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A

Notation

What does P (A |B,C) mean? P (A |B,C) is pronounced ‘the probability
that A is true given that B is true and C is true’. Or, more briefly, ‘the
probability of A given B and C’. (See Chapter 2, p.22.)

What do log and ln mean? In this book, log x means the base-two loga-
rithm, log2 x; lnx means the natural logarithm, loge x.

What does ŝ mean? Usually, a ‘hat’ over a variable denotes a guess or es-
timator. So ŝ is a guess at the value of s.

Integrals. There is no difference between
∫

f(u) du and
∫

du f(u). The inte-
grand is f(u) in both cases.

What does

N
∏

n=1

mean? This is like the summation
∑N

n=1 but it denotes a

product. It’s pronounced ‘product over n from 1 to N’. So, for example,

N
∏

n=1

n = 1 × 2 × 3 × · · · × N = N ! = exp

[

N
∑

n=1

lnn

]

. (A.1)

I like to choose the name of the free variable in a sum or a product –
here, n – to be the lower case version of the range of the sum. So n
usually runs from 1 to N , and m usually runs from 1 to M . This is a
habit I learnt from Yaser Abu-Mostafa, and I think it makes formulae
easier to understand.

What does

(

N

n

)

mean? This is pronounced ‘N choose n’, and it is the

number of ways of selecting an unordered set of n objects from a set of
size N .

(

N

n

)

=
N !

(N − n)!n!
. (A.2)

This function is known as the combination function.

What is Γ(x)? The gamma function is defined by Γ(x) ≡
∫ ∞

0 du ux−1e−u,
for x > 0. The gamma function is an extension of the factorial function
to real number arguments. In general, Γ(x+1) = xΓ(x), and for integer
arguments, Γ(x + 1) = x!. The digamma function is defined by Ψ(x) ≡
d
dx

ln Γ(x).

For large x (for practical purposes, 0.1 ≤ x ≤ ∞),

ln Γ(x) '
(

x − 1
2

)

ln(x) − x + 1
2 ln 2π + O(1/x); (A.3)
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A — Notation 599

and for small x (for practical purposes, 0 ≤ x ≤ 0.5):

ln Γ(x) ' ln
1

x
− γex + O(x2) (A.4)

where γe is Euler’s constant.

What does H−1
2 (1 − R/C) mean? Just as sin−1(s) denotes the inverse func-

tion to s = sin(x), so H−1
2 (h) is the inverse function to h = H2(x).

There is potential confusion when people use sin2 x to denote (sinx)2,
since then we might expect sin−1 s to denote 1/ sin(s); I therefore like
to avoid using the notation sin2 x.

What does f ′(x) mean? The answer depends on the context. Often, a
‘prime’ is used to denote differentiation:

f ′(x) ≡ d

dx
f(x); (A.5)

similarly, a dot denotes differentiation with respect to time, t:

ẋ ≡ d

dt
x. (A.6)

However, the prime is also a useful indicator for ‘another variable’, for
example ‘a new value for a variable’. So, for example, x′ might denote
‘the new value of x’. Also, if there are two integers that both range from
1 to N , I will often name those integers n and n′.

So my rule is: if a prime occurs in an expression that could be a func-
tion, such as f ′(x) or h′(y), then it denotes differentiation; otherwise it
indicates ‘another variable’.

What is the error function? Definitions of this function vary. I define it
to be the cumulative probability of a standard (variance = 1) normal
distribution,

Φ(z) ≡
∫ z

−∞

exp(−z2/2)/
√

2π dz. (A.7)

What does E(r) mean? E [r] is pronounced ‘the expected value of r’ or ‘the
expectation of r’, and it is the mean value of r. Another symbol for
‘expected value’ is the pair of angle-brackets, 〈r〉.

What does |x| mean? The vertical bars ‘| · |’ have two meanings. If A is a
set, then |A| denotes the number of elements in the set; if x is a number,
then |x| is the absolute value of x.

What does [A|P] mean? Here, A and P are matrices with the same num-
ber of rows. [A|P] denotes the double-width matrix obtained by putting
A alongside P. The vertical bar is used to avoid confusion with the
product AP.

