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A

Notation

What does P(AjB;C) mean? P(AjB;C) is pronounced ‘the probability
that A is true giventhat B is true and C is true'. Or, more briey, “the
probability of A given B and C'. (SeeChapter 2, p.22)

What do log and In mean? In this book, logx meansthe base-ivo loga-
rithm, log, x; In x meansthe natural logarithm, logg X.

What does § mean? Usually, a “hat' over a variable denotesa guessor es-
timator. So$ is a guessat the value of s.

R R
Integrals . There is no di erence between f (u)du and duf (u). The inte-
grand is f (u) in both cases.

Ay P
What does mean? This is like the summation  \_, but it denotesa

n=1
product. It's pronounced product over n from 1to N'. So, for example,

! #
W X
n=1 2 3 N = N!=exp Inn : (A1)

n=1 n=1

| like to choosethe name of the free variable in a sum or a product {
here, n { to be the lower caseversion of the range of the sum. Son
usually runs from 1 to N, and m usually runs from 1to M. This is a
habit | learnt from Yaser Abu-Mostafa, and | think it makesformulae
easierto understand.

N o . L
What does N mean? This is pronounced ‘N choosen', and it is the

number of ways of selectingan unordered set of n objects from a set of

sizeN.
N N!

n :(N n)!n!:

This function is known asthe conmbination function.

(A.2)

What is ( x)? The gamma function is de ned by ( x) Rol duu* e Y,
for x > 0. The gamma function is an extension of the factorial function
to real number argumerts. In general, ( X + 1) = x ( x), and for integer
argumerts, ( x + 1) = x!. The digamma function is de ned by (x)
Ln (x).

dx

For large x (for practical purposes,0:1 x 1),
In(x)' x 3 In(x) x+1in2 + O(1=x); (A.3)
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A | Notation 599

and for small x (for practical purposes,0 x 0:5):
In (x)" In% X + O(x?) (A.4)
where . is Euler's constart.

What does H21(1 R=C) mean? Justassin (s) denotesthe inversefunc-
tion to s = sin(x), soH, L(h) is the inversefunction to h = H(x).

There is potential confusion when people use sin®x to denote (sinx)?,
since then we might expect sin s to denote 1=sin(s); | therefore like
to avoid using the notation sin® x.

What does f {x) mean? The answer depends on the cortext. Often, a
“prime’ is usedto denote di eren tiation:

d. ..
f qx) &f (X); (A.5)
similarly, a dot denotesdi erentiation with respect to time, t:
d
X g (A.6)

Howewer, the prime is also a useful indicator for “another variable', for
example ‘a new value for a variable'. So, for example, x° might denote
“the newvalue of x'. Also, if there are two integersthat both range from
1to N, | will often name those integersn and n°

Somy rule is: if a prime occursin an expressionthat could be a func-
tion, such asf {x) or hQy), then it denotesdi eren tiation; otherwise it
indicates “another variable'.

What is the error function? De nitions of this function vary. | de ne it
to be the cumulative probability of a standard (variance = 1) normal
distribution, b

Z _
(2) exp( 22:2):p2 dz: (A7)
1
What does E(r) mean? E[r] is pronounced the expectedvalue of r' or “the
expectation of r', and it is the mean value of r. Another symbol for
“expected value' is the pair of angle-bradkets, fri:

What does jxj mean? The vertical barsj |' have two meanings. If A is a
set, then jAj denotesthe number of elemerts in the set; if x is a number,
then jxj is the absolute value of x.

What does [AjP] mean? Here, A and P are matrices with the samenum-
ber of rows. [AjP] denotesthe double-width matrix obtained by putting
A alongsideP. The vertical bar is usedto avoid confusion with the
product AP .

What does x™ mean? The superscript 7 is pronounced ‘transpose'. Trans-
posing a row-vector turns it into a column vector:
1
1
(1,23 = @2 A; (A.8)
3

and vice versa [Normally my vectors, indicated by bold facetype (x),
are column vectors.]

Similarly, matrices can be transposed. If Mj; is the ertry in row i and
columnj of matrix M, and N = MT, then Nj; = Mj; .
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600

What are TraceM and detM? The trace of a matrix is the sum of its di-
agonal elemerts, X
TraceM = M : (A.9)
[
The determinant of M is denoteddetM .
What does ., mean? The matrix is the identity matrix.

