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About Chapter 45

Feedforward neural networks such as multilayer perceptrons are popular tools
for nonlinear regression and classification problems. From a Bayesian per-
spective, a choice of a neural network model can be viewed as defining a prior
probability distribution over nonlinear functions, and the neural network’s
learning process can be interpreted in terms of the posterior probability dis-
tribution over the unknown function. (Some learning algorithms search for the
function with maximum posterior probability and other Monte Carlo methods
draw samples from this posterior probability.)

In the limit of large but otherwise standard networks, Neal (1996) has
shown that the prior distribution over nonlinear functions implied by the
Bayesian neural network falls in a class of probability distributions known
as Gaussian processes. The hyperparameters of the neural network model
determine the characteristic lengthscales of the Gaussian process. Neal’s ob-
servation motivates the idea of discarding parameterized networks and working
directly with Gaussian processes. Computations in which the parameters of
the network are optimized are then replaced by simple matrix operations using
the covariance matrix of the Gaussian process.

In this chapter I will review work on this idea by Williams and Rasmussen
(1996), Neal (1997b), Barber and Williams (1997) and Gibbs and MacKay
(2000), and will assess whether, for supervised regression and classification
tasks, the feedforward network has been superceded.

b Exercise 45.1.1%] 1 regret that this chapter is rather dry. There’s no simple
explanatory examples in it, and few pictures. This exercise asks you to
create interesting pictures to explain to yourself this chapter’s ideas.

Source code for computer demonstrations written in the free language
octave is available at:
http://www.inference.phy.cam.ac.uk/mackay/itprnn/software.html.

Radford Neal’s software for Gaussian processes is available at:
http://www.cs.toronto.edu/ "radford/.
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45

Gaussian Processes

After the publication of Rumelhart, Hinton and Williams’s (1986) paper on
supervised learning in neural networks there was a surge of interest in the
empirical modelling of relationships in high-dimensional data using nonlinear
parametric models such as multilayer perceptrons and radial basis functions.
In the Bayesian interpretation of these modelling methods, a nonlinear func-
tion y(x) parameterized by parameters w is assumed to underlie the data
{x( t,}N_| and the adaptation of the model to the data corresponds to an
inference of the function given the data. We will denote the set of input vectors
by Xy = {x(")}ﬁf:l and the set of corresponding target values by the vector
ty = {t,}Y_,. The inference of y(x) is described by the posterior probability
distribution
_ Pty |y(x), Xn)P(y(x))

Py(x)|tn, Xn) = (o %) : (45.1)

Of the two terms on the right-hand side, the first, P(ty|y(x),Xxy), is the
probability of the target values given the function y(x), which in the case of
regression problems is often assumed to be a separable Gaussian distribution;
and the second term, P(y(x)), is the prior distribution on functions assumed
by the model. This prior is implicit in the choice of parametric model and
the choice of regularizers used during the model fitting. The prior typically
specifies that the function y(x) is expected to be continuous and smooth,
and has less high frequency power than low frequency power, but the precise
meaning of the prior is somewhat obscured by the use of the parametric model.

Now, for the prediction of future values of ¢, all that matters is the as-
sumed prior P(y(x)) and the assumed noise model P(ty |y(x), Xyx) — the
parameterization of the function y(x;w) is irrelevant.

The idea of Gaussian process modelling is to place a prior P(y(x)) directly
on the space of functions, without parameterizing y(x). The simplest type of
prior over functions is called a Gaussian process. It can be thought of as the
generalization of a Gaussian distribution over a finite vector space to a function
space of infinite dimension. Just as a Gaussian distribution is fully specified
by its mean and covariance matrix, a Gaussian process is specified by a mean
and a covariance function. Here, the mean is a function of x (which we will
often take to be the zero function), and the covariance is a function C(x,x")
that expresses the expected covariance between the values of the function y
at the points x and x’. The function y(x) in any one data modelling problem
is assumed to be a single sample from this Gaussian distribution. Gaussian
processes are already well established models for various spatial and temporal
problems — for example, Brownian motion, Langevin processes and Wiener
processes are all examples of Gaussian processes; Kalman filters, widely used
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536 45 — Gaussian Processes

to model speech waveforms, also correspond to Gaussian process models; the
method of ‘kriging’ in geostatistics is a Gaussian process regression method.

