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48

Convolutional Codes and Turbo Codes

This chapter follows tightly on from Chapter 25. It makes use of the ideas of
codes and trellises and the forward–backward algorithm.

�
48.1 Introduction to convolutional codes

When we studied linear block codes, we described them in three ways:

1. The generator matrix describes how to turn a string of K arbitrary
source bits into a transmission of N bits.

2. The parity-check matrix specifies the M = N − K parity-check con-
straints that a valid codeword satisfies.

3. The trellis of the code describes its valid codewords in terms of paths
through a trellis with labelled edges.

A fourth way of describing some block codes, the algebraic approach, is not
covered in this book (a) because it has been well covered by numerous other
books in coding theory; (b) because, as this part of the book discusses, the
state-of-the-art in error-correcting codes makes little use of algebraic coding
theory; and (c) because I am not competent to teach this subject.

We will now describe convolutional codes in two ways: first, in terms of
mechanisms for generating transmissions t from source bits s; and second, in
terms of trellises that describe the constraints satisfied by valid transmissions.

�
48.2 Linear-feedback shift-registers

We generate a transmission with a convolutional code by putting a source
stream through a linear filter. This filter makes use of a shift register, linear
output functions, and, possibly, linear feedback.

I will draw the shift-register in a right-to-left orientation: bits roll from
right to left as time goes on.

Figure 48.1 shows three linear-feedback shift-registers which could be used
to define convolutional codes. The rectangular box surrounding the bits
z1 . . . z7 indicates the memory of the filter, also known as its state. All three
filters have one input and two outputs. On each clock cycle, the source sup-
plies one bit, and the filter outputs two bits t(a) and t(b). By concatenating
together these bits we can obtain from our source stream s1s2s3 . . . a trans-

mission stream t
(a)
1 t

(b)
1 t

(a)
2 t

(b)
2 t

(a)
3 t

(b)
3 . . . . Because there are two transmitted bits

for every source bit, the codes shown in figure 48.1 have rate 1/2. Because
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Octal name

(a)

z0〈d � s`
- t(a)

z1〈dz2〈dz3〈dz4〈dz5〈dz6〈dz7

⊕
? - t(b)⊕

? -⊕
? -⊕

? -⊕
? --

(1, 353)8

(b)

z0

⊕

6

- t(b)

〈d � sz1

⊕

6

-

〈dz2

⊕

6

-

〈dz3〈dz4〈dz5

⊕

6

-

〈dz6〈dz7

-

⊕
? - t(a)⊕

? -⊕
? -⊕

? -⊕
? --

(247, 371)8

(c)

z0

⊕

6

- t(b)

〈d

� s`
- t(a)

z1

⊕

6

-

〈dz2

⊕

6

-

〈dz3〈dz4〈dz5

⊕

6

-

〈dz6〈dz7

-

⊕
6

⊕
? -⊕

? -⊕
? -⊕

? -- (

1, 247
371

)

8

Figure 48.1. Linear-feedback
shift-registers for generating
convolutional codes with rate 1/2.

The symbol 〈d indicates a
copying with a delay of one clock
cycle. The symbol ⊕ denotes
linear addition modulo 2 with no
delay.
The filters are (a) systematic and
nonrecursive; (b) nonsystematic
and nonrecursive; (c) systematic
and recursive.

these filters require k = 7 bits of memory, the codes they define are known as
a constraint-length 7 codes.

Convolutional codes come in three flavours, corresponding to the three
types of filter in figure 48.1.

Systematic nonrecursive

The filter shown in figure 48.1a has no feedback. It also has the property that
one of the output bits, t(a), is identical to the source bit s. This encoder is
thus called systematic, because the source bits are reproduced transparently
in the transmitted stream, and nonrecursive, because it has no feedback. The
other transmitted bit t(b) is a linear function of the state of the filter. One
way of describing that function is as a dot product (modulo 2) between two
binary vectors of length k + 1: a binary vector g(b) = (1, 1, 1, 0, 1, 0, 1, 1) and
the state vector z = (zk, zk−1, . . . , z1, z0). We include in the state vector the
bit z0 that will be put into the first bit of the memory on the next cycle. The

vector g(b) has g
(b)
κ = 1 for every κ where there is a tap (a downward pointing

arrow) from state bit zκ into the transmitted bit t(b).

A convenient way to describe these binary tap vectors is in octal. Thus,
this filter makes use of the tap vector 3538. I have drawn the delay lines from

11101 011

↓ ↓ ↓
3 5 3

Table 48.2. How taps in the delay
line are converted to octal.

right to left to make it easy to relate the diagrams to these octal numbers.