1 ifm=n
mT 0 ifmé6 n.

Another name for the identity matrix is | or 1. Sometimesl include a
subscript on this symbol { 1x { which indicates the size of the matrix
(K K).

What does (x) mean? The delta function hasthe property
z
dx f (x) (x) = f (0): (A.10)

Another possiblemeaningfor (S) is the truth function, which is 1 if the
proposition S is true but | have adopted another notation for that. After
all, the symbol is quite busy already, with the two rolesmentioned above
in addition to its role asa small real number and an incremert operator
(asin x)!

What does [S] mean? [S]is the truth function, which is 1 if the propo-
sition S is true and 0 otherwise. For example, the number of positive
numbersin the setT = f 2;1;3g can be written

X
[x > O (A.11)
x2T

What is the dierence between “:=' and '='? In an algorithm, x = y
meansthat the variable x is updated by assigningit the value of y.

In cortrast, X = y is a proposition, a statemert that x is equalto y.

SeeChapters 23 and 29 for further de nitions and notation relating to
probability distributions.

Al

Notation
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B

SomePhysics

B.1 About phase transitions

A systemwith statesx in cortact with a heat bath at temperature T = 1=
has probability distribution

P(xj )= Tl)exp( E(x)): (8.1)

The partition function is

X
Z()= exp( E(x)): (B.2)

X

The inversetemperature can be interpreted as de ning an excange rate
between entropy and energy. (1= ) is the amount of energy that must be
given to a heat bath to increaseits entropy by one nat.

Often, the systemwill be a ected by someother parameters such as the
volume of the box it isin, V, in which caseZ is a function of V too, Z( ;V).

For any systemwith a nite number of states, the function Z( ) is evi-
dertly a continuous function of , sinceit is simply a sum of exponertials.
Moreover, all the derivativesof Z( ) with respectto are cortinuoustoo.

What phasetransitions are all about, howewer, is this: phasetransitions
correspond to valuesof andV (called critical points) at which the derivatives
of Z have discortin uities or divergences.

Immediately we can deduce:

Only systemswith an in nite number of states can showv phase

transitions.

Often, we include a parameter N describing the size of the system. Phase
transitions may appearin the limit N ! 1 . Real systemsmay have a value
of N like 1073,

If we make the system large by simply grouping together N independert
systemswhosepartition function is Z;)( ), then nothing interesting happens.
The partition function for N independent identical systemsis simply

Ziny( ) = [Zay (O (B.3)

Now, while this function Zy( ) may be a very rapidly varying function of ,
that doesn't meanit is showing phasetransitions. The natural way to look at
the partition function is in the logarithm

In Z(N)( ): N In Z(l)( ): (B4)
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602 B | SomePhysics

Duplicating the original system N times simply scalesup all properties like
the energyand heat capacity of the systemby a factor of N. Soif the original
systemshowed no phasetransitions then the scaledup systemwon't have any
either.

Only systemswith long-rangecorrelations shav phasetransitions. I

Long-range correlations do not require long-range energetic couplings; for
example, a magnet has only short-range couplings (between adjacent spins)
but theseare su cien t to create long-range order.

Why are points at which derivativesdiverge interesting?

The derivatives of In Z describe properties like the heat capacity of the sys-
tem (that's the secondderivative) or its uctuations in energy If the second
derivative of In Z divergesat a temperature 1= , then the heat capacity of the
system divergesthere, which meansit can absorb or releaseenergy without
changing temperature (think of ice melting in ice water); when the systemis
at equilibrium at that temperature, its energy uctuates a lot, in cortrast to
the normal @%of-large-mmbers behaviour, where the energy only varies by
onepartin  N.

A toy systemthat showsa phasetransition

Imagine a collection of N coupled spins that have the following energy as a
function of their state x 2 f0; 1gN .

N X = (0;0;0;:::;0)

E(X) = 0 otherwise.

(B.5)
This energyfunction describesa ground state in which all the spinsare aligned
in the zero direction; the energy per spin in this state is . if any spin
changesstate then the energyis zero. This model is like an extreme version
of a magnetic interaction, which encouragegairs of spinsto be aligned.

We can cortrast it with an ordinary systemof N independent spins whose
energyis: X
E%(x) = (2xn 1) (B.6)

n
Like the rst system, the system of independert spins has a single ground
state (0;0;0;:::;0) with energy N , andit hasroughly 2N stateswith energy
very closeto 0, sothe low-temperature and high-temperature properties of the
independert-spin systemand the coupled-spinsystemare virtually identical.