Reservations about Gaussian processes

It might be thought that it is not possible to reproduce the interesting prop-
erties of neural network interpolation methods with something so simple as a
Gaussian distribution, but as we shall now see, many popular nonlinear inter-
polation methods are equivalent to particular Gaussian processes. (I use the
term ‘interpolation’ to cover both the problem of ‘regression’ — fitting a curve
through noisy data — and the task of fitting an interpolant that passes exactly
through the given data points.)

It might also be thought that the computational complexity of inference
when we work with priors over infinite-dimensional function spaces might be
infinitely large. But by concentrating on the joint probability distribution of
the observed data and the quantities we wish to predict, it is possible to make
predictions with resources that scale as polynomial functions of IV, the number
of data points.

» 45.1 Standard methods for nonlinear regression

The problem

We are given N data points Xy, ty = {x(”),tn}ﬁle. The inputs x are vec-
tors of some fixed input dimension I. The targets t are either real numbers,
in which case the task will be a regression or interpolation task, or they are
categorical variables, for example ¢t € {0,1}, in which case the task is a clas-
sification task. We will concentrate on the case of regression for the time
being.

Assuming that a function y(x) underlies the observed data, the task is to
infer the function from the given data, and predict the function’s value — or
the value of the observation tyy1 — at a new point x(N+1)

Parametric approaches to the problem

In a parametric approach to regression we express the unknown function y(x)
in terms of a nonlinear function y(x; w) parameterized by parameters w.

Example 45.2. Fixed basis functions. Using a set of basis functions {¢(x)}/_,,
we can write

H
Y w) =Y wndn(x)- (45.2)
h=1

If the basis functions are nonlinear functions of x such as radial basis
functions centred at fixed points {cp }1L |,

2r2

dn(x) = exp [—M} , (45.3)

then y(x; w) is a nonlinear function of x; however, since the dependence
of y on the parameters w is linear, we might sometimes refer to this as
a ‘linear’ model. In neural network terms, this model is like a multilayer
network whose connections from the input layer to the nonlinear hidden
layer are fixed; only the output weights w are adaptive.

Other possible sets of fixed basis functions include polynomials such as
¢n(x) = xja§ where p and ¢ are integer powers that depend on h.
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45.1: Standard methods for nonlinear regression 537

Example 45.3. Adaptive basis functions. Alternatively, we might make a func-
tion y(x) from basis functions that depend on additional parameters
included in the vector w. In a two-layer feedforward neural network
with nonlinear hidden units and a linear output, the function can be
written

th tanh (Z whZ x; + (1)> + w( ) (45.4)

where I is the dimensionality of the input space and the weight vector
w consists of the 1nput welghts {w,”)} the hidden unit biases {who}

the output weights {wh } and the output bias w(() ). In this model, the
dependence of y on w is nonlinear.

Having chosen the parameterization, we then infer the function y(x; w) by
inferring the parameters w. The posterior probability of the parameters is

Pty |w,Xn)P(w) .

P(W|tN,XN): P(tN|XN)

(45.5)

The factor P(ty |w,Xy) states the probability of the observed data points
when the parameters w (and hence, the function y) are known. This proba-
bility distribution is often taken to be a separable Gaussian, each data point
t,, differing from the underlying value y(x™; w) by additive noise. The factor
P(w) specifies the prior probability distribution of the parameters. This too
is often taken to be a separable Gaussian distribution. If the dependence of y
on w is nonlinear the posterior distribution P(w |ty, X ) is in general not a
Gaussian distribution.

The inference can be implemented in various ways. In the Laplace method,
we minimize an objective function

M(w)=—-In[P(ty|w,Xy)P(w)] (45.6)

with respect to w, locating the locally most probable parameters, then use the
curvature of M, 92M (w)/0w;0w;, to define error bars on w. Alternatively we
can use more general Markov chain Monte Carlo techniques to create samples
from the posterior distribution P(w |ty, Xy).

Having obtained one of these representations of the inference of w given
the data, predictions are then made by marginalizing over the parameters:

Pltyy1 |tn, Xng1) = / AAw Pty | w,xV TN P(w | tn, Xy).  (45.7)

If we have a Gaussian representation of the posterior P(w |t y, Xy ), then this
integral can typically be evaluated directly. In the alternative Monte Carlo
approach, which generates R samples w(") that are intended to be samples
from the posterior distribution P(w |tx, Xy ), we approximate the predictive
distribution by

P(tnyr |tn, Xng1) = ZP tngr | w, x(NHD), (45.8)
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Nonparametric approaches.

