
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Part VI

Sparse Graph Codes

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

About Part VI

The central problem of communication theory is to construct an encoding
and a decoding system that make it possible to communicate reliably over
a noisy channel. During the 1990s, remarkable progress was made towards
the Shannon limit, using codes that are defined in terms of sparse random
graphs, and which are decoded by a simple probability-based message-passing
algorithm.

In a sparse-graph code, the nodes in the graph represent the transmitted
bits and the constraints they satisfy. For a linear code with a codeword length
N and rate R = K/N , the number of constraints is of order M = N − K.
Any linear code can be described by a graph, but what makes a sparse-graph
code special is that each constraint involves only a small number of variables
in the graph: so the number of edges in the graph scales roughly linearly with
N , rather than quadratically.

In the following four chapters we will look at four families of sparse-graph
codes: three families that are excellent for error-correction: low-density parity-

check codes, turbo codes, and repeat–accumulate codes; and the family of
digital fountain codes, which are outstanding for erasure-correction.

All these codes can be decoded by a local message-passing algorithm on the
graph, the sum–product algorithm, and, while this algorithm is not a perfect
maximum likelihood decoder, the empirical results are record-breaking.

556

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47

Low-Density Parity-Check Codes

A low-density parity-check code (or Gallager code) is a block code that has a
parity-check matrix, H, every row and column of which is ‘sparse’.

A regular Gallager code is a low-density parity-check code in which every
column of H has the same weight j and every row has the same weight k; reg-
ular Gallager codes are constructed at random subject to these constraints. A
low-density parity-check code with j = 3 and k = 4 is illustrated in figure 47.1.

H =

Figure 47.1. A low-density
parity-check matrix and the
corresponding graph of a rate-1/4
low-density parity-check code
with blocklength N = 16, and
M = 12 constraints. Each white
circle represents a transmitted bit.
Each bit participates in j = 3
constraints, represented by
squares. Each constraint forces
the sum of the k = 4 bits to which
it is connected to be even.

�
47.1 Theoretical properties

Low-density parity-check codes lend themselves to theoretical study. The fol-
lowing results are proved in Gallager (1963) and MacKay (1999b).

Low-density parity-check codes, in spite of their simple construction, are
good codes, given an optimal decoder (good codes in the sense of section 11.4).
Furthermore, they have good distance (in the sense of section 13.2). These two
results hold for any column weight j ≥ 3. Furthermore, there are sequences of
low-density parity-check codes in which j increases gradually with N , in such
a way that the ratio j/N still goes to zero, that are very good, and that have
very good distance.

However, we don’t have an optimal decoder, and decoding low-density
parity-check codes is an NP-complete problem. So what can we do in practice?

�
47.2 Practical decoding

Given a channel output r, we wish to find the codeword t whose likelihood
P (r | t) is biggest. All the effective decoding strategies for low-density parity-
check codes are message-passing algorithms. The best algorithm known is
the sum–product algorithm, also known as iterative probabilistic decoding or
belief propagation.

We’ll assume that the channel is a memoryless channel (though more com-
plex channels can easily be handled by running the sum–product algorithm
on a more complex graph that represents the expected correlations among the
errors (Worthen and Stark, 1998)). For any memoryless channel, there are
two approaches to the decoding problem, both of which lead to the generic
problem ‘find the x that maximizes

P ∗(x) = P (x) � [Hx = z]’, (47.1)

where P (x) is a separable distribution on a binary vector x, and z is another
binary vector. Each of these two approaches represents the decoding problem
in terms of a factor graph (Chapter 26).

557

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

558 47 — Low-Density Parity-Check Codes

tn (a) The prior distribution over codewords

P (t) ∝ � [Ht = 0].

The variable nodes are the transmitted bits {tn}.
Each node represents the factor � [

∑

n∈N (m) tn =0 mod 2].

tn

P (rn | tn) (b) The posterior distribution over codewords,

P (t | r) ∝ P (t)P (r | t).

Each upper function node represents a likelihood factor P (rn | tn).

nn

P (nn)

zm

(c) The joint probability of the noise n and syndrome z,

P (n, z) = P (n) � [z=Hn].

The top variable nodes are now the noise bits {nn}.
The added variable nodes at the base are the syndrome values
{zm}.
Each definition zm =

∑

n
Hmnnn mod2 is enforced by a factor.

Figure 47.2. Factor graphs
associated with a low-density
parity-check code.

The codeword decoding viewpoint

First, we note that the prior distribution over codewords,

P (t) ∝ � [Ht = 0mod2], (47.2)

can be represented by a factor graph (figure 47.2a), with the factorization
being

P (t) ∝
∏

m

� [
∑

n∈N (m)

tn = 0mod 2]. (47.3)

(We’ll omit the ‘mod 2’s from now on.) The posterior distribution over code-
words is given by multiplying this prior by the likelihood, which introduces
another N factors, one for each received bit.

P (t | r) ∝ P (t)P (r | t)

∝
∏

m

� [
∑

n∈N (m)

tn = 0]
∏

n

P (rn | tn) (47.4)

The factor graph corresponding to this function is shown in figure 47.2b. It
is the same as the graph for the prior, except for the addition of likelihood
‘dongles’ to the transmitted bits.

In this viewpoint, the received signal rn can live in any alphabet; all that
matters are the values of P (rn | tn).