What does xT mean? The superscript T is pronounced ‘transpose’. Trans-
posing a row-vector turns it into a column vector:

(1, 2, 3)T =





1
2
3



 , (A.8)

and vice versa. [Normally my vectors, indicated by bold face type (x),
are column vectors.]

Similarly, matrices can be transposed. If Mij is the entry in row i and
column j of matrix M, and N = MT, then Nji = Mij .
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What are TraceM and detM? The trace of a matrix is the sum of its di-
agonal elements,

TraceM =
∑

i

Mii. (A.9)

The determinant of M is denoted detM.

What does δmn mean? The δ matrix is the identity matrix.

δmn =

{

1 if m = n
0 if m 6= n.

Another name for the identity matrix is I or 1. Sometimes I include a
subscript on this symbol – 1K – which indicates the size of the matrix
(K × K).

What does δ(x) mean? The delta function has the property

∫

dx f(x)δ(x) = f(0). (A.10)

Another possible meaning for δ(S) is the truth function, which is 1 if the
proposition S is true but I have adopted another notation for that. After
all, the symbol δ is quite busy already, with the two roles mentioned above
in addition to its role as a small real number δ and an increment operator
(as in δx)!

What does
�
[S] mean?

�
[S] is the truth function, which is 1 if the propo-

sition S is true and 0 otherwise. For example, the number of positive
numbers in the set T = {−2, 1, 3} can be written

∑

x∈T

�
[x > 0]. (A.11)

What is the difference between ‘:=’ and ‘=’ ? In an algorithm, x := y
means that the variable x is updated by assigning it the value of y.

In contrast, x = y is a proposition, a statement that x is equal to y.

See Chapters 23 and 29 for further definitions and notation relating to
probability distributions.
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B

Some Physics

�
B.1 About phase transitions

A system with states x in contact with a heat bath at temperature T = 1/β
has probability distribution

P (x |β) =
1

Z(β)
exp(−βE(x)). (B.1)

The partition function is

Z(β) =
∑

x

exp(−βE(x)). (B.2)

The inverse temperature β can be interpreted as defining an exchange rate
between entropy and energy. (1/β) is the amount of energy that must be
given to a heat bath to increase its entropy by one nat.

Often, the system will be affected by some other parameters such as the
volume of the box it is in, V , in which case Z is a function of V too, Z(β, V ).

For any system with a finite number of states, the function Z(β) is evi-
dently a continuous function of β, since it is simply a sum of exponentials.
Moreover, all the derivatives of Z(β) with respect to β are continuous too.

What phase transitions are all about, however, is this: phase transitions
correspond to values of β and V (called critical points) at which the derivatives
of Z have discontinuities or divergences.

Immediately we can deduce:

Only systems with an infinite number of states can show phase
transitions.

Often, we include a parameter N describing the size of the system. Phase
transitions may appear in the limit N → ∞. Real systems may have a value
of N like 1023.

If we make the system large by simply grouping together N independent
systems whose partition function is Z(1)(β), then nothing interesting happens.
The partition function for N independent identical systems is simply

Z(N)(β) = [Z(1)(β)]N . (B.3)

Now, while this function Z(N)(β) may be a very rapidly varying function of β,
that doesn’t mean it is showing phase transitions. The natural way to look at
the partition function is in the logarithm

lnZ(N)(β) = N lnZ(1)(β). (B.4)
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602 B — Some Physics

Duplicating the original system N times simply scales up all properties like
the energy and heat capacity of the system by a factor of N . So if the original
system showed no phase transitions then the scaled up system won’t have any
either.

Only systems with long-range correlations show phase transitions.

Long-range correlations do not require long-range energetic couplings; for
example, a magnet has only short-range couplings (between adjacent spins)
but these are sufficient to create long-range order.

Why are points at which derivatives diverge interesting?