In nonparametric methods, predictions are obtained without explicitly pa-
rameterizing the unknown function y(x); y(x) lives in the infinite-dimensional
space of all continuous functions of x. One well known nonparametric ap-
proach to the regression problem is the spline smoothing method (Kimeldorf
and Wahba, 1970). A spline solution to a one-dimensional regression problem
can be described as follows: we define the estimator of y(x) to be the function
9(x) that minimizes the functional

N

M) = 5583 06" ~t) + g0 [ahP@E,  (@59)

n=1

where y(®) is the pth derivative of y and p is a positive number. If p is set to
2 then the resulting function §(x) is a cubic spline, that is, a piecewise cubic
function that has ‘knots’ — discontinuities in its second derivative — at the data
points {z(™}.

This estimation method can be interpreted as a Bayesian method by iden-
tifying the prior for the function y(z) as:

In P(y(z) | ) = f% a / dz [y (2)] + const, (45.10)

and the probability of the data measurements ty = {tn}71y=1 assuming inde-
pendent Gaussian noise as:

N
In P (tx|y(x),8) = —% B> (y(@™) = t,)*+ const. (45.11)
n=1

[The constants in equations (45.10) and (45.11) are functions of « and 3 re-
spectively. Strictly the prior (45.10) is improper since addition of an arbitrary
polynomial of degree (p — 1) to y(x) is not constrained. This impropriety is
easily rectified by the addition of (p — 1) appropriate terms to (45.10).] Given
this interpretation of the functions in equation (45.9), M (y(x)) is equal to mi-
nus the log of the posterior probability P(y(z)|ty,a, ), within an additive
constant, and the splines estimation procedure can be interpreted as yielding
a Bayesian MAP estimate. The Bayesian perspective allows us additionally
to put error bars on the splines estimate and to draw typical samples from
the posterior distribution, and it gives an automatic method for inferring the
hyperparameters a and 3.

Comments
Splines priors are Gaussian processes

The prior distribution defined in equation (45.10) is our first example of a
Gaussian process. Throwing mathematical precision to the winds, a Gaussian
process can be defined as a probability distribution on a space of functions
y(x) that can be written in the form

1

Ply(a) | n(x), A) = o exp |~ 5 (y(x) — p(a) Aly(x) — u(@) |, (45.12)

where p(x) is the mean function and A is a linear operator, and where the inner
product of two functions y(x)"z(z) is defined by, for example, [dz y(z)z(x).
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Here, if we denote by D the linear operator that maps y(x) to the derivative
of y(x), we can write equation (45.10) as

In P(y(z)|a) = f% a / da [DPy(z)]? + const = f% y(z)'Ay(x) + const,

(45.13)

which has the same form as equation (45.12) with u(x) =0, and A = [DP]'DP.

In order for the prior in equation (45.12) to be a proper prior, A must be a

positive definite operator, i.e., one satisfying y(x)"Ay(z) > 0 for all functions
y(x) other than y(z) = 0.

Splines can be written as parametric models

Splines may be written in terms of an infinite set of fixed basis functions, as in
equation (45.2), as follows. First rescale the x axis so that the interval (0, 2m)
is much wider than the range of x values of interest. Let the basis functions
be a Fourier set {cos ha,sin ha, h=0,1,2,...}, so the function is

y(x) = Z Wh(cos) €08(hx) + Z Wi (sin) Sin(hz). (45.14)
h=0 h=1

Use the regularizer
=1 1
EW(W) = Z §h%wz(cos) + Z §hgwi(sm) (4515)
h=0 h=1

to define a Gaussian prior on w,

Pw|a)=

Zor (@) exp(—aEw). (45.16)
If p=2 then we have the cubic splines regularizer Ey (w)= [y®(z)?dz, as
in equation (45.9); if p=1 we have the regularizer Ey (w)= [y (z)?da,
etc. (To make the prior proper we must add an extra regularizer on the
term wg(cos)-) Thus in terms of the prior P(y(x)) there is no fundamental
difference between the ‘nonparametric’ splines approach and other parametric
approaches.