The syndrome decoding viewpoint

Alternatively, we can view the channel output in terms of a binary received
vector r and a noise vector n, with a probability distribution P (n) that can
be derived from the channel properties and whatever additional information
is available at the channel outputs.

For example, with a binary symmetric channel, we define the noise by
r = t + n, the syndrome z = Hr, and noise model P (nn =1) = f . For other
channels such as the Gaussian channel with output y, we may define a received

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.3: Decoding with the sum–product algorithm 559

binary vector r however we wish and obtain an effective binary noise model
P (n) from y (exercises 9.18 (p.155) and 25.1 (p.325)).

The joint probability of the noise n and syndrome z = Hn can be factored
as

P (n, z) = P (n) � [z=Hn]

=
∏

n

P (nn)
∏

m

� [zm =
∑

n∈N (m)

nn]. (47.5)

The factor graph of this function is shown in figure 47.2c. The variables n

and z can also be drawn in a ‘belief network’ (also known as a ‘Bayesian
network’, ‘causal network’, or ‘influence diagram’) similar to figure 47.2a, but
with arrows on the edges from the upper circular nodes (which represent the
variables n) to the lower square nodes (which now represent the variables z).
We can say that every bit xn is the parent of j checks zm, and each check zm

is the child of k bits.
Both decoding viewpoints involve essentially the same graph. Either ver-

sion of the decoding problem can be expressed as the generic decoding problem
‘find the x that maximizes

P ∗(x) = P (x) � [Hx=z]’; (47.6)

in the codeword decoding viewpoint, x is the codeword t, and z is 0; in the
syndrome decoding viewpoint, x is the noise n, and z is the syndrome.

It doesn’t matter which viewpoint we take when we apply the sum–product
algorithm. The two decoding algorithms are isomorphic and will give equiva-
lent outcomes (unless numerical errors intervene).

I tend to use the syndrome decoding viewpoint because it has one advantage:
one does not need to implement an encoder for a code in order to be able to
simulate a decoding problem realistically.

We’ll now talk in terms of the generic decoding problem.

�
47.3 Decoding with the sum–product algorithm

We aim, given the observed checks, to compute the marginal posterior proba-
bilities P (xn =1 | z,H) for each n. It is hard to compute these exactly because
the graph contains many cycles. However, it is interesting to implement the
decoding algorithm that would be appropriate if there were no cycles, on the
assumption that the errors introduced might be relatively small. This ap-
proach of ignoring cycles has been used in the artificial intelligence literature
but is now frowned upon because it produces inaccurate probabilities. How-
ever, if we are decoding a good error-correcting code, we don’t care about
accurate marginal probabilities – we just want the correct codeword. Also,
the posterior probability, in the case of a good code communicating at an
achievable rate, is expected typically to be hugely concentrated on the most
probable decoding; so we are dealing with a distinctive probability distribution
to which experience gained in other fields may not apply.

The sum–product algorithm was presented in Chapter 26. We now write
out explicitly how it works for solving the decoding problem

Hx = z (mod2).

For brevity, we reabsorb the dongles hanging off the x and z nodes in fig-
ure 47.2c and modify the sum–product algorithm accordingly. The graph in

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

560 47 — Low-Density Parity-Check Codes

which x and z live is then the original graph (figure 47.2a) whose edges are
defined by the 1s in H. The graph contains nodes of two types, which we’ll
call checks and bits. The graph connecting the checks and bits is a bipartite
graph: bits connect only to checks, and vice versa. On each iteration, a prob-
ability ratio is propagated along each edge in the graph, and each bit node xn

updates its probability that it should be in state 1.

We denote the set of bits n that participate in check m by N (m) ≡ {n :
Hmn =1}. Similarly we define the set of checks in which bit n participates,
M(n) ≡ {m : Hmn =1}. We denote a set N (m) with bit n excluded by
N (m)\n. The algorithm has two alternating parts, in which quantities qmn

and rmn associated with each edge in the graph are iteratively updated. The
quantity qx

mn is meant to be the probability that bit n of x has the value x,
given the information obtained via checks other than check m. The quantity
rx
mn is meant to be the probability of check m being satisfied if bit n of x is

considered fixed at x and the other bits have a separable distribution given
by the probabilities {qmn′ : n′ ∈ N (m)\n}. The algorithm would produce the
exact posterior probabilities of all the bits after a fixed number of iterations
if the bipartite graph defined by the matrix H contained no cycles.

Initialization. Let p0
n = P (xn =0) (the prior probability that bit xn is 0),

and let p1
n = P (xn =1) = 1 − p0

n. If we are taking the syndrome decoding
viewpoint and the channel is a binary symmetric channel then p1

n will equal
f . If the noise level varies in a known way (for example if the channel is a
binary-input Gaussian channel with a real output) then p1

n is initialized to the
appropriate normalized likelihood. For every (n,m) such that Hmn =1 the
variables q0

mn and q1
mn are initialized to the values p0

n and p1
n respectively.

