
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

49

Repeat–Accumulate Codes

In Chapter 1 we discussed a very simple and not very effective method for
communicating over a noisy channel: the repetition code. We now discuss a
code that is almost as simple, and whose performance is outstandingly good.

Repeat–accumulate codes were studied by Divsalar et al. (1998) for theo-
retical purposes, as simple turbo-like codes that might be more amenable to
analysis than messy turbo codes. Their practical performance turned out to
be just as good as other sparse-graph codes.

�
49.1 The encoder

1. Take K source bits.
s1s2s3 . . . sK

2. Repeat each bit three times, giving N = 3K bits.

s1s1s1s2s2s2s3s3s3 . . . sKsKsK

3. Permute these N bits using a random permutation (a fixed random
permutation – the same one for every codeword). Call the permuted
string u.

u1u2u3u4u5u6u7u8u9 . . . uN

4. Transmit the accumulated sum.

t1 = u1

t2 = t1 + u2 (mod 2)

. . . tn = tn−1 + un (mod 2) . . . (49.1)

tN = tN−1 + uN (mod 2).

5. That’s it!

�
49.2 Graph

Figure 49.1a shows the graph of a repeat–accumulate code, using four types
of node: equality constraints , intermediate binary variables (black circles),
parity constraints , and the transmitted bits (white circles).

The source sets the values of the black bits at the bottom, three at a time,
and the accumulator computes the transmitted bits along the top.

582

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

49.3: Decoding 583

(a)

(b)

1

1

0

0
1

1

0

0
1

1

0

0
1

1

0

0
1

1

0

0
1

0

Figure 49.1. Factor graphs for a
repeat–accumulate code with rate
1/3. (a) Using elementary nodes.
Each white circle represents a
transmitted bit. Each
constraint forces the sum of the 3
bits to which it is connected to be
even. Each black circle represents
an intermediate binary variable.
Each constraint forces the three
variables to which it is connected
to be equal.
(b) Factor graph normally used
for decoding. The top rectangle
represents the trellis of the
accumulator, shown in the inset.

1e-05

0.0001

0.001

0.01

0.1

1

1 2 3 4 5

N=204

408

816
30009999N=30000

total
undetected

Figure 49.2. Performance of six
rate-1/3 repeat–accumulate codes
on the Gaussian channel. The
blocklengths range from N = 204
to N = 30 000. Vertical axis:
block error probability; horizontal
axis: Eb/N0. The dotted lines
show the frequency of undetected
errors.

This graph is a factor graph for the prior probability over codewords,
with the circles being binary variable nodes, and the squares representing
two types of factor nodes. As usual, each contributes a factor of the form

�
[
∑

x=0mod 2]; each contributes a factor of the form
�
[x1 =x2 =x3].

�
49.3 Decoding

The repeat–accumulate code is normally decoded using the sum–product algo-
rithm on the factor graph depicted in figure 49.1b. The top box represents the
trellis of the accumulator, including the channel likelihoods. In the first half
of each iteration, the top trellis receives likelihoods for every transition in the
trellis, and runs the forward–backward algorithm so as to produce likelihoods
for each variable node. In the second half of the iteration, these likelihoods
are multiplied together at the nodes to produce new likelihood messages to
send back to the trellis.

As with Gallager codes and turbo codes, the stop-when-it’s-done decoding
method can be applied, so it is possible to distinguish between undetected
errors (which are caused by low-weight codewords in the code) and detected
errors (where the decoder gets stuck and knows that it has failed to find a
valid answer).