The derivatives of lnZ describe properties like the heat capacity of the sys-
tem (that’s the second derivative) or its fluctuations in energy. If the second
derivative of lnZ diverges at a temperature 1/β, then the heat capacity of the
system diverges there, which means it can absorb or release energy without
changing temperature (think of ice melting in ice water); when the system is
at equilibrium at that temperature, its energy fluctuates a lot, in contrast to
the normal law-of-large-numbers behaviour, where the energy only varies by
one part in

√
N .

A toy system that shows a phase transition

Imagine a collection of N coupled spins that have the following energy as a
function of their state x ∈ {0, 1}N .

E(x) =

{

−Nε x = (0, 0, 0, . . . , 0)
0 otherwise.

(B.5)

This energy function describes a ground state in which all the spins are aligned
in the zero direction; the energy per spin in this state is −ε. if any spin
changes state then the energy is zero. This model is like an extreme version
of a magnetic interaction, which encourages pairs of spins to be aligned.

We can contrast it with an ordinary system of N independent spins whose
energy is:

E0(x) = ε
∑

n

(2xn − 1). (B.6)

Like the first system, the system of independent spins has a single ground
state (0, 0, 0, . . . , 0) with energy −Nε, and it has roughly 2N states with energy
very close to 0, so the low-temperature and high-temperature properties of the
independent-spin system and the coupled-spin system are virtually identical.

The partition function of the coupled-spin system is

Z(β) = eβNε + 2N − 1. (B.7)

The function
lnZ(β) = ln

(

eβNε + 2N − 1
)

(B.8)

is sketched in figure B.1a along with its low temperature behaviour,

lnZ(β) ' Nβε, β → ∞, (B.9)

and its high temperature behaviour,

lnZ(β) ' N ln 2, β → 0. (B.10)
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(a)
beta

log Z
N beta epsilon

N log (2)

(c)
beta

var(E) N=24
var(E)  N=8

(b)
beta

log Z
N beta epsilon

N log (2)

Figure B.1. (a) Partition function
of toy system which shows a phase
transition for large N . The arrow
marks the point βc = log 2/ε. (b)
The same, for larger N .
(c) The variance of the energy of
the system as a function of β for
two system sizes. As N increases
the variance has an increasingly
sharp peak at the critical point βc.
Contrast with figure B.2.

(a)
beta

log Z
N beta epsilon

N log (2)

(b)
beta

var(E) N=24
var(E)  N=8

Figure B.2. The partition function
(a) and energy-variance (b) of a
system consisting of N
independent spins. The partition
function changes gradually from
one asymptote to the other,
regardless of how large N is; the
variance of the energy does not
have a peak. The fluctuations are
largest at high temperature (small
β) and scale linearly with system
size N .

The arrow marks the point

β =
ln 2

ε
(B.11)

at which these two asymptotes intersect. In the limit N → ∞, the graph of
lnZ(β) becomes more and more sharply bent at this point (figure B.1b).

The second derivative of lnZ, which describes the variance of the energy
of the system, has a peak value, at β = ln 2/ε, roughly equal to

N2ε2

4
, (B.12)

which corresponds to the system spending half of its time in the ground state
and half its time in the other states.

At this critical point, the heat capacity of this system is thus proportional
to N2; the heat capacity per spin is proportional to N , which, for infinite N , is
infinite, in contrast to the behaviour of systems away from phase transitions,
whose capacity per atom is a finite number.

For comparison, figure B.2 shows the partition function and energy-variance
of the ordinary independent-spin system.

More generally

Phase transitions can be categorized into ‘first-order’ and ‘continuous’ transi-
tions. In a first-order phase transition, there is a discontinuous change of one
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604 B — Some Physics

or more order-parameters; in a continuous transition, all order-parameters
change continuously. [What’s an order-parameter? – a scalar function of the
state of the system; or, to be precise, the expectation of such a function.]

In the vicinity of a critical point, the concept of ‘typicality’ defined in
Chapter 4 does not hold. For example, our toy system, at its critical point,
has a 50% chance of being in a state with energy −Nε, and roughly a 1/2N+1

chance of being in each of the other states that have energy zero. It is thus not
the case that ln 1/P (x) is very likely to be close to the entropy of the system
at this point, unlike a system with N i.i.d. components.