Representation is irrelevant for prediction

From the point of view of prediction at least, there are two objects of inter-
est. The first is the conditional distribution P(tn41|tn, Xn+1) defined in
equation (45.7). The other object of interest, should we wish to compare one
model with others, is the joint probability of all the observed data given the
model, the evidence P(tx | Xy ), which appeared as the normalizing constant
in equation (45.5). Neither of these quantities makes any reference to the rep-
resentation of the unknown function y(x). So at the end of the day, our choice
of representation is irrelevant.

The question we now address is, in the case of popular parametric models,
what form do these two quantities take? We will see that for standard models
with fixed basis functions and Gaussian distributions on the unknown parame-
ters, the joint probability of all the observed data given the model, P(t | Xy),
is a multivariate Gaussian distribution with mean zero and with a covariance
matrix determined by the basis functions; this implies that the conditional
distribution P(ty41|tn, Xn+1) is also a Gaussian distribution, whose mean
depends linearly on the values of the targets t . Standard parametric models
are simple examples of Gaussian processes.
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» 45.2 From parametric models to Gaussian processes

Linear models

Let us consider a regression problem using H fixed basis functions, for example
one-dimensional radial basis functions as defined in equation (45.3).

Let us assume that a list of IV input points {x(")} has been specified and
define the N x H matrix R to be the matrix of values of the basis functions

{én(x)}_, at the points {x,},
Ryp, = ¢ (x™). (45.17)

We define the vector yy to be the vector of values of y(x) at the N points,

Yn = Z Rppwh. (45.18)
h

If the prior distribution of w is Gaussian with zero mean,
P(w) = Normal(w; 0, 0121)1)7 (45.19)

then y, being a linear function of w, is also Gaussian distributed, with mean
zero. The covariance matrix of y is

Q = (yy)=RwwR)=R(ww)R' (45.20)
= o,RR". (45.21)

So the prior distribution of y is:
P(y) = Normal(y; 0,Q) = Normal(y; 0,2 RR). (45.22)

This result, that the vector of N function values y has a Gaussian distribu-
tion, is true for any selected points X. This is the defining property of a
Gaussian process. The probability distribution of a function y(x) is a Gaus-
sian process if for any finite selection of points xV x@ . xM) the density
P(y(xW), y(x®), ..., y(xN)) is a Gaussian.

Now, if the number of basis functions H is smaller than the number of
data points N, then the matrix Q will not have full rank. In this case the
probability distribution of y might be thought of as a flat elliptical pancake
confined to an H-dimensional subspace in the N-dimensional space in which
y lives.

What about the target values? If each target ¢,, is assumed to differ by
additive Gaussian noise of variance o2 from the corresponding function value
yn then t also has a Gaussian prior distribution,

P(t) = Normal(t; 0, Q + o2I). (45.23)
We will denote the covariance matrix of t by C:
C=Q+02I=02RR" +02L (45.24)

Whether or not Q has full rank, the covariance matrix C has full rank since
021 is full rank.
What does the covariance matrix Q look like? In general, the (n,n’) entry
of Q is
Qun = [0 RR Ty = 05, Y b (x™) o (x™)) (45.25)
h
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and the (n,n’) entry of C is

Com = 02> Sn(x™) o (x")) + 6,02, (45.26)
h

where §,,,, = 1 if n = n/ and 0 otherwise.

Example 45.4. Let’s take as an example a one-dimensional case, with radial
basis functions. The expression for (), becomes simplest if we assume we
have uniformly-spaced basis functions with the basis function labelled h cen-
tred on the point x = h, and take the limit H — oo, so that the sum over
h becomes an integral; to avoid having a covariance that diverges with H,
we had better make o2, scale as S/(AH), where AH is the number of basis
functions per unit length of the z-axis, and S is a constant; then

an’

hll’lax
S [ dhonte)n (o) (45.27)
h

min

hmax (’I’l) _ 2 (n’) _ 2
S/ dh exp [—W] exp [—M] . (45.28)
h T

2r2

min

If we let the limits of integration be 0o, we can solve this integral:

(n) _ pm)y2
Oy = Var2Sexp [—w] (45.29)

4r2

We are arriving at a new perspective on the interpolation problem. Instead of
specifying the prior distribution on functions in terms of basis functions and
priors on parameters, the prior can be summarized simply by a covariance
function,

(45.30)

, () _ p(m)y2
Ca™. 20) = 6, exp l_w] |

472

where we have given a new name, 1, to the constant out front.