Nonsystematic nonrecursive

The filter shown in figure 48.1b also has no feedback, but it is not systematic.
It makes use of two tap vectors g(a) and g(b) to create its two transmitted bits.
This encoder is thus nonsystematic and nonrecursive. Because of their added
complexity, nonsystematic codes can have error-correcting abilities superior to
those of systematic nonrecursive codes with the same constraint length.



Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

576 48 — Convolutional Codes and Turbo Codes

Systematic recursive

The filter shown in figure 48.1c is similar to the nonsystematic nonrecursive
filter shown in figure 48.1b, but it uses the taps that formerly made up g(a)

to make a linear signal that is fed back into the shift register along with the
source bit. The output t(b) is a linear function of the state vector as before.
The other output is t(a) = s, so this filter is systematic.

A recursive code is conventionally identified by an octal ratio, e.g., fig-
ure 48.1c’s code is denoted by (247/371)8 .

z0

⊕

6

- t(b)

〈d � s

p

z1〈dz2

-

⊕
? - t(a)⊕

? --

(a) (5, 7)8

z0

⊕

6

- t(b)

〈d

� s`
-

p

t(a)

z1〈dz2

-

⊕
6

⊕
? --

(b)
(

1, 5
7

)

8

Figure 48.3. Two rate-1/2
convolutional codes with
constraint length k = 2:
(a) non-recursive; (b) recursive.
The two codes are equivalent.

Equivalence of systematic recursive and nonsystematic nonrecursive codes

The two filters in figure 48.1b,c are code-equivalent in that the sets of code-
words that they define are identical. For every codeword of the nonsystematic
nonrecursive code we can choose a source stream for the other encoder such
that its output is identical (and vice versa).

To prove this, we denote by p the quantity
∑

k

κ=1 g
(a)
κ zκ, as shown in fig-

ure 48.3a and b, which shows a pair of smaller but otherwise equivalent filters.
If the two transmissions are to be equivalent – that is, the t(a)s are equal in
both figures and so are the t(b)s – then on every cycle the source bit in the
systematic code must be s = t(a). So now we must simply confirm that for
this choice of s, the systematic code’s shift register will follow the same state
sequence as that of the nonsystematic code, assuming that the states match
initially. In figure 48.3a we have

t(a) = p ⊕ znonrecursive
0 (48.1)

whereas in figure 48.3b we have

zrecursive
0 = t(a) ⊕ p. (48.2)

Substituting for t(a), and using p ⊕ p = 0 we immediately find

zrecursive
0 = znonrecursive

0 . (48.3)

Thus, any codeword of a nonsystematic nonrecursive code is a codeword of
a systematic recursive code with the same taps – the same taps in the sense
that there are vertical arrows in all the same places in figures 48.3(a) and (b),
though one of the arrows points up instead of down in (b).

Now, while these two codes are equivalent, the two encoders behave dif-
ferently. The nonrecursive encoder has a finite impulse response, that is, if
one puts in a string that is all zeroes except for a single one, the resulting
output stream contains a finite number of ones. Once the one bit has passed
through all the states of the memory, the delay line returns to the all-zero
state. Figure 48.4a shows the state sequence resulting from the source string
s =(0, 0, 1, 0, 0, 0, 0, 0).

Figure 48.4b shows the trellis of the recursive code of figure 48.3b and the
response of this filter to the same source string s =(0, 0, 1, 0, 0, 0, 0, 0). The
filter has an infinite impulse response. The response settles into a periodic
state with period equal to three clock cycles.

. Exercise 48.1.[1 ] What is the input to the recursive filter such that its state
sequence and the transmission are the same as those of the nonrecursive
filter? (Hint: see figure 48.5.)
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(a)
00

01

10

11

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0transmit

source 0 0 1 0 0 0 0 0

(b)
00

01

10

11

0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1transmit

source 0 0 1 0 0 0 0 0

Figure 48.4. Trellises of the
rate-1/2 convolutional codes of
figure 48.3. It is assumed that the
initial state of the filter is
(z2, z1) = (0, 0). Time is on the
horizontal axis and the state of
the filter at each time step is the
vertical coordinate. On the line
segments are shown the emitted
symbols t(a) and t(b), with stars
for ‘1’ and boxes for ‘0’. The
paths taken through the trellises
when the source sequence is
00100000 are highlighted with a
solid line. The light dotted lines
show the state trajectories that
are possible for other source
sequences.

00

01

10

11

0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0transmit

source 0 0 1 1 1 0 0 0

Figure 48.5. The source sequence
for the systematic recursive code
00111000 produces the same path
through the trellis as 00100000
does in the nonsystematic
nonrecursive case.
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-

⊕
6

⊕
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1, 21
37

)

8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0received

Figure 48.6. The trellis for a k = 4
code painted with the likelihood
function when the received vector
is equal to a codeword with just
one bit flipped. There are three
line styles, depending on the value
of the likelihood: thick solid lines
show the edges in the trellis that
match the corresponding two bits
of the received string exactly;
thick dotted lines show edges that
match one bit but mismatch the
other; and thin dotted lines show
the edges that mismatch both
bits.