Horizontal step. In the horizontal step of the algorithm (horizontal from
the point of view of the matrix H), we run through the checks m and compute
for each n ∈ N (m) two probabilities: first, r0

mn, the probability of the observed
value of zm arising when xn = 0, given that the other bits {xn′ : n′ 6= n} have
a separable distribution given by the probabilities {q0

mn′ , q1
mn′}, defined by:

r0
mn =

∑

{xn′: n′∈N (m)\n}

P
(

zm |xn =0,
{

xn′ : n′ ∈ N (m)\n
})

∏

n′∈N (m)\n

q
xn′

mn′

(47.7)
and second, r1

mn, the probability of the observed value of zm arising when
xn = 1, defined by:

r1
mn =

∑

{xn′:n′∈N (m)\n}

P
(

zm |xn =1,
{

xn′ : n′ ∈ N (m)\n
})

∏

n′∈N (m)\n

q
xn′

mn′ .

(47.8)
The conditional probabilities in these summations are either zero or one, de-
pending on whether the observed zm matches the hypothesized values for xn

and the {xn′}.
These probabilities can be computed in various obvious ways based on

equation (47.7) and (47.8). The computations may be done most efficiently (if
|N (m)| is large) by regarding zm +xn as the final state of a Markov chain with
states 0 and 1, this chain being started in state 0, and undergoing transitions
corresponding to additions of the various xn′ , with transition probabilities
given by the corresponding q0

mn′ and q1
mn′ . The probabilities for zm having its

observed value given either xn = 0 or xn = 1 can then be found efficiently by
use of the forward–backward algorithm (section 25.3).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.3: Decoding with the sum–product algorithm 561

A particularly convenient implementation of this method uses forward and
backward passes in which products of the differences δqmn ≡ q0

mn − q1
mn are

computed. We obtain δrmn ≡ r0
mn − r1

mn from the identity:

δrmn = (−1)zm

∏

n′∈N (m)\n

δqmn′ . (47.9)

This identity is derived by iterating the following observation: if ζ = xµ +
xν mod2, and xµ and xν have probabilities q0

µ, q0
ν and q1

µ, q1
ν of being 0 and 1,

then P (ζ =1) = q1
µq0

ν + q0
µq1

ν and P (ζ =0) = q0
µq0

ν + q1
µq1

ν . Thus P (ζ =0) −
P (ζ =1) = (q0

µ − q1
µ)(q0

ν − q1
ν).

We recover r0
mn and r1

mn using

r0
mn = 1/2(1 + δrmn), r1

mn = 1/2(1 − δrmn). (47.10)

The transformations into differences δq and back from δr to {r} may be viewed
as a Fourier transform and an inverse Fourier transformation.

Vertical step. The vertical step takes the computed values of r0
mn and r1

mn

and updates the values of the probabilities q0
mn and q1

mn. For each n we
compute:

q0
mn = αmn p0

n

∏

m′∈M(n)\m

r0
m′n (47.11)

q1
mn = αmn p1

n

∏

m′∈M(n)\m

r1
m′n (47.12)

where αmn is chosen such that q0
mn+q1

mn = 1. These products can be efficiently
computed in a downward pass and an upward pass.

We can also compute the ‘pseudoposterior probabilities’ q0
n and q1

n at this
iteration, given by:

q0
n = αn p0

n

∏

m∈M(n)

r0
mn, (47.13)

q1
n = αn p1

n

∏

m∈M(n)

r1
mn. (47.14)

These quantities are used to create a tentative decoding x̂, the consistency
of which is used to decide whether the decoding algorithm can halt. (Halt if
Hx̂ = z.)

At this point, the algorithm repeats from the horizontal step.

The stop-when-it’s-done decoding method. The recommended decod-
ing procedure is to set x̂n to 1 if q1

n > 0.5 and see if the checks Hx̂ = zmod2 are
all satisfied, halting when they are, and declaring a failure if some maximum
number of iterations (e.g. 200 or 1000) occurs without successful decoding. In
the event of a failure, we may still report x̂, but we flag the whole block as a
failure.

We note in passing the difference between this decoding procedure and
the widespread practice in the turbo code community, where the decoding
algorithm is run for a fixed number of iterations (irrespective of whether the
decoder finds a consistent state at some earlier time). This practice is wasteful
of computer time, and it blurs the distinction between undetected and detected
errors. In our procedure, ‘undetected’ errors occur if the decoder finds an x̂

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

562 47 — Low-Density Parity-Check Codes

Figure 47.3. Demonstration of encoding with a rate-1/2 Gallager code. The encoder is derived from
a very sparse 10 000 × 20 000 parity-check matrix with three 1s per column (figure 47.4).
(a) The code creates transmitted vectors consisting of 10 000 source bits and 10 000 parity-
check bits. (b) Here, the source sequence has been altered by changing the first bit. Notice
that many of the parity-check bits are changed. Each parity bit depends on about half of
the source bits. (c) The transmission for the case s = (1, 0, 0, . . . , 0). This vector is the
difference (modulo 2) between transmissions (a) and (b). [Dilbert image Copyright c©1997
United Feature Syndicate, Inc., used with permission.]

(a) →

parity bits







































(b) (c)

satisfying Hx̂ = zmod2 that is not equal to the true x. ‘Detected’ errors
occur if the algorithm runs for the maximum number of iterations without
finding a valid decoding. Undetected errors are of scientific interest because
they reveal distance properties of a code. And in engineering practice, it would
seem preferable for the blocks that are known to contain detected errors to be
so labelled if practically possible.