The partition function of the coupled-spinsystemis

Z()=eN +2N 1 (B.7)

The function
INZ( )= eN +2N 1 (B.8)

is sketched in gure B.la along with its low temperature behaviour,
nz( )" N ; 11 (B.9)
and its high temperature behaviour,

NnZ()' NIn2 1o (B.10)
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B.1: About phasetransitions 603
£\ Neoa FigureB.1. (a) Partition function

Nbotaepdl b e S of toy systemwhich shows a phase

N log (2) transition for large N. The arrow

marks the point . = log2=". (b)

The same,for larger N .

(c) The variance of the energy of

the systemasa function of for

two systemsizes.As N increases

the variance has an increasingly
“beta sharp peakat the critical point ..

beta
€) Contrast with gure B.2.
log Z
N beta epsilon --------
N log (2)
beta
(b)
var(E) Ne24 FigureB.2. The pa_rtition function
N beta eplgi?o% 77777777 var®) N=8 (a) and energy-\ariance (b) of a
N log (2) system consisting of N
independert spins. The partition
function changesgradually from
one asymptote to the other,
regardlessof how large N is; the
variance of the energy doesnot
T have a peak. The uctuations are
beta beta largest at high temperature (small
(a) (b) ) and scalelinearly with system

sizeN.

The arrow marks the point
In2

= — (B.11)
at which these two asymptotesintersect. In the limit N ! 1 , the graph of
InZ( ) becomesmore and more sharply bent at this point (gure B.1b).

The secondderivative of In Z, which describesthe variance of the energy
of the system, hasa peakvalue,at = In2=, roughly equalto

N 22

7

which correspondsto the system spending half of its time in the ground state
and half its time in the other states.

At this critical point, the heat capacity of this systemis thus proportional
to N 2; the heat capacity per spin is proportional to N, which, for in nite N, is
in nite, in corntrast to the behaviour of systemsaway from phasetransitions,
whosecapacity per atom is a nite number.

For comparison, gure B.2 shavsthe partition function and energy-\ariance
of the ordinary independent-spin system.

(B.12)

More geneally

Phasetransitions can be categorizedinto " rst-order' and “cortinuous' transi-
tions. In a rst-order phasetransition, there is a discortinuous change of one
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604 B | SomePhysics

or more order-parameters; in a corntinuous transition, all order-parameters
change continuously. [What's an order-parameter? { a scalar function of the
state of the system; or, to be precise,the expectation of suc a function.]

In the vicinity of a critical point, the concept of “typicality’ de ned in
Chapter 4 doesnot hold. For example, our toy system, at its critical point,
has a 50% chanceof beingin a state with energy N , and roughly a 1=2N*1
chanceof beingin ead of the other statesthat have energyzero. It is thus not
the casethat In 1=P(x) is very likely to be closeto the entropy of the system
at this point, unlike a systemwith N i.i.d. componerts.

Remenber that information content (In 1=P(x)) and energyarevery closely
related. If typicality holds, then the system's energy has negligible uctua-
tions, and vice versa
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C

SomeMathematics

C.1 Finite eld theory

Most linear codesare expiesseé in the languageof Galois theory

Why are Galois elds an appropriate languagefor linear codes? First, a de -
nition and someexamples.

A eld FisasetF = f0;F% sud that

1. F forms an Abelian group under an addition operation "+, with +]0 1 01 \
0 being the identity; [Abelian meansall elemens commute, i.e., olo 1] oflo O
satisfya+ b= b+ a] 1{1 0, 1|0 1

2. FO forms an Abelian group under a multiplication operation ;
multiplication of any elemen by 0 yields 0; TableC.1 Addition and

3. theseoperations satisfy the distributiv erule (a+ b) ¢= a c+ b c.  Mmultiplication tables for GF (2).

For example, the real numbers form a eld, with "+ and ~' denoting
ordinary addition and multiplication.

A Galois eld GF(q)isa eld with a nite number of elemerts q.

A unigue Galois eld exists for any q= p™, where p is a prime number
and m is a positive integer; there are no other nite elds.

D> ot

GF (2): The addition and multiplication tables for GF (2) are shown in ta-
ble C.1. Theseare the rules of addition and multiplication modulo 2.