Figure 49.2 shows the performance of six randomly-constructed repeat–
accumulate codes on the Gaussian channel. If one does not mind the error
floor which kicks in at about a block error probability of 10−4, the performance
is staggeringly good for such a simple code (cf. figure 47.17).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

584 49 — Repeat–Accumulate Codes

1e-05

0.0001

0.001

0.01

0.1

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

total
detected

undetected

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160 180

(a) (ii.b) Eb/N0 = 0.749dB (ii.c) Eb/N0 = 0.846dB

1

10

100

1000

10 20 30 40 50 60 70 80 90100

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

(iii.b) (iii.c)

Figure 49.3. Histograms of
number of iterations to find a
valid decoding for a
repeat–accumulate code with
source block length K = 10 000
and transmitted blocklength
N = 30 000. (a) Block error
probability versus signal-to-noise
ratio for the RA code. (ii.b)
Histogram for x/σ = 0.89,
Eb/N0 = 0.749dB. (ii.c)
x/σ = 0.90, Eb/N0 = 0.846dB.
(iii.b, iii.c) Fits of power laws to
(ii.b) (1/τ6) and (ii.c) (1/τ9).

�
49.4 Empirical distribution of decoding times

It is interesting to study the number of iterations τ of the sum–product algo-
rithm required to decode a sparse-graph code. Given one code and a set of
channel conditions, the decoding time varies randomly from trial to trial. We
find that the histogram of decoding times follows a power law, P (τ) ∝ τ−p,
for large τ . The power p depends on the signal-to-noise ratio and becomes
smaller (so that the distribution is more heavy-tailed) as the signal-to-noise
ratio decreases. We have observed power laws in repeat–accumulate codes
and in irregular and regular Gallager codes. Figures 49.3(ii) and (iii) show the
distribution of decoding times of a repeat–accumulate code at two different
signal-to-noise ratios. The power laws extend over several orders of magnitude.

Exercise 49.1.
[5] Investigate these power laws. Does density evolution predict

them? Can the design of a code be used to manipulate the power law in
a useful way?

�
49.5 Generalized parity-check matrices

I find that it is helpful when relating sparse-graph codes to each other to use
a common representation for them all. Forney (2001) introduced the idea of
a normal graph in which the only nodes are and and all variable nodes
have degree one or two; variable nodes with degree two can be represented on
edges that connect a node to a node. The generalized parity-check matrix

is a graphical way of representing normal graphs. In a parity-check matrix,
the columns are transmitted bits, and the rows are linear constraints. In a
generalized parity-check matrix, additional columns may be included, which
represent state variables that are not transmitted. One way of thinking of these
state variables is that they are punctured from the code before transmission.

State variables are indicated by a horizontal line above the corresponding
columns. The other pieces of diagrammatic notation for generalized parity-

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

49.5: Generalized parity-check matrices 585

GT = H =

{A,p} =

Figure 49.4. The generator
matrix, parity-check matrix, and a
generalized parity-check matrix of
a repetition code with rate 1/3.

check matrices are, as in (MacKay, 1999b; MacKay et al., 1998):

• A diagonal line in a square indicates that that part of the matrix contains
an identity matrix.

• Two or more parallel diagonal lines indicate a band-diagonal matrix with
a corresponding number of 1s per row.

• A horizontal ellipse with an arrow on it indicates that the corresponding
columns in a block are randomly permuted.

• A vertical ellipse with an arrow on it indicates that the corresponding
rows in a block are randomly permuted.

• An integer surrounded by a circle represents that number of superposed
random permutation matrices.

Definition. A generalized parity-check matrix is a pair {A,p}, where A is a
binary matrix and p is a list of the punctured bits. The matrix defines a set
of valid vectors x, satisfying

Ax = 0; (49.2)

for each valid vector there is a codeword t(x) that is obtained by puncturing
from x the bits indicated by p. For any one code there are many generalized
parity-check matrices.

The rate of a code with generalized parity-check matrix {A,p} can be
estimated as follows. If A is L × M ′, and p punctures S bits and selects N
bits for transmission (L = N +S), then the effective number of constraints on
the codeword, M , is

M = M ′ − S, (49.3)

the number of source bits is

K = N − M = L − M ′, (49.4)

and the rate is greater than or equal to

R = 1 −
M

N
= 1 −

M ′ − S

L − S
. (49.5)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

586 49 — Repeat–Accumulate Codes

GT = 3

3

H =

3

3

Figure 49.5. The generator matrix
and parity-check matrix of a
systematic low-density
generator-matrix code. The code
has rate 1/3.