Remember that information content (ln 1/P (x)) and energy are very closely
related. If typicality holds, then the system’s energy has negligible fluctua-
tions, and vice versa.
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C

Some Mathematics

�
C.1 Finite field theory

Most linear codes are expressed in the language of Galois theory

Why are Galois fields an appropriate language for linear codes? First, a defi-
nition and some examples.

A field F is a set F = {0, F ′} such that

1. F forms an Abelian group under an addition operation ‘+’, with
0 being the identity; [Abelian means all elements commute, i.e.,
satisfy a + b = b + a.]

2. F ′ forms an Abelian group under a multiplication operation ‘·’;
multiplication of any element by 0 yields 0;

3. these operations satisfy the distributive rule (a+ b) · c = a · c+ b · c.

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Table C.1. Addition and
multiplication tables for GF (2).

For example, the real numbers form a field, with ‘+’ and ‘·’ denoting
ordinary addition and multiplication.

A Galois field GF (q) is a field with a finite number of elements q.

A unique Galois field exists for any q = pm, where p is a prime number
and m is a positive integer; there are no other finite fields.

GF (2). The addition and multiplication tables for GF (2) are shown in ta-
ble C.1. These are the rules of addition and multiplication modulo 2.

GF (p). For any prime number p, the addition and multiplication rules are
those for ordinary addition and multiplication, modulo p.

GF (4). The rules for GF (pm), with m > 1, are not those of ordinary addition
and multiplication. For example the tables for GF (4) (table C.2) are not

+ 0 1 A B

0 0 1 A B
1 1 0 B A
A A B 0 1
B B A 1 0

· 0 1 A B

0 0 0 0 0
1 0 1 A B
A 0 A B 1
B 0 B 1 A

Table C.2. Addition and
multiplication tables for GF (4).

the rules of addition and multiplication modulo 4. Notice that 1+1 = 0,
for example. So how can GF (4) be described? It turns out that the
elements can be related to polynomials. Consider polynomial functions
of x of degree 1 and with coefficients that are elements of GF (2). The
polynomials shown in table C.3 obey the addition and multiplication
rules of GF (4) if addition and multiplication are modulo the polynomial
x2 + x + 1, and the coefficients of the polynomials are from GF (2). For
example, B · B = x2 + (1 + 1)x + 1 = x = A. Each element may also be
represented as a bit pattern as shown in table C.3, with addition being
bitwise modulo 2, and multiplication defined with an appropriate carry
operation.

Element Polynomial Bit pattern

0 0 00

1 1 01

A x 10

B x + 1 11

Table C.3. Representations of the
elements of GF (4).
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606 C — Some Mathematics

GF (8). We can denote the elements of GF (8) by {0, 1, A,B,C,D,E, F}. Each
element can be mapped onto a polynomial over GF (2). The multiplica-
tion and addition operations are given by multiplication and addition of
the polynomials, modulo x3 + x + 1. The multiplication table is given
below.

element polynomial binary representation

0 0 000

1 1 001

A x 010

B x + 1 011

C x2
100

D x2 + 1 101

E x2 + x 110

F x2 + x + 1 111

· 0 1 A B C D E F

0 0 0 0 0 0 0 0 0
1 0 1 A B C D E F
A 0 A C E B 1 F D
B 0 B E D F C 1 A
C 0 C B F E A D 1
D 0 D 1 C A F B E
E 0 E F 1 D B A C
F 0 F D A 1 E C B

Why are Galois fields relevant to linear codes? Imagine generalizing a binary
generator matrix G and binary vector s to a matrix and vector with elements
from a larger set, and generalizing the addition and multiplication operations
that define the product Gs. In order to produce an appropriate input for
a symmetric channel, it would be convenient if, for random s, the product
Gs produced all elements in the enlarged set with equal probability. This
uniform distribution is easiest to guarantee if these elements form a group
under both addition and multiplication, because then these operations do not
break the symmetry among the elements. When two random elements of a
multiplicative group are multiplied together, all elements are produced with
equal probability. This is not true of other sets such as the integers, for which
the multiplication operation is more likely to give rise to some elements (the
composite numbers) than others. Galois fields, by their definition, avoid such
symmetry-breaking effects.