Oo0oo0oo|WX>»r oo
WP OrR|>To R+
P ®E>»O P o m>>
>rrWoW|lor>mm

> o

GF (p): For any prime number p, the addition and multiplication rules are
those for ordinary addition and multiplication, modulo p.

GF (4): The rulesfor GF (p™), with m > 1, arenot thoseof ordinary addition
and multiplication. For examplethe tablesfor GF (4) (table C.2) are not
the rules of addition and multiplication modulo 4. Notice that 1+ 1= 0,
for example. So how can GF (4) be described? It turns out that the
elemerns can be related to polynomials. Consider polynomial functions

Table C.2 Addition and
multiplication tables for GF (4).

of x of degreel and with coe cien ts that are elements of GF (2). The  Element Polynomial Bit pattern

polynomials shovn in table C.3 obey the addition and multiplication 0 0 00

rules of GF (4) if addition and multiplication are modulo the polynomial 1 1 01
x2+ x + 1, and the coe cien ts of the polynomials are from GF (2). For ’; Xf 1 12

example,B B = x?+ (1+ 1)x+ 1= x = A. Each elemert may alsobe
represetted as a bit pattern asshown in table C.3, with addition being

bitwise modulo 2, and multiplication de ned with an appropriate carry  TableC.3 Represetations of the
operation. elemerts of GF (4).
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606 C| SomeMathematics

GF (8). Wecandenotethe elemerts of GF (8) by f0;1;A; B;C;D;E;Fg. Each
elemen can be mapped onto a polynomial over GF (2). The multiplica-
tion and addition operations are given by multiplication and addition of
the polynomials, modulo x3 + x + 1. The multiplication table is given

below.

elemert polynomial binary represenation 01 AB CDE F
0 0 000 0/0 0O OOO O 0 O
1 1 001 1101 A B CD E F
A X 010 AJ|OACEB 1FD
B X+ 1 011 B/OB EDZFC 1A
C X2 100 cC/l0o0C B F E A D 1
D X%+ 1 101 D|OD 1 C A F B E
E X2 + X 110 E|OE F 1 D B A C
F X2+ x+1 111 FIOF DA 1EZCHB

Why are Galois elds relevant to linear codes? Imagine generalizinga binary
generator matrix G and binary vector s to a matrix and vector with elemerts
from a larger set, and generalizingthe addition and multiplication operations
that de ne the product Gs. In order to produce an appropriate input for
a symmetric channel, it would be corveniert if, for random s, the product
Gs produced all elemerns in the enlarged set with equal probability. This
uniform distribution is easiestto guarartee if these elemens form a group
under both addition and multiplication, becausethen theseoperations do not
break the symmetry among the elemens. When two random elemerts of a
multiplicativ e group are multiplied together, all elemens are produced with
equal probability. This is not true of other setssudc asthe integers,for which
the multiplication operation is more likely to give rise to someelemerts (the
composite numbers) than others. Galois elds, by their de nition, avoid suc
symmetry-breaking e ects.

C.2 Eigenvectors and eigenvalues

A right-eigervector of a squarematrix A is a non-zerovector e that satis es
Aer = eg; (C.1)

where is the eigervalue assaiated with that eigervector. The eigervalue
may be a real number or complex number and it may be zero. Eigenvectors
may be real or complex.

A left-eigervector of a matrix A is a vector e, that satis es

elA = ¢: (C.2)

The following statemerts for right-eigervectors also apply to left-eigernvectors.
If a matrix hastwo or more linearly independert right-eigervectors with

the sameeigervalue then that eigervalueis called a degenerateeigervalue

of the matrix, or arepeatedeigervalue. Any linear combination of those
eigervectors is another right-eigenvector with the sameeigervalue.

The principal right-eigenvector of a matrix is, by de nition, the right-
eigervector with the largest assa@iated eigervalue.