Generalizing from this particular case, a vista of interpolation methods
opens up. Given any valid covariance function C(x,x’) — we’ll discuss in
a moment what ‘valid’ means — we can define the covariance matrix for N
function values at locations X to be the matrix Q given by

Qnn = C(X(n)a X(n()) (4531)

and the covariance matrix for N corresponding target values, assuming Gaus-
sian noise, to be the matrix C given by

Cr = Cx™,x")) 4 626,,,0. (45.32)

In conclusion, the prior probability of the NV target values t in the data set is:
1 _14Tc-1

P(t) = Normal(t;0,C) = e HCTE (45.33)

Samples from this Gaussian process and a few other simple Gaussian processes
are displayed in figure 45.1.
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542 45 — Gaussian Processes

Figure 45.1. Samples drawn from
Gaussian process priors. Each
panel shows two functions drawn
from a Gaussian process prior.
The four corresponding covariance
functions are given below each
plot. The decrease in lengthscale
from (a) to (b) produces more
rapidly fluctuating functions. The
periodic properties of the

y covariance function in (c) can be
=30  -10 1.0 3.0 50 80 -10 10 30 5.0 seen. The covariance function in
o o (d) contains the non-stationary
(a) 2exp (‘%) (b) 2exp <—%> term xz’ corresponding to the
covariance of a straight line, so
that typical functions include
linear trends. From Gibbs (1997).

4.0 6.0

-40 ‘ ‘ ‘ ‘ -40 ‘ ‘ ‘ ‘
-30 10 10 30 50 30 10 10 30 50
X X
L2 - s 3.0 _\2
(c) 2exp <—%) (d) 2exp <— (;(12))2 ) + xa’

Multilayer neural networks and Gaussian processes

Figures 44.2 and 44.3 show some random samples from the prior distribution
over functions defined by a selection of standard multilayer perceptrons with
large numbers of hidden units. Those samples don’t seem a million miles away
from the Gaussian process samples of figure 45.1. And indeed Neal (1996)
showed that the properties of a neural network with one hidden layer (as
in equation (45.4)) converge to those of a Gaussian process as the number of
hidden neurons tends to infinity, if standard ‘weight decay’ priors are assumed.
The covariance function of this Gaussian process depends on the details of the
priors assumed for the weights in the network and the activation functions of
the hidden units.

» 45.3 Using a given Gaussian process model in regression

We have spent some time talking about priors. We now return to our data
and the problem of prediction. How do we make predictions with a Gaussian
process?

Having formed the covariance matrix C defined in equation (45.32) our task
is to infer ty11 given the observed vector ty. The joint density P(tn41,tn)
is a Gaussian; so the conditional distribution

P(tyyi1,tn)

P(tNJrl |tN) = P(tN)

(45.34)

is also a Gaussian. We now distinguish between different sizes of covariance
matrix C with a subscript, such that Cx41 is the (N +1) X (N +1) covariance
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matrix for the vector tyi+1 = (t1,...,tn+1)". We define submatrices of Cy11
as follows:

Cy k

[ X ] [x]

The posterior distribution (45.34) is given by

1 _ t
P(tyy1]ty) o< exp -5 [ty tvi1] Cly LNJLH . (45.36)

We can evaluate the mean and standard deviation of the posterior distribution
of ty4+1 by brute-force inversion of Cpy1. There is a more elegant expression
for the predictive distribution, however, which is useful whenever predictions
are to be made at a number of new points on the basis of the data set of size

N. We can write Cz_vi-l in terms of Cy and C]_\,1 using the partitioned inverse
equations (Barnett, 1979):

_ M m
Nt = [ o m } (45.37)
where
m = (k—kTCy'k)" (45.38)
m = -mCyk (45.39)
M = c]—vl+lmmT. (45.40)
m

When we substitute this matrix into equation (45.36) we find

1 (tvi1 — Engr)?
£N+1
where
iny1 = kK'Cilty (45.42)
T ~—
of.. = r-kCik (45.43)

The predictive mean at the new point is given by £y and Tinin defines the
error bars on this prediction. Notice that we do not need to invert Cy41 in
order to make predictions at x¥+t1). Only Cy needs to be inverted. Thus
Gaussian processes allow one to implement a model with a number of basis
functions H much larger than the number of data points N, with the com-
putational requirement being of order N3, independent of H. [We’ll discuss
ways of reducing this cost later.]