�
C.2 Eigenvectors and eigenvalues

A right-eigenvector of a square matrix A is a non-zero vector eR that satisfies

AeR = λeR, (C.1)

where λ is the eigenvalue associated with that eigenvector. The eigenvalue
may be a real number or complex number and it may be zero. Eigenvectors
may be real or complex.

A left-eigenvector of a matrix A is a vector eL that satisfies

eT

LA = λeT

L. (C.2)

The following statements for right-eigenvectors also apply to left-eigenvectors.

• If a matrix has two or more linearly independent right-eigenvectors with
the same eigenvalue then that eigenvalue is called a degenerate eigenvalue
of the matrix, or a repeated eigenvalue. Any linear combination of those
eigenvectors is another right-eigenvector with the same eigenvalue.

• The principal right-eigenvector of a matrix is, by definition, the right-
eigenvector with the largest associated eigenvalue.

• If a real matrix has a right-eigenvector with complex eigenvalue λ =
x + yi then it also has a right-eigenvector with the conjugate eigenvalue
λ∗ = x − yi.
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Symmetric matrices

If A is a real symmetric N × N matrix then

1. all the eigenvalues and eigenvectors of A are real;

2. every left-eigenvector of A is also a right-eigenvector of A with the same
eigenvalue, and vice versa;

3. a set of N eigenvectors and eigenvalues {e(a), λa}N
a=1 can be found that

are orthonormal, that is,

e(a)·e(b) = δab; (C.3)

the matrix can be expressed as a weighted sum of outer products of the
eigenvectors:

A =

N
∑

a=1

λa[e
(a)][e(a)]T. (C.4)

(Whereas I often use i and n as indices for sets of size I and N , I will use the
indices a and b to run over eigenvectors, even if there are N of them. This is
to avoid confusion with the components of the eigenvectors, which are indexed

by n, e.g. e
(a)
n .)

General square matrices

An N × N matrix can have up to N distinct eigenvalues. Generically, there
are N eigenvalues, all distinct, and each has one left-eigenvector and one right-
eigenvector. In cases where two or more eigenvalues coincide, for each distinct
eigenvalue that is non-zero there is at least one left-eigenvector and one right-
eigenvector.

Left- and right-eigenvectors that have different eigenvalue are orthogonal,
that is,

if λa 6= λb then e
(a)
L

·e(b)
R

= 0. (C.5)

Non-negative matrices

Definition. If all the elements of a non-zero matrix C satisfy Cmn ≥ 0 then C

is a non-negative matrix. Similarly, if all the elements of a non-zero vector c

satisfy cn ≥ 0 then c is a non-negative vector.

Properties. A non-negative matrix has a principal eigenvector that is non-
negative. It may also have other eigenvectors with the same eigenvalue that
are not non-negative. But if the principal eigenvalue of a non-negative matrix
is not degenerate, then the matrix has only one principal eigenvector e(1), and
it is non-negative.

Generically, all the other eigenvalues are smaller in absolute magnitude.
[There can be several eigenvalues of identical magnitude in special cases.]

Transition probability matrices

An important example of a non-negative matrix is a transition probability
matrix Q.

Definition. A transition probability matrix Q has columns that are probability
vectors, that is, it satisfies Q ≥ 0 and

∑

i

Qij = 1 for all j. (C.6)
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Matrix Eigenvalues and eigenvectors eL, eR





1 2 0
1 1 0
0 0 1





2.41 1 −0.41




.58

.82
0









.82

.58
0









0
0
1









0
0
1









−.58
.82

0









−.82
.58

0





[

0 1
1 1

] 1.62 −0.62
[

.53

.85

][

.53

.85

] [

.85
−.53

][

.85
−.53

]









1 1 0 0
0 0 0 1
1 0 0 0
0 0 1 1









1.62 0.5+0.9i 0.5−0.9i −0.62








.60

.37

.37

.60

















.60

.37

.37

.60

















.1−.5i
−.3−.4i

.3+.4i
−.1+.5i

















.1−.5i

.3+.4i
−.3−.4i
−.1+.5i

















.1+.5i
−.3+.4i

.3−.4i
−.1−.5i

















.1+.5i

.3−.4i
−.3+.4i
−.1−.5i

















.37
−.60
−.60

.37

















.37
−.60
−.60

.37









Table C.4. Some matrices and their eigenvectors.