If a real matrix has a right-eigervector with complex eigervalue =
x + yi then it alsohas a right-eigenvector with the conjugate eigervalue
=X yi.
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Symmetric matrices
If A isareal symmetric N N matrix then
1. all the eigervaluesand eigervectors of A are real;

2. ewery left-eigervector of A is alsoa right-eigenvector of A with the same
eigervalue, and vice versg

3. asetof N eigervectors and eigervaluesfe(®: ad)-; can be found that
are orthonormal, that is,

e(a) e(b) = ab; (CS)

the matrix can be expressedas a weighted sum of outer products of the
eigervectors:

X
A = a[e?][e®T: (C.4)

a=1

(Whereas| often usei and n asindicesfor setsof sizel and N, | will usethe
indicesa and b to run over eigervectors, even if there are N of them. This is
to avoid confusionwith the componerts of the eigervectors, which are indexed

by n, e.g.ed )

Genemrl squae matrices

An N N matrix can have up to N distinct eigervalues. Generically, there
areN eigervalues,all distinct, and ead hasoneleft-eigervector and oneright-
eigervector. In caseswheretwo or more eigervaluescoincide, for ead distinct
eigervalue that is non-zerothere is at least one left-eigervector and one right-
eigervector.
Left- and right-eigervectors that have di erent eigervalue are orthogonal,
that is,
if 26 pthene® el = 0 (C.5)

Non-negative matrices

De nition. If all the elemerts of a non-zeromatrix C satisfy C,, 0then C
is a non-negative matrix. Similarly, if all the elemens of a non-zerovector ¢
satisfy ¢, 0 then c is a non-negative vector.
Properties. A non-negative matrix has a principal eigervector that is non-
negative. It may also have other eigervectors with the sameeigervalue that
are not non-negative. But if the principal eigervalue of a non-negative matrix
is not degenerate then the matrix hasonly one principal eigervector e, and
it is non-negative.

Generically, all the other eigervalues are smaller in absolute magnitude.
[There can be seral eigervalues of identical magnitude in special cases.]

Transition prokability matrices

An important example of a non-negative matrix is a transition probability
matrix Q.
De nition. A transition probability matrix Q hascolumnsthat are probability

vectors, that is, it satises Q 0 and

X
Qj =1forallj: (C.6)
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608 C|
Matrix Eigenvaluesand eigervectorse,; er
2120° 2 %4213231232 P21 3
41105 :58 0 O :58 :82
001 4.8254.585 405405 4 854 58
0 0 1 1 0 0
1:62 0:62
2 1 53 53 :85 :85
:85 85 :53 53
21100° 2 FZ3 2 05§£’9' 53 2 0599 952
0001 : 1+ :5i 11+ :5i :37 137
§1 00 Oé 32%372 g 3 4| 3+ 4|é 3+ :4iz 3 :4iz :6825 :682
0011 13+ 4| 3 i 3 i 13+ :4i 6 6
1+ :5i 1+ :5i 1 5 1 5 37 137
TableC.4 Somematrices and their eigervectors.
Matrix Eigenvaluesand eigervectorse, ; er
. 1 0:38
SL) 22 71 36 193 71
’ 71 93 :36 71
2 0:35 0 3 5 3 3 5 03,08 3 5 0:3%0:3
40 0 465 58 14 8+ :1i 2 :5i :8 i 2+ :5i
16554 4.5854:415 4 2 554 :6+:2i5 4 2+:554 6 :2i5
U 58 90 2421 44+ :3i 2 2 4 :3i

Table C.5. Transition probability matrices for generating random paths through trellises.

This property canberewritten in terms of the all-onesvectorn = (1;1;:::;1)":

nN'"Q=n" (C.7)
Son is the principal left-eigervector of Q with eigervalue ; = 1.
e(Ll) =n: (C.8)

Becauseit is a non negati\,e matrix, Q has a principal right-eigervector that
is non-negative, e . Generically, for Markov processeghat are ergadic, this
eigervector is the onIy right-eigenvector with eigervalue of magnitude 1 (see
table C.6 for illustrativ e exceptions). This vector, if we normalize it sud that
e(Rl) n = 1, is called the invariant distribution of the transition probability
matrix. It is the probability density that is left unchangedunder Q. Unlike
the principal left-eigervector, which we explicitly identied above, we can't
usually identify the principal right-eigenvector without computation.

The matrix may haveup to N 1 other right-eigervectors all of which are
orthogonal to the left-eigenvector n, that is, they are zero-sumvectors.