Cost. In a brute-force approach, the time to create the generator matrix
scales as N 3, where N is the block size. The encoding time scales as N 2, but
encoding involves only binary arithmetic, so for the block lengths studied here
it takes considerably less time than the simulation of the Gaussian channel.
Decoding involves approximately 6Nj floating-point multiplies per iteration,
so the total number of operations per decoded bit (assuming 20 iterations)
is about 120t/R, independent of blocklength. For the codes presented in the
next section, this is about 800 operations.

The encoding complexity can be reduced by clever encoding tricks invented
by Richardson and Urbanke (2001b) or by specially constructing the parity-
check matrix (MacKay et al., 1999).

The decoding complexity can be reduced, with only a small loss in perfor-
mance, by passing low-precision messages in place of real numbers (Richardson
and Urbanke, 2001a).

�
47.4 Pictorial demonstration of Gallager codes

Figures 47.3–47.7 illustrate visually the conditions under which low-density
parity-check codes can give reliable communication over binary symmetric
channels and Gaussian channels. These demonstrations may be viewed as
animations on the world wide web.1

1http://www.inference.phy.cam.ac.uk/mackay/codes/gifs/

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.4: Pictorial demonstration of Gallager codes 563

Figure 47.4. A low-density parity-check matrix with N = 20 000 columns of weight j = 3 and M =
10 000 rows of weight k = 6.

H =

Encoding

Figure 47.3 illustrates the encoding operation for the case of a Gallager code
whose parity-check matrix is a 10 000 × 20 000 matrix with three 1s per col-
umn (figure 47.4). The high density of the generator matrix is illustrated in
figure 47.3b and c by showing the change in the transmitted vector when one
of the 10 000 source bits is altered. Of course, the source images shown here
are highly redundant, and such images should really be compressed before
encoding. Redundant images are chosen in these demonstrations to make it
easier to see the correction process during the iterative decoding. The decod-
ing algorithm does not take advantage of the redundancy of the source vector,
and it would work in exactly the same way irrespective of the choice of source
vector.

Iterative decoding

The transmission is sent over a channel with noise level f = 7.5% and the
received vector is shown in the upper left of figure 47.5. The subsequent
pictures in figure 47.5 show the iterative probabilistic decoding process. The
sequence of figures shows the best guess, bit by bit, given by the iterative
decoder, after 0, 1, 2, 3, 10, 11, 12, and 13 iterations. The decoder halts after
the 13th iteration when the best guess violates no parity checks. This final
decoding is error free.

In the case of an unusually noisy transmission, the decoding algorithm fails
to find a valid decoding. For this code and a channel with f = 7.5%, such
failures happen about once in every 100 000 transmissions. Figure 47.6 shows
this error rate compared with the block error rates of classical error-correcting
codes.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

564 47 — Low-Density Parity-Check Codes

Figure 47.5. Iterative probabilistic decoding of a low-density parity-check code for a transmission
received over a channel with noise level f = 7.5%. The sequence of figures shows the best
guess, bit by bit, given by the iterative decoder, after 0, 1, 2, 3, 10, 11, 12, and 13 iterations.
The decoder halts after the 13th iteration when the best guess violates no parity checks.
This final decoding is error free.

received:

0 1 2 3

10 11 12 13

→ decoded:

0.1

0.01

0.001

0.0001

1e-05

1e-06

0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

of
 d

ec
od

er
 e

rr
or

Rate

GV
C

Shannon limit

low-density

parity-check code

Figure 47.6. Error probability of
the low-density parity-check code
(with error bars) for binary
symmetric channel with f = 7.5%,
compared with algebraic codes.
Squares: repetition codes and
Hamming (7, 4) code; other
points: Reed–Muller and BCH
codes.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.4: Pictorial demonstration of Gallager codes 565

(a1) (b1)

(a2)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4

P(y|‘1’)P(y|‘0’)

(b2)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -2 0 2 4

P(y|‘1’)P(y|‘0’)

Figure 47.7. Demonstration of a
Gallager code for a Gaussian
channel. (a1) The received vector
after transmission over a Gaussian
channel with x/σ = 1.185
(Eb/N0 = 1.47 dB). The greyscale
represents the value of the
normalized likelihood. This
transmission can be perfectly
decoded by the sum–product
decoder. The empirical
probability of decoding failure is
about 10−5. (a2) The probability
distribution of the output y of the
channel with x/σ = 1.185 for each
of the two possible inputs. (b1)
The received transmission over a
Gaussian channel with x/σ = 1.0,
which corresponds to the Shannon
limit. (b2) The probability
distribution of the output y of the
channel with x/σ = 1.0 for each of
the two possible inputs.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

(N=96)

N=204

N=408

(N=204)

N=816
N=96

1e-05

0.0001

0.001

0.01

0.1

1

1 1.5 2 2.5 3 3.5 4

j=3
j=4

j=5 j=6

(a) (b)

Figure 47.8. Performance of
rate-1/2 Gallager codes on the
Gaussian channel. Vertical axis:
block error probability. Horizontal
axis: signal-to-noise ratio Eb/N0.
(a) Dependence on blocklength N
for (j, k) = (3, 6) codes. From left
to right: N = 816, N = 408,
N = 204, N = 96. The dashed
lines show the frequency of
undetected errors, which is
measurable only when the
blocklength is as small as N = 96
or N = 204. (b) Dependence on
column weight j for codes of
blocklength N = 816.Gaussian channel

In figure 47.7 the left picture shows the received vector after transmission over
a Gaussian channel with x/σ = 1.185. The greyscale represents the value

of the normalized likelihood, P (y | t = 1)

P (y | t = 1)+P (y | t = 0)
. This signal-to-noise ratio

x/σ = 1.185 is a noise level at which this rate-1/2 Gallager code communicates
reliably (the probability of error is ' 10−5). To show how close we are to the
Shannon limit, the right panel shows the received vector when the signal-to-
noise ratio is reduced to x/σ = 1.0, which corresponds to the Shannon limit
for codes of rate 1/2.