Table C.5. Transition probability matrices for generating random paths through trellises.

Matrix Eigenvalues and eigenvectors eL, eR

[

0 .38
1 .62

] 1 −0.38
[

.71

.71

] [

.36

.93

] [

−.93
.36

] [

−.71
.71

]





0 .35 0
0 0 .46
1 .65 .54





1 −0.2−0.3i −0.2+0.3i




.58

.58

.58









.14

.41

.90









−.8+.1i
−.2−.5i

.2+.2i









.2−.5i
−.6+.2i

.4+.3i









−.8−.1i
−.2+.5i

.2−.2i









.2+.5i
−.6−.2i

.4−.3i





This property can be rewritten in terms of the all-ones vector n = (1, 1, . . . , 1)T:

nTQ = nT. (C.7)

So n is the principal left-eigenvector of Q with eigenvalue λ1 = 1.

e
(1)
L

= n. (C.8)

Because it is a non-negative matrix, Q has a principal right-eigenvector that

is non-negative, e
(1)
R

. Generically, for Markov processes that are ergodic, this
eigenvector is the only right-eigenvector with eigenvalue of magnitude 1 (see
table C.6 for illustrative exceptions). This vector, if we normalize it such that

e
(1)
R

·n = 1, is called the invariant distribution of the transition probability
matrix. It is the probability density that is left unchanged under Q. Unlike
the principal left-eigenvector, which we explicitly identified above, we can’t
usually identify the principal right-eigenvector without computation.

The matrix may have up to N − 1 other right-eigenvectors all of which are
orthogonal to the left-eigenvector n, that is, they are zero-sum vectors.

�
C.3 Perturbation theory

Perturbation theory is not used in this book, but it is useful in this book’s
fields. In this section we derive first-order perturbation theory for the eigen-
vectors and eigenvalues of square, not necessarily symmetric, matrices. Most
presentations of perturbation theory focus on symmetric matrices, but non-
symmetric matrices (such as transition matrices) also deserve to be perturbed!
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Table C.6. Illustrative transition probability matrices and their eigenvectors showing the two ways of
being non-ergodic. (a) More than one principal eigenvector with eigenvalue 1 because the
state space falls into two unconnected pieces. (a′) A small perturbation breaks the degen-
eracy of the principal eigenvectors. (b) Under this chain, the density may oscillate between
two parts of the state space. In addition to the invariant distribution, there is another
right-eigenvector with eigenvalue −1. In general such circulating densities correspond to
complex eigenvalues with magnitude 1.

Matrix Eigenvalues and eigenvectors eL, eR

(a)









.90 .20 0 0

.10 .80 0 0
0 0 .90 .20
0 0 .10 .80









1 1 0.70 0.70








0
0

.71

.71

















0
0

.89

.45

















.71

.71
0
0

















.89

.45
0
0

















.45
−.89

0
0

















.71
−.71

0
0

















0
0

−.45
.89

















0
0

−.71
.71









(a′)









.90 .20 0 0

.10 .79 .02 0
0 .01 .88 .20
0 0 .10 .80









1 0.98 0.70 0.69








.50

.50

.50

.50

















.87

.43

.22

.11

















−.18
−.15

.66

.72

















−.66
−.28

.61

.33

















.20
−.40
−.40

.80

















.63
−.63
−.32

.32

















−.19
.41

−.44
.77

















−.61
.65

−.35
.30









(b)









