Thus we anticipate that when we fit these models to
real data, an important way of controlling the complexity of the fitted function
will be to control the characteristic magnitude of the weights.

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-2

-1

0

1

Figure 44.4. One sample from the
prior of a two-input network with
{H, σw

in
, σw

bias
, σw

out} =
{400, 8.0, 8.0, 0.05}.

Figure 44.4 shows one typical function produced by a network with two
inputs and one output. This should be contrasted with the function produced
by a traditional linear regression model, which is a flat plane. Neural networks
can create functions with more complexity than a linear regression.

�
44.2 How a regression network is traditionally trained

This network is trained using a data set D = {x(n), t(n)} by adjusting w so as
to minimize an error function, e.g.,

ED(w) =
1

2

∑

n

∑

i

(

t
(n)
i − yi(x

(n);w)
)2

. (44.3)

This objective function is a sum of terms, one for each input/target pair {x, t},
measuring how close the output y(x;w) is to the target t.

This minimization is based on repeated evaluation of the gradient of ED.
This gradient can be efficiently computed using the backpropagation algorithm
(Rumelhart et al., 1986), which uses the chain rule to find the derivatives.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

44.3: Neural network learning as inference 529

Often, regularization (also known as weight decay) is included, modifying
the objective function to:

M(w) = βED + αEW (44.4)

where, for example, EW = 1
2

∑

i w2
i . This additional term favours small values

of w and decreases the tendency of a model to overfit noise in the training
data.

Rumelhart et al. (1986) showed that multilayer perceptrons can be trained,
by gradient descent on M(w), to discover solutions to non-trivial problems
such as deciding whether an image is symmetric or not. These networks have
been successfully applied to real-world tasks as varied as pronouncing English
text (Sejnowski and Rosenberg, 1987) and focussing multiple-mirror telescopes
(Angel et al., 1990).

�
44.3 Neural network learning as inference

The neural network learning process above can be given the following proba-
bilistic interpretation. [Here we repeat and generalize the discussion of Chap-
ter 41.]

The error function is interpreted as defining a noise model. βED is the
negative log likelihood:

P (D |w, β,H) =
1

ZD(β)
exp(−βED). (44.5)

Thus, the use of the sum-squared error ED (44.3) corresponds to an assump-
tion of Gaussian noise on the target variables, and the parameter β defines a
noise level σ2

ν = 1/β.

Similarly the regularizer is interpreted in terms of a log prior probability
distribution over the parameters:

P (w |α,H) =
1

ZW (α)
exp(−αEW). (44.6)

If EW is quadratic as defined above, then the corresponding prior distribution
is a Gaussian with variance σ2

W
= 1/α. The probabilistic model H specifies

the architecture A of the network, the likelihood (44.5), and the prior (44.6).

The objective function M(w) then corresponds to the inference of the
parameters w, given the data:

P (w |D,α, β,H) =
P (D |w, β,H)P (w |α,H)

P (D |α, β,H)
(44.7)

=
1

ZM

exp(−M(w)). (44.8)

The w found by (locally) minimizing M(w) is then interpreted as the (locally)
most probable parameter vector, wMP.

The interpretation of M(w) as a log probability adds little new at this
stage. But new tools will emerge when we proceed to other inferences. First,
though, let us establish the probabilistic interpretation of classification net-
works, to which the same tools apply.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

530 44 — Supervised Learning in Multilayer Networks

Binary classification networks

If the targets t in a data set are binary classification labels (0, 1), it is natural
to use a neural network whose output y(x;w,A) is bounded between 0 and 1,
and is interpreted as a probability P (t=1 |x,w,A). For example, a network
with one hidden layer could be described by the feedforward equations (44.1)
and (44.2), with f (2)(a) = 1/(1+ e−a). The error function βED is replaced by
the negative log likelihood:

G(w) = −
[

∑

n

t(n) ln y(x(n);w) + (1 − t(n)) ln(1 − y(x(n);w))

]

. (44.9)

The total objective function is then M = G + αEW . Note that this includes
no parameter β (because there is no Gaussian noise).

Multi-class classification networks

For a multi-class classification problem, we can represent the targets by a
vector, t, in which a single element is set to 1, indicating the correct class, and
all other elements are set to 0. In this case it is appropriate to use a ‘softmax’
network having coupled outputs which sum to one and are interpreted as
class probabilities yi = P (ti =1 |x,w,A). The last part of equation (44.2) is
replaced by:

yi =
eai

∑

i′

ea
i′

. (44.10)

The negative log likelihood in this case is

G(w) = −
∑

n

∑

i

t
(n)
i ln yi(x

(n);w). (44.11)

As in the case of the regression network, the minimization of the objective
function M(w) = G +αEW corresponds to an inference of the form (44.8). A
variety of useful results can be built on this interpretation.