Variation of performance with code parameters

Figure 47.8 shows how the parameters N and j affect the performance of
low-density parity-check codes. As Shannon would predict, increasing the
blocklength leads to improved performance. The dependence on j follows a
different pattern. Given an optimal decoder, the best performance would be
obtained for the codes closest to random codes, that is, the codes with largest
j. However, the sum–product decoder makes poor progress in dense graphs,
so the best performance is obtained for a small value of j. Among the values

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

566 47 — Low-Density Parity-Check Codes

3 3 3
(a) (b)

Figure 47.9. Schematic illustration
of constructions (a) of a
completely regular Gallager code
with j = 3, k = 6 and R = 1/2;
(b) of a nearly-regular Gallager
code with rate 1/3. Notation: an
integer represents a number of
permutation matrices superposed
on the surrounding square. A
diagonal line represents an
identity matrix.

Figure 47.10. Monte Carlo simulation of density evolution, following the decoding process for j =4, k=
8. Each curve shows the average entropy of a bit as a function of number of iterations,
as estimated by a Monte Carlo algorithm using 10 000 samples per iteration. The noise
level of the binary symmetric channel f increases by steps of 0.005 from bottom graph
(f = 0.010) to top graph (f = 0.100). There is evidently a threshold at about f = 0.075,
above which the algorithm cannot determine x. From MacKay (1999b).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30

f = 0.075

f = 0.080

of j shown in the figure, j = 3 is the best, for a blocklength of 816, down to a
block error probability of 10−5.

This observation motivates construction of Gallager codes with some col-
umns of weight 2. A construction with M/2 columns of weight 2 is shown in
figure 47.9b. Too many columns of weight 2, and the code becomes a much
poorer code.

As we’ll discuss later, we can do even better by making the code even more
irregular.

�
47.5 Density evolution

One way to study the decoding algorithm is to imagine it running on an infinite
tree-like graph with the same local topology as the Gallager code’s graph.

Figure 47.11. Local topology of
the graph of a Gallager code with
column weight j = 3 and row
weight k = 4. White nodes
represent bits, xl; black nodes
represent checks, zm; each edge
corresponds to a 1 in H.

The larger the matrix H, the closer its decoding properties should approach
those of the infinite graph.

Imagine an infinite belief network with no loops, in which every bit xn

connects to j checks and every check zm connects to k bits (figure 47.11).
We consider the iterative flow of information in this network, and examine
the average entropy of one bit as a function of number of iterations. At each
iteration, a bit has accumulated information from its local network out to a
radius equal to the number of iterations. Successful decoding will occur only
if the average entropy of a bit decreases to zero as the number of iterations
increases.

The iterations of an infinite belief network can be simulated by Monte
Carlo methods – a technique first used by Gallager (1963). Imagine a network
of radius I (the total number of iterations) centred on one bit. Our aim is
to compute the conditional entropy of the central bit x given the state z of
all checks out to radius I. To evaluate the probability that the central bit
is 1 given a particular syndrome z involves an I-step propagation from the
outside of the network into the centre. At the ith iteration, probabilities r at

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.6: Improving Gallager codes 567

radius I − i + 1 are transformed into qs and then into rs at radius I − i in
a way that depends on the states x of the unknown bits at radius I − i. In
the Monte Carlo method, rather than simulating this network exactly, which
would take a time that grows exponentially with I, we create for each iteration
a representative sample (of size 100, say) of the values of {r, x}. In the case

x

r

f f f f f f

@@R @@R? ?��	 ��	

@
@@R

�
��	

f

?
x
r

]

iteration
i−1

]

iteration
i

Figure 47.12. A tree-fragment
constructed during Monte Carlo
simulation of density evolution.
This fragment is appropriate for a
regular j =3, k = 4 Gallager code.

of a regular network with parameters j, k, each new pair {r, x} in the list at
the ith iteration is created by drawing the new x from its distribution and
drawing at random with replacement (j−1)(k−1) pairs {r, x} from the list at
the (i−1)th iteration; these are assembled into a tree fragment (figure 47.12)
and the sum–product algorithm is run from top to bottom to find the new r
value associated with the new node.

As an example, the results of runs with j =4, k =8 and noise densities f
between 0.01 and 0.10, using 10 000 samples at each iteration, are shown in
figure 47.10. Runs with low enough noise level show a collapse to zero entropy
after a small number of iterations, and those with high noise level decrease to
a non-zero entropy corresponding to a failure to decode.

The boundary between these two behaviours is called the threshold of the
decoding algorithm for the binary symmetric channel. Figure 47.10 shows by
Monte Carlo simulation that the threshold for regular (j, k) = (4, 8) codes
is about 0.075. Richardson and Urbanke (2001a) have derived thresholds for
regular codes by a tour de force of direct analytic methods. Some of these
thresholds are shown in table 47.13.