In general a linear-feedback shift-register with k bits of memory has an impulse
response that is periodic with a period that is at most 2k − 1, corresponding
to the filter visiting every non-zero state in its state space.

Incidentally, cheap pseudorandom number generators and cheap crypto-
graphic products make use of exactly these periodic sequences, though with
larger values of k than 7; the random number seed or cryptographic key se-
lects the initial state of the memory. There is thus a close connection between
certain cryptanalysis problems and the decoding of convolutional codes.

�
48.3 Decoding convolutional codes

The receiver receives a bit stream, and wishes to infer the state sequence
and thence the source stream. The posterior probability of each bit can be
found by the sum–product algorithm (also known as the forward–backward or
BCJR algorithm), which was introduced in section 25.3. The most probable
state sequence can be found using the min–sum algorithm of section 25.3
(also known as the Viterbi algorithm). The nature of this task is illustrated
in figure 48.6, which shows the cost associated with each edge in the trellis
for the case of a sixteen-state code; the channel is assumed to be a binary
symmetric channel and the received vector is equal to a codeword except that
one bit has been flipped. There are three line styles, depending on the value
of the likelihood: thick solid lines show the edges in the trellis that match the
corresponding two bits of the received string exactly; thick dotted lines show
edges that match one bit but mismatch the other; and thin dotted lines show
the edges that mismatch both bits. The min–sum algorithm seeks the path
through the trellis that uses as many solid lines as possible; more precisely, it
minimizes the cost of the path, where the cost is zero for a solid line, one for
a thick dotted line, and two for a thin dotted line.

. Exercise 48.2.[1, p.581] Can you spot the most probable path and the flipped
bit?
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0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0transmit
source 1 1 1 1 0 0 1 1

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1transmit
source 1 1 1 1 0 0 1 0

Figure 48.7. Two paths that differ
in two transmitted bits only.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111 Figure 48.8. A terminated trellis.

When any codeword is completed,
the filter state is 0000.

Unequal protection

A defect of the convolutional codes presented thus far is that they offer un-
equal protection to the source bits. Figure 48.7 shows two paths through the
trellis that differ in only two transmitted bits. The last source bit is less well
protected than the other source bits. This unequal protection of bits motivates
the termination of the trellis.

A terminated trellis is shown in figure 48.8. Termination slightly reduces
the number of source bits used per codeword. Here, four source bits are turned
into parity bits because the k = 4 memory bits must be returned to zero.

�
48.4 Turbo codes

An (N,K) turbo code is defined by a number of constituent convolutional
encoders (often, two) and an equal number of interleavers which are K × K
permutation matrices. Without loss of generality, we take the first interleaver
to be the identity matrix. A string of K source bits is encoded by feeding them

C1

C2�
��
π

-

-

--

-

Figure 48.10. The encoder of a
turbo code. Each box C1, C2,
contains a convolutional code.
The source bits are reordered
using a permutation π before they
are fed to C2. The transmitted
codeword is obtained by
concatenating or interleaving the
outputs of the two convolutional
codes.

into each constituent encoder in the order defined by the associated interleaver,
and transmitting the bits that come out of each constituent encoder. Often
the first constituent encoder is chosen to be a systematic encoder, just like the
recursive filter shown in figure 48.6, and the second is a non-systematic one of
rate 1 that emits parity bits only. The transmitted codeword then consists of
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Figure 48.9. Rate-1/3 (a) and rate-1/2 (b) turbo codes represented as factor graphs. The circles
represent the codeword bits. The two rectangles represent trellises of rate-1/2 convolutional
codes, with the systematic bits occupying the left half of the rectangle and the parity bits
occupying the right half. The puncturing of these constituent codes in the rate-1/2 turbo
code is represented by the lack of connections to half of the parity bits in each trellis.

(a) (b)

K source bits followed by M1 parity bits generated by the first convolutional
code and M2 parity bits from the second. The resulting turbo code has rate
1/3.

The turbo code can be represented by a factor graph in which the two
trellises are represented by two large rectangular nodes (figure 48.9a); the K
source bits and the first M1 parity bits participate in the first trellis and the K
source bits and the last M2 parity bits participate in the second trellis. Each
codeword bit participates in either one or two trellises, depending on whether
it is a parity bit or a source bit. Each trellis node contains a trellis exactly like
the terminated trellis shown in figure 48.8, except one thousand times as long.
[There are other factor graph representations for turbo codes that make use
of more elementary nodes, but the factor graph given here yields the standard
version of the sum–product algorithm used for turbo codes.]