The predictions produced by a Gaussian process depend entirely on the
covariance matrix C. We now discuss the sorts of covariance functions one
might choose to define C, and how we can automate the selection of the
covariance function in response to data.

» 45.4 Examples of covariance functions

The only constraint on our choice of covariance function is that it must gen-
erate a non-negative-definite covariance matrix for any set of points {x,})\_;.
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We will denote the parameters of a covariance function by 8. The covariance
matrix of t has entries given by

Conn = C(x"™, %M 0) + 6, N (x™); 0) (45.44)

where C' is the covariance function and A is a noise model which might be
stationary or spatially varying, for example,

03 for input-independent noise

exp (23‘7:1 ﬂquj(x)) for input-dependent noise. (45.45)

N(x;0) = {
The continuity properties of C' determine the continuity properties of typical
samples from the Gaussian process prior. An encyclopaedic paper on Gaus-

sian processes giving many valid covariance functions has been written by

Abrahamsen (1997).

Stationary covariance functions

A stationary covariance function is one that is translation invariant in that it
satisfies

C(x,x';0) = D(x —x';0) (45.46)

for some function D, i.e., the covariance is a function of separation only, also
known as the autocovariance function. If additionally C' depends only on the
magnitude of the distance between x and x’ then the covariance function is said
to be homogeneous. Stationary covariance functions may also be described in
terms of the Fourier transform of the function D, which is known as the power
spectrum of the Gaussian process. This Fourier transform is necessarily a
positive function of frequency. One way of constructing a valid stationary
covariance function is to invent a positive function of frequency and define D
to be its inverse Fourier transform.

Example 45.5. Let the power spectrum be a Gaussian function of frequency.
Since the Fourier transform of a Gaussian is a Gaussian, the autoco-
variance function corresponding to this power spectrum is a Gaussian
function of separation. This argument rederives the covariance function
we derived at equation (45.30).

Generalizing slightly, a popular form for C' with hyperparameters 6 =
(01,02, {r:}) is

I o 2
C(x,x';0) = 0y exp l—; Z (xlrile) + 6. (45.47)

i=1 ¢

x is an I-dimensional vector and r; is a lengthscale associated with input x;, the
lengthscale in direction 7 on which y is expected to vary significantly. A very
large lengthscale means that y is expected to be essentially a constant function
of that input. Such an input could be said to be irrelevant, as in the automatic
relevance determination method for neural networks (MacKay, 1994a; Neal,
1996). The 6; hyperparameter defines the vertical scale of variations of a
typical function. The 02 hyperparameter allows the whole function to be
offset away from zero by some unknown constant — to understand this term,
examine equation (45.25) and consider the basis function ¢(x) = 1.
Another stationary covariance function is

C(z,2") =exp(—|z —2'|") O0<v<2 (45.48)



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

45.5: Adaptation of Gaussian process models 545

70 ‘ ‘ Figure 45.2. Multimodal
likelihood functions for Gaussian
processes. A data set of five
points is modelled with the simple
covariance function (45.47), with
one hyperparameter ¢35 controlling
the noise variance. Panels a and b
show the most probable
interpolant and its 1o error bars
when the hyperparameters 6 are

7.0

s0t -10 f-
set to two different values that
(a) -0 ; ? (b)  -30 ; y (locally) maximize the likelihood
0.0 0 0 6.0 0.0 0 0 6.0 Pty | Xn,0): (a) r1 = 0.95,
93 = 0.0; (b) T = 3.5, 93 =3.0.
— 4 Panel ¢ shows a contour plot of
i 1 35 the likelihood as a function of 7
i and 03, with the two maxima
;‘ i x 13 shown by crosses. From Gibbs
b o 125 (1997).
’ B —— L
J‘ 4 15
R { 05
:1 1 1 1 1
05 2 25 3 35 4
(c) .

For v = 2, this is a special case of the previous covariance function. For
v € (1,2), the typical functions from this prior are smooth but not analytic
functions. For v <1 typical functions are continuous but not smooth.