(j, k) fmax

(3,6) 0.084
(4,8) 0.076
(5,10) 0.068

Table 47.13. Thresholds fmax for
regular low-density parity-check
codes, assuming sum–product
decoding algorithm, from
Richardson and Urbanke (2001a).

The Shannon limit for rate-1/2
codes is fmax = 0.11.

Approximate density evolution

For practical purposes, the computational cost of density evolution can be
reduced by making Gaussian approximations to the probability distributions
over the messages in density evolution, and updating only the parameters of
these approximations. For further information about these techniques, which
produce diagrams known as EXIT charts, see (ten Brink, 1999; Chung et al.,
2001; ten Brink et al., 2002).

�
47.6 Improving Gallager codes

Since the rediscovery of Gallager codes, two methods have been found for
enhancing their performance.

GF (4) ↔ binary

0 ↔ 00
1 ↔ 01
A ↔ 10
B ↔ 11

Table 47.14. Translation between
GF (4) and binary for message
symbols.

Clump bits and checks together

First, we can make Gallager codes in which the variable nodes are grouped
together into metavariables consisting of say 3 binary variables, and the check
nodes are similarly grouped together into metachecks. As before, a sparse
graph can be constructed connecting metavariables to metachecks, with a lot
of freedom about the details of how the variables and checks within are wired
up. One way to set the wiring is to work in a finite field GF (q) such as GF (4)
or GF (8), define low-density parity-check matrices using elements of GF (q),
and translate our binary messages into GF (q) using a mapping such as the
one for GF (4) given in table 47.14. Now, when messages are passed during
decoding, those messages are probabilities and likelihoods over conjunctions

of binary variables. For example if each clump contains three binary variables
then the likelihoods will describe the likelihoods of the eight alternative states
of those bits.

With carefully optimized constructions, the resulting codes over GF (4),

GF (4) → binary

0 → 00
00

1 → 10
01

A → 11
10

B → 01
11

Table 47.15. Translation between
GF (4) and binary for matrix
entries. An M × N parity-check
matrix over GF (4) can be turned
into a 2M × 2N binary
parity-check matrix in this way.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

568 47 — Low-Density Parity-Check Codes

Algorithm 47.16. The Fourier
transform over GF (4).
The Fourier transform F of a
function f over GF (2) is given by
F 0 = f0 + f1, F 1 = f0 − f1.
Transforms over GF (2k) can be
viewed as a sequence of binary
transforms in each of k
dimensions. The inverse
transform is identical to the
Fourier transform, except that we
also divide by 2k.

F 0 = [f0 + f1] + [fA + fB]
F 1 = [f0 − f1] + [fA − fB]
FA = [f0 + f1] − [fA + fB]
FB = [f0 − f1] − [fA − fB]

Figure 47.17. Comparison of regular binary Gallager codes with irregular codes, codes over GF (q),
and other outstanding codes of rate 1/4. From left (best performance) to right: Irregular
low-density parity-check code over GF (8), blocklength 48 000 bits (Davey, 1999); JPL
turbo code (JPL, 1996) blocklength 65 536; Regular low-density parity-check over GF (16),
blocklength 24 448 bits (Davey and MacKay, 1998); Irregular binary low-density parity-
check code, blocklength 16 000 bits (Davey, 1999); Luby et al. (1998) irregular binary low-
density parity-check code, blocklength 64 000 bits; JPL code for Galileo (in 1992, this was
the best known code of rate 1/4); Regular binary low-density parity-check code: blocklength
40 000 bits (MacKay, 1999b). The Shannon limit is at about −0.79dB. As of 2003, even
better sparse-graph codes have been constructed.

1e-06

1e-05

0.0001

0.001

0.01

0.1

-0.4 -0.2 0 0.2 0.4 0.6 0.8

E
m

pi
ric

al
 B

it-
E

rr
or

 P
ro

ba
bi

lit
y

Signal to Noise ratio (dB)

Turbo
Irreg GF(8) Reg GF(16)

Luby
Irreg GF(2)

Reg GF(2)

Gallileo

GF (8), and GF (16) perform nearly one decibel better than comparable binary
Gallager codes.

The computational cost for decoding in GF (q) scales as q log q, if the ap-
propriate Fourier transform is used in the check nodes: the update rule for
the check-to-variable message,

ra
mn =

∑

x:xn=a

�





∑

n′∈N (m)

Hmn′xn′ = zm





∏

j∈N (m)\n

q
xj

mj , (47.15)

is a convolution of the quantities qa
mj, so the summation can be replaced by

a product of the Fourier transforms of qa
mj for j ∈ N (m)\n, followed by

an inverse Fourier transform. The Fourier transform for GF (4) is shown in
algorithm 47.16.

Make the graph irregular

The second way of improving Gallager codes, introduced by Luby et al. (2001b),
is to make their graphs irregular. Instead of giving all variable nodes the same
degree j, we can have some variable nodes with degree 2, some 3, some 4, and
a few with degree 20. Check nodes can also be given unequal degrees – this
helps improve performance on erasure channels, but it turns out that for the
Gaussian channel, the best graphs have regular check degrees.