If a turbo code of smaller rate such as 1/2 is required, a standard modifica-
tion to the rate-1/3 code is to puncture some of the parity bits (figure 48.9b).

Turbo codes are decoded using the sum–product algorithm described in
Chapter 26. On the first iteration, each trellis receives the channel likelihoods,
and runs the forward–backward algorithm to compute, for each bit, the relative
likelihood of its being 1 or 0, given the information about the other bits.
These likelihoods are then passed across from each trellis to the other, and
multiplied by the channel likelihoods on the way. We are then ready for the
second iteration: the forward–backward algorithm is run again in each trellis
using the updated probabilities. After about ten or twenty such iterations, it’s
hoped that the correct decoding will be found. It is common practice to stop
after some fixed number of iterations, but we can do better.

As a stopping criterion, the following procedure can be used at every iter-
ation. For each time-step in each trellis, we identify the most probable edge,
according to the local messages. If these most probable edges join up into two
valid paths, one in each trellis, and if these two paths are consistent with each
other, it is reasonable to stop, as subsequent iterations are unlikely to take
the decoder away from this codeword. If a maximum number of iterations is
reached without this stopping criterion being satisfied, a decoding error can
be reported. This stopping procedure is recommended for several reasons: it
allows a big saving in decoding time with no loss in error probability; it allows
decoding failures that are detected by the decoder to be so identified – knowing
that a particular block is definitely corrupted is surely useful information for
the receiver! And when we distinguish between detected and undetected er-
rors, the undetected errors give helpful insights into the low-weight codewords
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of the code, which may improve the process of code design.
Turbo codes as described here have excellent performance down to decoded

error probabilities of about 10−5, but randomly-constructed turbo codes tend
to have an error floor starting at that level. This error floor is caused by low-
weight codewords. To reduce the height of the error floor, one can attempt
to modify the random construction to increase the weight of these low-weight
codewords. The tweaking of turbo codes is a black art, and it never succeeds
in totalling eliminating low-weight codewords; more precisely, the low-weight
codewords can be eliminated only by sacrificing the turbo code’s excellent per-
formance. In contrast, low-density parity-check codes rarely have error floors,
as long as their number of weight–2 columns is not too large (cf. exercise 47.3,
p.572).

�
48.5 Parity-check matrices of convolutional codes and turbo codes

(a)

(b)

Figure 48.11. Schematic pictures
of the parity-check matrices of (a)
a convolutional code, rate 1/2,
and (b) a turbo code, rate 1/3.
Notation: A diagonal line
represents an identity matrix. A
band of diagonal lines represent a
band of diagonal 1s. A circle
inside a square represents the
random permutation of all the
columns in that square. A number
inside a square represents the
number of random permutation
matrices superposed in that
square. Horizontal and vertical
lines indicate the boundaries of
the blocks within the matrix.

We close by discussing the parity-check matrix of a rate-1/2 convolutional code
viewed as a linear block code. We adopt the convention that the N bits of one
block are made up of the N/2 bits t(a) followed by the N/2 bits t(b).

. Exercise 48.3.[2 ] Prove that a convolutional code has a low-density parity-
check matrix as shown schematically in figure 48.11a.

Hint: It’s easiest to figure out the parity constraints satisfied by a convo-
lutional code by thinking about the nonsystematic nonrecursive encoder
(figure 48.1b). Consider putting through filter a a stream that’s been
through convolutional filter b, and vice versa; compare the two resulting
streams. Ignore termination of the trellises.

The parity-check matrix of a turbo code can be written down by listing the
constraints satisfied by the two constituent trellises (figure 48.11b). So turbo
codes are also special cases of low-density parity-check codes. If a turbo code
is punctured, it no longer necessarily has a low-density parity-check matrix,
but it always has a generalized parity-check matrix that is sparse, as explained
in the next chapter.

Further reading

For further reading about convolutional codes, Johannesson and Zigangirov
(1999) is highly recommended. One topic I would have liked to include is
sequential decoding. Sequential decoding explores only the most promising
paths in the trellis, and backtracks when evidence accumulates that a wrong
turning has been taken. Sequential decoding is used when the trellis is too
big for us to be able to apply the maximum likelihood algorithm, the min–
sum algorithm. You can read about sequential decoding in Johannesson and
Zigangirov (1999).

For further information about the use of the sum–product algorithm in
turbo codes, and the rarely-used but highly recommended stopping criteria
for halting their decoding, Frey (1998) is essential reading. (And there’s lots
more good stuff in the same book!)

�
48.6 Solutions

Solution to exercise 48.2 (p.578). The first bit was flipped. The most probable
path is the upper one in figure 48.7.