A covariance function that models a function that is periodic with known

period \; in the i input direction is

/ 1 sin (%(xz — x;))
C(x,x';0) = 6y exp -5 — 7

2
45.49
i (45.49)

Figure 45.1 shows some random samples drawn from Gaussian processes
with a variety of different covariance functions.

Nonstationary covariance functions

The simplest nonstationary covariance function is the one corresponding to a

linear trend. Consider the plane y(x) = >, w;z; + ¢. If the {w;} and ¢ have
Gaussian distributions with zero mean and variances o2 and o2 respectively

then the plane has a covariance function
I
Ciin(x,%'; {ow,0.}) = Y onwia + . (45.50)
i=1

An example of random sample functions incorporating the linear term can be
seen in figure 45.1d.
» 45.5 Adaptation of Gaussian process models

Let us assume that a form of covariance function has been chosen, but that it
depends on undetermined hyperparameters 8. We would like to ‘learn’ these
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hyperparameters from the data. This learning process is equivalent to the
inference of the hyperparameters of a neural network, for example, weight
decay hyperparameters. It is a complexity-control problem, one that is solved
nicely by the Bayesian Occam’s razor.

Ideally we would like to define a prior distribution on the hyperparameters
and integrate over them in order to make our predictions, i.e., we would like
to find

P(tys1|xn41,D) = / P(tns1|xn41,0,D)P(8| D) de. (45.51)

But this integral is usually intractable. There are two approaches we can take.

1. We can approximate the integral by using the most probable values of
hyperparameters.

P(ty+1|xN+1,D) = P(tn+1 | XN+1, D, Oup) (45.52)

2. Or we can perform the integration over 8 numerically using Monte Carlo
methods (Williams and Rasmussen, 1996; Neal, 1997b).

Either of these approaches is implemented most efficiently if the gradient
of the posterior probability of 8 can be evaluated.

Gradient
The posterior probability of 8 is

P(@|D) x P(ty | Xn,0)P(0). (45.53)
The log of the first term (the evidence for the hyperparameters) is
In P(ty | X,68) = —5 Indet Cy — Sth Cy'ty — 5 In2m, (45.54)

and its derivative with respect to a hyperparameter 6 is

00

1 oC
) + Etﬁc—l—NCI—VltN.

0 1 _
—lnP(tN\XN,O):—ETYace (CN N g
(45.55)

0o

Comments

Assuming that finding the derivatives of the priors is straightforward, we can
now search for 8. However there are two problems that we need to be aware
of. Firstly, as illustrated in figure 45.2, the evidence may be multimodal.
Suitable priors and sensible optimization strategies often eliminate poor op-
tima. Secondly and perhaps most importantly the evaluation of the gradi-
ent of the log likelihood requires the evaluation of C]_\,l. Any exact inversion
method (such as Cholesky decomposition, LU decomposition or Gauss—Jordan
elimination) has an associated computational cost that is of order N* and so
calculating gradients becomes time consuming for large training data sets. Ap-
proximate methods for implementing the predictions (equations (45.42) and
(45.43)) and gradient computation (equation (45.55)) are an active research
area. One approach based on the ideas of Skilling (1993) makes approxima-
tions to C~'t and Trace C~! using iterative methods with cost O(N?) (Gibbs
and MacKay, 1996; Gibbs, 1997). Further references on this topic are given
at the end of the chapter.
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» 45.6 Classification

Gaussian processes can be integrated into classification modelling once we
identify a variable that can sensibly be given a Gaussian process prior.

In a binary classification problem, we can define a quantity a, = a(x("))
such that the probability that the class is 1 rather than 0 is

1

(45.56)
Large positive values of a correspond to probabilities close to one; large neg-
ative values of a define probabilities that are close to zero. In a classifica-
tion problem, we typically intend that the probability P(¢, =1) should be a
smoothly varying function of x. We can embody this prior belief by defining
a(x) to have a Gaussian process prior.

Implementation

It is not so easy to perform inferences and adapt the Gaussian process model
to data in a classification model as in regression problems because the like-
lihood function (45.56) is not a Gaussian function of a,. So the posterior
distribution of a given some observations t is not Gaussian and the normal-
ization constant P(ty | Xy) cannot be written down analytically. Barber and
Williams (1997) have implemented classifiers based on Gaussian process priors
using Laplace approximations (Chapter 27). Neal (1997b) has implemented a
Monte Carlo approach to implementing a Gaussian process classifier. Gibbs
and MacKay (2000) have implemented another cheap and cheerful approach
based on the methods of Jaakkola and Jordan (section 33.8). In this varia-
tional Gaussian process classifier, we obtain tractable upper and lower bounds
for the unnormalized posterior density over a, P(ty |a)P(a). These bounds
are parameterized by variational parameters which are adjusted in order to
obtain the tightest possible fit. Using normalized versions of the optimized
bounds we then compute approximations to the predictive distributions.