Figure 47.17 illustrates the benefits offered by these two methods for im-
proving Gallager codes, focussing on codes of rate 1/4. Making the binary code
irregular gives a win of about 0.4 dB; switching from GF (2) to GF (16) gives

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.7: Fast encoding of low-density parity-check codes 569

difference set cyclic codes

N 7 21 73 273 1057 4161
M 4 10 28 82 244 730

K 3 11 45 191 813 3431
d 4 6 10 18 34 66
k 3 5 9 17 33 65

0.0001

0.001

0.01

0.1

1

1.5 2 2.5 3 3.5 4

Gallager(273,82)
DSC(273,82)

Figure 47.18. An algebraically
constructed low-density
parity-check code satisfying many
redundant constraints
outperforms an equivalent random
Gallager code. The table shows
the N , M , K, distance d, and row
weight k of some difference-set
cyclic codes, highlighting the
codes that have large d/N , small
k, and large N/M . In the
comparison the Gallager code had
(j, k) = (4, 13), and rate identical
to the N = 273 difference-set
cyclic code. Vertical axis: block
error probability. Horizontal axis:
signal-to-noise ratio Eb/N0 (dB).

about 0.6 dB; and Matthew Davey’s code that combines both these features –
it’s irregular over GF (8) – gives a win of about 0.9 dB over the regular binary
Gallager code.

Methods for optimizing the profile of a Gallager code (that is, its number of
rows and columns of each degree), have been developed by Richardson et al.

(2001) and have led to low-density parity-check codes whose performance,
when decoded by the sum–product algorithm, is within a hair’s breadth of the
Shannon limit.

Algebraic constructions of Gallager codes

The performance of regular Gallager codes can be enhanced in a third man-
ner: by designing the code to have redundant sparse constraints. There is a
difference-set cyclic code, for example, that has N = 273 and K = 191, but
the code satisfies not M = 82 but N , i.e., 273 low-weight constraints (figure
47.18). It is impossible to make random Gallager codes that have anywhere
near this much redundancy among their checks. The difference-set cyclic code
performs about 0.7 dB better than an equivalent random Gallager code.

An open problem is to discover codes sharing the remarkable properties of
the difference-set cyclic codes but with different blocklengths and rates. I call
this task the Tanner challenge.

�
47.7 Fast encoding of low-density parity-check codes

We now discuss methods for fast encoding of low-density parity-check codes –
faster than the standard method, in which a generator matrix G is found by
Gaussian elimination (at a cost of order M 3) and then each block is encoded
by multiplying it by G (at a cost of order M 2).

Staircase codes

Certain low-density parity-check matrices with M columns of weight 2 or less
can be encoded easily in linear time. For example, if the matrix has a staircase

structure as illustrated by the right-hand side of

H =





















, (47.16)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

570 47 — Low-Density Parity-Check Codes

and if the data s are loaded into the first K bits, then the M parity bits p

can be computed from left to right in linear time.

p1 =
∑K

n=1 H1nsn

p2 = p1 +
∑K

n=1 H2nsn

p3 = p2 +
∑K

n=1 H3nsn
...

pM = pM−1+
∑K

n=1 HMnsn.

(47.17)

If we call two parts of the H matrix [Hs|Hp], we can describe the encoding
operation in two steps: first compute an intermediate parity vector v = Hss;
then pass v through an accumulator to create p.

The cost of this encoding method is linear if the sparsity of H is exploited
when computing the sums in (47.17).

Fast encoding of general low-density parity-check codes

Richardson and Urbanke (2001b) demonstrated an elegant method by which
the encoding cost of any low-density parity-check code can be reduced from
the straightforward method’s M 2 to a cost of N + g2, where g, the gap, is
hopefully a small constant, and in the worst cases scales as a small fraction of
N .

D

B

E

T

0

C

A

6

?

M

-� M

6

?
g

-� N

-�g

@
@

@
@

@
@

Figure 47.19. The parity-check
matrix in approximate
lower-triangular form.

In the first step, the parity-check matrix is rearranged, by row-interchange
and column-interchange, into the approximate lower-triangular form shown in
figure 47.19. The original matrix H was very sparse, so the six matrices A,
B, T, C, D, and E are also very sparse. The matrix T is lower triangular and
has 1s everywhere on the diagonal.

H =

[

A B T

C D E

]

. (47.18)

The source vector s of length K = N − M is encoded into a transmission
t = [s,p1,p2] as follows.

1. Compute the upper syndrome of the source vector,

zA = As. (47.19)

This can be done in linear time.

2. Find a setting of the second parity bits, pA
2 , such that the upper syn-

drome is zero.
pA

2 = −T−1zA. (47.20)

This vector can be found in linear time by back-substitution, i.e., com-
puting the first bit of pA

2 , then the second, then the third, and so forth.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.8: Further reading 571

3. Compute the lower syndrome of the vector [s,0,pA
2]:

zB = Cs−EpA
2 . (47.21)

This can be done in linear time.

4. Now we get to the clever bit. Define the matrix

F ≡ −ET−1B + D, (47.22)

and find its inverse, F−1. This computation needs to be done once only,
and its cost is of order g3. This inverse F−1 is a dense g×g matrix. [If F

is not invertible then either H is not of full rank, or else further column
permutations of H can produce an F that is invertible.]

Set the first parity bits, p1, to

p1 = −F−1zB . (47.23)

This operation has a cost of order g2.