C.3 Perturbation theory

Perturbation theory is not usedin this book, but it is useful in this book's
elds. In this section we derive rst-order perturbation theory for the eigen-
vectors and eigervalues of square, not necessarily symmetric, matrices. Most
preserations of perturbation theory focus on symmetric matrices, but non-
symmetric matrices (such astransition matrices) alsodeseneto be perturb ed!
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C.3: Perturbation theory

Matrix Eigenvaluesand eigervectorse, ; er

200200 0° 2 312 31 o 2 %740 3 2 %720 3
g-lo 80 0 0 Z 71 0

@ 877 o0 gz 5712@4% : 892& L 8,25 5

0 0 :10:80 71

2 00200 0° 312 3 2 %%8 3 2 &9 3 2 %’649 3

An A : 118 166 :20 63 19 61
:10:79:02 0 : : : : _ .

@) § ‘01 .8 - é 5%@ 1§§ .282 § .4%% .6§ § .412% .6§
0 :01:88:20 : . : : : :

0 0 :10:80 6 161 4 3 44 3

R 72 :33 :80 :32 77 :30

206 0 90200 2 312 3 2 & 3 o $H70 3 5, 33 3

0 0 :10:80 50 63 132 :50 32 50 :50 63

(b) g o E:S(C))Zgﬂg g :622% :5% g :6%% :582 g :58}3% :322
190:20 0 0 ey ; : : . : .
10:80 0 0O 5 6 3 5 3 5 5 6

R 50 32 163 :50 163 :50 :50 :32

TableC.6.

lllustrativ e transition probability matrices and their eigervectors showing the two ways of
being non-ergadic. (a) More than one principal eigernvector with eigervalue 1 becausethe
state spacefalls into two unconnectedpieces. (2% A small perturbation breaksthe degen-
eracy of the principal eigernvectors. (b) Under this chain, the density may oscillate between
two parts of the state space. In addition to the invariant distribution, there is another
right-eigervector with eigervalue 1. In generalsuch circulating densities correspond to
complex eigenvalueswith magnitude 1.

We assumethat we have an N N matrix H that is a function H( ) of
a real parameter , with = 0 being our starting point. We assumethat a
Taylor expansionof H () is appropriate:

where

H()=H@O+ V + (C.9)
@
v @ (C.10)

We assumethat for all of interest, H( ) has a complete set of N right-
eigervectors and left-eigervectors, and that theseeigervectorsand their eigen-
valuesare cortinuous functions of . This last assumptionis not necessarilya
good one: if H(0) has degenerateeigervaluesthen it is possiblefor the eigen-
vectorsto be discortinuousin ; in such casesdegenerateperturbation theory
is needed. That's a fun topic, but let's stick with the non-degeneratecase

here.

We write the eigervectors and eigervalues as follows:

and we Taylor-expand

with

and

@)= @@o)+ @+ (C.12)
(@ % (C.13)

ed()=eP0)+ &+ (C.14)
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with
@ @y
@
and similar de nitions for e(La) and fEa). We de ne theseleft-vectorsto be row
vectors, sothat the “transpose'operation is not neededand can be banished.
We arefreeto constrain the magnitudesof the eigervectorsin whatever way
we please. Each left-eigenvector and ead right-eigenvector has an arbitrary
magnitude. The natural constraints to useare as follows. First, we constrain
the inner products with:

(C.15)

e?()e@()= 1, forall a: (C.16)
Expanding the eigervectorsin , equation (C.19) implies
€@+ P+ NeRO+ 1P+ =1 (C17)
from which we can extract the terms in , which say:
e + 1Pe(0) = 0 (C.18)
We are now free to choosethe two constraints:
e )P = 0 fPe(0) = 0; (C.19)

which in the special caseof a symmetric matrix correspond to constraining
the eigervectorsto be of constart length, as de ned by the Euclidean norm.

OK, now that we have de ned our cast of characters, what do the de ning
equations (C.11) and (C.9) tell us about our Taylor expansions(C.13) and
(C.15)? We expand equation (C.11) in

HO* v+ )ed @)+ P+ )= (@O+ @+ )edO)+ 1P+ )
(C.20)
Identifying the terms of order , we have:
HOD + ve@ )= @O)fP + @e(0): (C.21)
We can extract interesting results from this equation by hitting it with e(b) (0):
ePo)H (0)f? + ePo)vel®(0) = e (0) @©O)F P + @e(0)e (0):
) PP + ePovell0) = @O + @ 4 (C22)
Setting b= a we obtain
ePoved (= @: (C.23)
Alternativ ely, choosingb 6 a, we obtain:

h i
ePove? = @0 O e O)f (C.24)