GT =

3

3
A,p =

3

3

Figure 49.6. The generator matrix
and generalized parity-check
matrix of a non-systematic

low-density generator-matrix
code. The code has rate 1/2.

Examples

Repetition code. The generator matrix, parity-check matrix, and generalized
parity-check matrix of a simple rate-1/3 repetition code are shown in figure 49.4.

Systematic low-density generator-matrix code. In an (N,K) systematic low-
density generator-matrix code, there are no state variables. A transmitted
codeword t of length N is given by

t = GTs, (49.6)

where

GT =

[

IK

P

]

, (49.7)

with IK denoting the K×K identity matrix, and P being a very sparse M×K
matrix, where M = N − K. The parity-check matrix of this code is

H = [P|IM]. (49.8)

In the case of a rate-1/3 code, this parity-check matrix might be represented
as shown in figure 49.5.

Non-systematic low-density generator-matrix code. In an (N,K) non-systematic
low-density generator-matrix code, a transmitted codeword t of length N is
given by

t = GTs, (49.9)

where GT is a very sparse N ×K matrix. The generalized parity-check matrix
of this code is

A =
[

GT|IN

]

, (49.10)

and the corresponding generalized parity-check equation is

Ax = 0, where x =

[

s

t

]

. (49.11)

Whereas the parity-check matrix of this simple code is typically a com-
plex, dense matrix, the generalized parity-check matrix retains the underlying
simplicity of the code.

In the case of a rate-1/2 code, this generalized parity-check matrix might
be represented as shown in figure 49.6.

Low-density parity-check codes and linear MN codes. The parity-check matrix

3 3
(a) (b)

Figure 49.7. The generalized
parity-check matrices of (a) a

rate-1/3 Gallager code with M/2

columns of weight 2; (b) a rate-1/2
linear MN code.

of a rate-1/3 low-density parity-check code is shown in figure 49.7a.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

49.5: Generalized parity-check matrices 587

(a) (b)

Figure 49.8. The generalized
parity-check matrices of (a) a

convolutional code with rate 1/2.
(b) a rate-1/3 turbo code built by
parallel concatenation of two
convolutional codes.

A linear MN code is a non-systematic low-density parity-check code. The
K state bits of an MN code are the source bits. Figure 49.7b shows the
generalized parity-check matrix of a rate-1/2 linear MN code.

Convolutional codes. In a non-systematic, non-recursive convolutional code,
the source bits, which play the role of state bits, are fed into a delay-line and
two linear functions of the delay-line are transmitted. In figure 49.8a, these
two parity streams are shown as two successive vectors of length K. [It is
common to interleave these two parity streams, a bit-reordering that is not
relevant here, and is not illustrated.]

Concatenation. ‘Parallel concatenation’ of two codes is represented in one of
these diagrams by aligning the matrices of two codes in such a way that the
‘source bits’ line up, and by adding blocks of zero-entries to the matrix such
that the state bits and parity bits of the two codes occupy separate columns.
An example is given by the turbo code that follows. In ‘serial concatenation’,
the columns corresponding to the transmitted bits of the first code are aligned
with the columns corresponding to the source bits of the second code.

Turbo codes. A turbo code is the parallel concatenation of two convolutional
codes. The generalized parity-check matrix of a rate-1/3 turbo code is shown
in figure 49.8b.

Repeat–accumulate codes. The generalized parity-check matrices of a rate-1/3

Figure 49.9. The generalized
parity-check matrix of a
repeat–accumulate code with rate
1/3.

repeat–accumulate code is shown in figure 49.9. Repeat-accumulate codes are
equivalent to staircase codes (section 47.7, p.569).

Intersection. The generalized parity-check matrix of the intersection of two
codes is made by stacking their generalized parity-check matrices on top of
each other in such a way that all the transmitted bits’ columns are correctly
aligned, and any punctured bits associated with the two component codes
occupy separate columns.