�
44.4 Benefits of the Bayesian approach to supervised feedforward

neural networks

From the statistical perspective, supervised neural networks are nothing more
than nonlinear curve-fitting devices. Curve fitting is not a trivial task however.
The effective complexity of an interpolating model is of crucial importance,
as illustrated in figure 44.5. Consider a control parameter that influences the
complexity of a model, for example a regularization constant α (weight decay
parameter). As the control parameter is varied to increase the complexity of
the model (descending from figure 44.5a–c and going from left to right across
figure 44.5d), the best fit to the training data that the model can achieve
becomes increasingly good. However, the empirical performance of the model,
the test error, first decreases then increases again. An over-complex model

overfits the data and generalizes poorly. This problem may also complicate
the choice of architecture in a multilayer perceptron, the radius of the basis
functions in a radial basis function network, and the choice of the input vari-
ables themselves in any multidimensional regression problem. Finding values
for model control parameters that are appropriate for the data is therefore an
important and non-trivial problem.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

44.4: Benefits of the Bayesian approach to supervised feedforward neural networks 531

(a)

(b)

(c)

(d)
Model Control Parameters

Training Error

Test Error

(e)
Model Control Parameters

Log Probability(Training Data | Control Parameters)

Figure 44.5. Optimization of
model complexity. Panels (a–c)
show a radial basis function model
interpolating a simple data set
with one input variable and one
output variable. As the
regularization constant is varied
to increase the complexity of the
model (from (a) to (c)), the
interpolant is able to fit the
training data increasingly well,
but beyond a certain point the
generalization ability (test error)
of the model deteriorates.
Probability theory allows us to
optimize the control parameters
without needing a test set.

The overfitting problem can be solved by using a Bayesian approach to
control model complexity.

If we give a probabilistic interpretation to the model, then we can evaluate
the evidence for alternative values of the control parameters. As was explained
in Chapter 28, over-complex models turn out to be less probable, and the
evidence P (Data |Control Parameters) can be used as an objective function
for optimization of model control parameters (figure 44.5e). The setting of α
that maximizes the evidence is displayed in figure 44.5b.

Bayesian optimization of model control parameters has four important ad-
vantages. (1) No ‘test set’ or ‘validation set’ is involved, so all available training
data can be devoted to both model fitting and model comparison. (2) Reg-
ularization constants can be optimized on-line, i.e., simultaneously with the
optimization of ordinary model parameters. (3) The Bayesian objective func-
tion is not noisy, in contrast to a cross-validation measure. (4) The gradient of
the evidence with respect to the control parameters can be evaluated, making
it possible to simultaneously optimize a large number of control parameters.

Probabilistic modelling also handles uncertainty in a natural manner. It
offers a unique prescription, marginalization, for incorporating uncertainty
about parameters into predictions; this procedure yields better predictions, as
we saw in Chapter 41. Figure 44.6 shows error bars on the predictions of a
trained neural network.

Figure 44.6. Error bars on the
predictions of a trained regression
network. The solid line gives the
predictions of the best-fit
parameters of a multilayer
perceptron trained on the data
points. The error bars (dotted
lines) are those produced by the
uncertainty of the parameters w.
Notice that the error bars become
larger where the data are sparse.

Implementation of Bayesian inference

As was mentioned in Chapter 41, Bayesian inference for multilayer networks
may be implemented by Monte Carlo sampling, or by deterministic methods
employing Gaussian approximations (Neal, 1996; MacKay, 1992c).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

532 44 — Supervised Learning in Multilayer Networks

Within the Bayesian framework for data modelling, it is easy to improve
our probabilistic models. For example, if we believe that some input variables
in a problem may be irrelevant to the predicted quantity, but we don’t know
which, we can define a new model with multiple hyperparameters that captures
the idea of uncertain input variable relevance (MacKay, 1994b; Neal, 1996;
MacKay, 1995b); these models then infer automatically from the data which
are the relevant input variables for a problem.

�
44.5 Exercises

Exercise 44.1.[4] How to measure a classifier’s quality. You’ve just written a new
classification algorithm and want to measure how well it performs on a test
set, and compare it with other classifiers. What performance measure should
you use? There are several standard answers. Let’s assume the classifier gives
an output y(x), where x is the input, which we won’t discuss further, and that
the true target value is t. In the simplest discussions of classifiers, both y and
t are binary variables, but you might care to consider cases where y and t are
more general objects also.