) PO = e’ (Ve (0): (C.25)

@(0) M (0)

Now, assumingthat the right- tauger\/ectorsfeR)(O)gbcl form a complete basis,
we must be able to write

X
@ =" welo); (C.26)
b
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where
wy = e0)f®; (C.27)
so, comparing (C.25) and (C.27), we have:
b
@ X ePOVed©) o

= LTRSS el (0): (C.28)
R L. @0 00 F

Equations (C.23) and (C.28) are the solution to the rst-order perturbation
theory problem, giving respectively the rst derivative of the eigervalue and
the eigervectors.

Seond-order perturbation theory

If we expandthe eigervector equation (C.11) to secondorderin , and assume
that the equation
H()=H@QO)+ V (C.29)

is exact, that is, H is a purely linear function of , then we have:
HO+ V)P + 1P+ 2 %0+ )
= (@O+ @+f2@+ YO+ 1+ 320+ )(C30)

wheregf?a) and (@ arethe secondderivativesof the eigervector and eigervalue.
Equating the second-orderterms in in equation (C.30),

1
ViR + SHOER = 5 @O + 5 WP+ @ (ca
Hitting this equation on the left with e(,_a) (0), we obtain:
1
P OVf P+ 5 D g

I @0)e®0)g® + I @)@ )+ @ePO)fP: (C.32)

The term e(a) (O)féa) is equalto zero becauseof our constraints (C.19), so
ePovf A = % @, (C.33)
so the secondderivative of the eigervalue with respectto is given by

meéWm(m

1 X
- @ = (a) ~L \WVER \M)
OV oo o0

2
b8 a
X e )ve? 0)e® ©ove? o)

= § : (C.35)
s @©) ®()

This is asfar aswe will take the perturbation expansion.

(0) (C.34)

Summary

If we introduce the abbreviation V,, for e(b)(O)Ve(a) (0), we can write the
eigervectorsof H( ) = H(0) + V to rst order as

X Y/
(a) - @ ba (b)
()=eg (0)+ - —(a) ©) ®(0) R (0) + (C.36)

and the eigernvaluesto secondorder as
Vbavab

@(y= @@0)+ Vaa+ “@o) o)

(C.37)
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C.4 Some numbers
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28192 107466 Number of distinct 1-kilobyte les
21024 1308 Number of states of a 2D Ising model with 32 32 spins
21000 10°01 Number of binary strings of length 1000
2500 3 10150
2469 10141 Number of binary strings of length 1000 having 100 1s and 900 0s
2266 1080 Number of electronsin universe
2200 1.6 10°
2190 10°7 Number of electronsin solar system
21713 10°!  Number of electronsin the earth
2100 1030
2% 3 107 Age of universe/picoseconds
2586 3 10  Age of universe/seconds
250 1015
240 10'
10t Number of neuronsin human brain
10t Number of bits stored on a DVD
3 10  Number of bits in the wheat genome
6 10° Number of bits in the human genome
232 6 10° Population of earth
2%0 10°
25 10° Number of bres in the corpus callosum
2 10° Number of bits in C. Elegans(a worm) genome
2 10° Number of bits in Arabidopsisthaliana (a o wering plant related to broccoli) genome
225 3 10° Oneyear/seconds
2 10"  Number of bits in the compressedPostScript le that is this book
2 10 Number of bits in unix kernel
10 Number of bits in the E. Coli genome,or in a oppy disk
4 1¢° Number of years since human/chimpanzeedivergence
220 10° 1048576
2 100 Number of generationssince human/chimpanzeedivergence
3 10* Number of genesin human genome
3 10* Number of genesin Arabidopsisthaliana genome
1:5 10° Number of basepairs in a gene
210 ¢f 10 210 = 1024;¢e” = 1096
20 1P 1
22 25 101! Lifetime probability of dying from smoking one pad of cigarettes per day.
10 2 Lifetime probability of dying in a motor vehicle accidert
2 10 10 3
10 ° Lifetime probability of developing cancer becauseof drinking 2 litres per day of
water cortaining 12p.p.b. benzene
2 20 10 6
3 10 8 Probability of error in transmission of coding DNA, per nucleotide, per generation
2 30 10 9
2 60 10 ¥ Probability of undetected error in a hard disk drive, after error correction