Claim: At this point, we have found the correct setting of the first parity
bits, p1.

5. Discard the tentative parity bits pA
2 and find the new upper syndrome,

zC = zA + Bp1. (47.24)

This can be done in linear time.

6. Find a setting of the second parity bits, p2, such that the upper syndrome
is zero,

p2 = −T−1zC (47.25)

This vector can be found in linear time by back-substitution.

�
47.8 Further reading

Low-density parity-check codes codes were first studied in 1962 by Gallager,
then were generally forgotten by the coding theory community. Tanner (1981)
generalized Gallager’s work by introducing more general constraint nodes; the
codes that are now called turbo product codes should in fact be called Tanner
product codes, since Tanner proposed them, and his colleagues (Karplus and
Krit, 1991) implemented them in hardware. Publications on Gallager codes
contributing to their 1990s rebirth include (Wiberg et al., 1995; MacKay and
Neal, 1995; MacKay and Neal, 1996; Wiberg, 1996; MacKay, 1999b; Spielman,
1996; Sipser and Spielman, 1996). Low-precision decoding algorithms and fast
encoding algorithms for Gallager codes are discussed in (Richardson and Ur-
banke, 2001a; Richardson and Urbanke, 2001b). MacKay and Davey (2000)
showed that low-density parity-check codes can outperform Reed–Solomon
codes, even on the Reed–Solomon codes’ home turf: high rate and short block-
lengths. Other important papers include (Luby et al., 2001a; Luby et al.,
2001b; Luby et al., 1997; Davey and MacKay, 1998; Richardson et al., 2001;
Chung et al., 2001). Useful tools for the design of irregular low-density parity-
check codes include (Chung et al., 1999; Urbanke, 2001).

See (Wiberg, 1996; Frey, 1998; McEliece et al., 1998) for further discussion
of the sum–product algorithm.

For a view of low-density parity-check code decoding in terms of group
theory and coding theory, see (Forney, 2001; Offer and Soljanin, 2000; Offer

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

572 47 — Low-Density Parity-Check Codes

and Soljanin, 2001); and for background reading on this topic see (Hartmann
and Rudolph, 1976; Terras, 1999). There is a growing literature on the prac-
tical design of low-density parity-check codes (Mao and Banihashemi, 2000;
Mao and Banihashemi, 2001; ten Brink et al., 2002); they are now being
adopted for applications from hard drives to satellite communications.

For low-density parity-check codes applicable to quantum error-correction,
see MacKay et al. (2004).

�
47.9 Exercises

Exercise 47.1.[2] The ‘hyperbolic tangent’ version of the decoding algorithm. In
section 47.3, the sum–product decoding algorithm for low-density parity-

check codes was presented first in terms of quantities q
0/1
mn and r

0/1
mn , then

in terms of quantities δq and δr. There is a third description, in which
the {q} are replaced by log probability-ratios,

lmn ≡ ln
q0
mn

q1
mn

. (47.26)

Show that

δqmn ≡ q0
mn − q1

mn = tanh(lmn/2). (47.27)

Derive the update rules for {r} and {l}.

Exercise 47.2.[2, p.572] I am sometimes asked ‘why not decode other linear
codes, for example algebraic codes, by transforming their parity-check
matrices so that they are low-density, and applying the sum–product
algorithm?’ [Recall that any linear combination of rows of H, H′ = PH,
is a valid parity-check matrix for a code, as long as the matrix P is
invertible; so there are many parity check matrices for any one code.]

Explain why a random linear code does not have a low-density parity-
check matrix. [Here, low-density means ‘having row-weight at most k’,
where k is some small constant � N .]

Exercise 47.3.[3] Show that if a low-density parity-check code has more than
M columns of weight 2 – say αM columns, where α > 1 – then the code
will have words with weight of order log M .

Exercise 47.4.[5] In section 13.5 we found the expected value of the weight
enumerator function A(w), averaging over the ensemble of all random
linear codes. This calculation can also be carried out for the ensemble of
low-density parity-check codes (Gallager, 1963; MacKay, 1999b; Litsyn
and Shevelev, 2002). It is plausible, however, that the mean value of
A(w) is not always a good indicator of the typical value of A(w) in the
ensemble. For example, if, at a particular value of w, 99% of codes have
A(w) = 0, and 1% have A(w) = 100 000, then while we might say the
typical value of A(w) is zero, the mean is found to be 1000. Find the
typical weight enumerator function of low-density parity-check codes.

�
47.10 Solutions

Solution to exercise 47.2 (p.572). Consider codes of rate R and blocklength
N , having K = RN source bits and M = (1−R)N parity-check bits. Let all

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

47.10: Solutions 573

the codes have their bits ordered so that the first K bits are independent, so
that we could if we wish put the code in systematic form,

G = [1K |PT]; H = [P|1M]. (47.28)

The number of distinct linear codes is the number of matrices P, which is
N1 = 2MK = 2N2R(1−R). Can these all be expressed as distinct low-density logN1 ' N2R(1 − R)
parity-check codes?

The number of low-density parity-check matrices with row-weight k is

(

N

k

)M

(47.29)

and the number of distinct codes that they define is at most

N2 =

(

N

k

)M
/

M !, (47.30)

which is much smaller than N1, so, by the pigeon-hole principle, it is not logN2 < Nk log N
possible for every random linear code to map on to a low-density H.