The most widely used measure of performance on a test set is the error

rate – the fraction of misclassifications made by the classifier. This measure
forces the classifier to give a 0/1 output and ignores any additional information
that the classifier might be able to offer – for example, an indication of the
firmness of a prediction. Unfortunately, the error rate does not necessarily
measure how informative a classifier’s output is. Consider frequency tables
showing the joint frequency of the 0/1 output of a classifier (horizontal axis),
and the true 0/1 variable (vertical axis). The numbers that we’ll show are
percentages. The error rate e is the sum of the two off-diagonal numbers,
which we could call the false positive rate e+ and the false negative rate e−.

Of the following three classifiers, A and B have the same error rate of 10%
and C has a greater error rate of 12%.

Classifier A Classifier B Classifier C
y 0 1

t

0 90 0
1 10 0

y 0 1
t

0 80 10
1 0 10

y 0 1
t

0 78 12
1 0 10

But clearly classifier A, which simply guesses that the outcome is 0 for all
cases, is conveying no information at all about t; whereas classifier B has an
informative output: if y = 0 then we are sure that t really is zero; and if y =1
then there is a 50% chance that t=1, as compared to the prior probability
P (t=1) = 0.1. Classifier C is slightly less informative than B, but it is still
much more useful than the information-free classifier A. How common sense ranks the

classifiers:

(best) B > C > A (worst).

How error rate ranks the
classifiers:

(best) A = B > C (worst).

One way to improve on the error rate as a performance measure is to report
the pair (e+, e−), the false positive error rate and the false negative error rate,
which are (0, 0.1) and (0.1, 0) for classifiers A and B. It is especially important
to distinguish between these two error probabilities in applications where the
two sorts of error have different associated costs. However, there are a couple
of problems with the ‘error rate pair’:

• First, if I simply told you that classifier A has error rates (0, 0.1) and B
has error rates (0.1, 0), it would not be immediately evident that classifier
A is actually utterly worthless. Surely we should have a performance
measure that gives the worst possible score to A!

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

44.5: Exercises 533

• Second, if we turn to a multiple-class classification problem such as digit
recognition, then the number of types of error increases from two to
10 × 9 = 90 – one for each possible confusion of class t with t′. It would
be nice to have some sensible way of collapsing these 90 numbers into a
single rankable number that makes more sense than the error rate.

Another reason for not liking the error rate is that it doesn’t give a classifier
credit for accurately specifying its uncertainty. Consider classifiers that have
three outputs available, ‘0’, ‘1’ and a rejection class, ‘?’, which indicates that
the classifier is not sure. Consider classifiers D and E with the following
frequency tables, in percentages:

Classifier D Classifier E
y 0 ? 1

t

0 74 10 6
1 0 1 9

y 0 ? 1
t

0 78 6 6
1 0 5 5

Both of these classifiers have (e+, e−, r) = (6%, 0%, 11%). But are they equally
good classifiers? Compare classifier E with C. The two classifiers are equiva-
lent. E is just C in disguise – we could make E by taking the output of C and
tossing a coin when C says ‘1’ in order to decide whether to give output ‘1’ or
‘?’. So E is equal to C and thus inferior to B. Now compare D with B. Can
you justify the suggestion that D is a more informative classifier than B, and
thus is superior to E? Yet D and E have the same (e+, e−, r) scores.

Error rate

Rejection rate

Figure 44.7. An error-reject curve.
Some people use the area under
this curve as a measure of
classifier quality.

People often plot error-reject curves (also known as ROC curves; ROC
stands for ‘receiver operating characteristic’) which show the total e = (e+ +
e−) versus r as r is allowed to vary from 0 to 1, and use these curves to
compare classifiers (figure 44.7). [In the special case of binary classification
problems, e+ may be plotted versus e− instead.] But as we have seen, error
rates can be undiscerning performance measures. Does plotting one error rate
as a function of another make this weakness of error rates go away?

For this exercise, either construct an explicit example demonstrating that
the error-reject curve, and the area under it, are not necessarily good ways to
compare classifiers; or prove that they are.

As a suggested alternative method for comparing classifiers, consider the
mutual information between the output and the target,

I(T ;Y) ≡ H(T) − H(T |Y) =
∑

y,t

P (y)P (t | y) log
P (t)

P (t | y)
, (44.12)

which measures how many bits the classifier’s output conveys about the target.
Evaluate the mutual information for classifiers A–E above.
Investigate this performance measure and discuss whether it is a useful

one. Does it have practical drawbacks?