Multi-class classification problems can also be solved with Monte Carlo
methods (Neal, 1997b) and variational methods (Gibbs, 1997).

» 45.7 Discussion

Gaussian processes are moderately simple to implement and use. Because very
few parameters of the model need to be determined by hand (generally only
the priors on the hyperparameters), Gaussian processes are useful tools for
automated tasks where fine tuning for each problem is not possible. We do
not appear to sacrifice any performance for this simplicity.

It is easy to construct Gaussian processes that have particular desired
properties; for example we can make a straightforward automatic relevance
determination model.

One obvious problem with Gaussian processes is the computational cost
associated with inverting an N x N matrix. The cost of direct methods of
inversion becomes prohibitive when the number of data points N is greater
than about 1000.

Have we thrown the baby out with the bath water?

According to the hype of 1987, neural networks were meant to be intelligent
models that discovered features and patterns in data. Gaussian processes in
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contrast are simply smoothing devices. How can Gaussian processes possi-
bly replace neural networks? Were neural networks over-hyped, or have we
underestimated the power of smoothing methods?

I think both these propositions are true. The success of Gaussian processes
shows that many real-world data modelling problems are perfectly well solved
by sensible smoothing methods. The most interesting problems, the task of
feature discovery for example, are not ones that Gaussian processes will solve.
But maybe multilayer perceptrons can’t solve them either. Perhaps a fresh
start is needed, approaching the problem of machine learning from a paradigm
different from the supervised feedforward mapping.

Further reading

The study of Gaussian processes for regression is far from new. Time series
analysis was being performed by the astronomer T.N. Thiele using Gaussian
processes in 1880 (Lauritzen, 1981). In the 1940s, Wiener—Kolmogorov pre-
diction theory was introduced for prediction of trajectories of military targets
(Wiener, 1948). Within the geostatistics field, Matheron (1963) proposed a
framework for regression using optimal linear estimators which he called ‘krig-
ing’ after D.G. Krige, a South African mining engineer. This framework is
identical to the Gaussian process approach to regression. Kriging has been
developed considerably in the last thirty years (see Cressie (1993) for a re-
view) including several Bayesian treatments (Omre, 1987; Kitanidis, 1986).
However the geostatistics approach to the Gaussian process model has con-
centrated mainly on low-dimensional problems and has largely ignored any
probabilistic interpretation of the model. Kalman filters are widely used to
implement inferences for stationary one-dimensional Gaussian processes, and
are popular models for speech and music modelling (Bar-Shalom and Fort-
mann, 1988). Generalized radial basis functions (Poggio and Girosi, 1989),
ARMA models (Wahba, 1990) and variable metric kernel methods (Lowe,
1995) are all closely related to Gaussian processes. See also O’Hagan (1978).

The idea of replacing supervised neural networks by Gaussian processes
was first explored by Williams and Rasmussen (1996) and Neal (1997b). A
thorough comparison of Gaussian processes with other methods such as neural
networks and MARS was made by Rasmussen (1996). Methods for reducing
the complexity of data modelling with Gaussian processes remain an active
research area (Poggio and Girosi, 1990; Luo and Wahba, 1997; Tresp, 2000;
Williams and Seeger, 2001; Smola and Bartlett, 2001; Rasmussen, 2002; Seeger
et al., 2003; Opper and Winther, 2000).

A longer review of Gaussian processes is in (MacKay, 1998b). A review
paper on regression with complexity control using hierarchical Bayesian models
is (MacKay, 1992a).

Gaussian processes and support vector learning machines (Scholkopf et al.,
1995; Vapnik, 1995) have a lot in common. Both are kernel-based predictors,
the kernel being another name for the covariance function. A Bayesian version
of support vectors, exploiting this connection, can be found in (Chu et al.,
2001; Chu et al., 2002; Chu et al., 2003b; Chu et al., 2003a).