0 0 .90 .20
0 0 .10 .80

.90 .20 0 0

.10 .80 0 0









1 0.70 −0.70 −1








.50

.50

.50

.50

















.63

.32

.63

.32

















−.32
.63

−.32
.63

















.50
−.50

.50
−.50

















.32
−.63
−.32

.63

















−.50
.50
.50

−.50

















.50

.50
−.50
−.50

















.63

.32
−.63
−.32









We assume that we have an N × N matrix H that is a function H(ε) of
a real parameter ε, with ε = 0 being our starting point. We assume that a
Taylor expansion of H(ε) is appropriate:

H(ε) = H(0) + εV + · · · (C.9)

where

V ≡ ∂H

∂ε
. (C.10)

We assume that for all ε of interest, H(ε) has a complete set of N right-
eigenvectors and left-eigenvectors, and that these eigenvectors and their eigen-
values are continuous functions of ε. This last assumption is not necessarily a
good one: if H(0) has degenerate eigenvalues then it is possible for the eigen-
vectors to be discontinuous in ε; in such cases, degenerate perturbation theory
is needed. That’s a fun topic, but let’s stick with the non-degenerate case
here.

We write the eigenvectors and eigenvalues as follows:

H(ε)e
(a)
R

(ε) = λ(a)(ε)e
(a)
R

(ε), (C.11)

and we Taylor-expand

λ(a)(ε) = λ(a)(0) + εµ(a) + · · · (C.12)

with

µ(a) ≡ ∂λ(a)(ε)

∂ε
(C.13)

and

e
(a)
R

(ε) = e
(a)
R

(0) + εf
(a)
R

+ · · · (C.14)
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with

f
(a)
R

≡ ∂e
(a)
R

∂ε
, (C.15)

and similar definitions for e
(a)
L

and f
(a)
L

. We define these left-vectors to be row
vectors, so that the ‘transpose’ operation is not needed and can be banished.

We are free to constrain the magnitudes of the eigenvectors in whatever way
we please. Each left-eigenvector and each right-eigenvector has an arbitrary
magnitude. The natural constraints to use are as follows. First, we constrain
the inner products with:

e
(a)
L

(ε)e
(a)
R

(ε) = 1, for all a. (C.16)

Expanding the eigenvectors in ε, equation (C.19) implies

(e
(a)
L

(0) + εf
(a)
L

+ · · ·)(e(a)
R

(0) + εf
(a)
R

+ · · ·) = 1, (C.17)

from which we can extract the terms in ε, which say:

e
(a)
L

(0)f
(a)
R

+ f
(a)
L

e
(a)
R

(0) = 0 (C.18)

We are now free to choose the two constraints:

e
(a)
L

(0)f
(a)
R

= 0, f
(a)
L

e
(a)
R

(0) = 0, (C.19)

which in the special case of a symmetric matrix correspond to constraining
the eigenvectors to be of constant length, as defined by the Euclidean norm.

OK, now that we have defined our cast of characters, what do the defining
equations (C.11) and (C.9) tell us about our Taylor expansions (C.13) and
(C.15)? We expand equation (C.11) in ε.

(H(0)+εV+· · ·)(e(a)
R

(0)+εf
(a)
R

+· · ·) = (λ(a)(0)+εµ(a)+· · ·)(e(a)
R

(0)+εf
(a)
R

+· · ·).
(C.20)

Identifying the terms of order ε, we have:

H(0)f
(a)
R

+ Ve
(a)
R

(0) = λ(a)(0)f
(a)
R

+ µ(a)e
(a)
R

(0). (C.21)

We can extract interesting results from this equation by hitting it with e
(b)
L

(0):

e
(b)
L

(0)H(0)f
(a)
R

+ e
(b)
L

(0)Ve
(a)
R

(0) = e
(b)
L

(0)λ(a)(0)f
(a)
R

+ µ(a)e
(b)
L

(0)e
(a)
R

(0).

⇒ λ(b)e
(b)
L

(0)f
(a)
R

+ e
(b)
L

(0)Ve
(a)
R

(0) = λ(a)(0)e
(b)
L

(0)f
(a)
R

+ µ(a)δab. (C.22)

Setting b = a we obtain

e
(a)
L

(0)Ve
(a)
R

(0) = µ(a). (C.23)

Alternatively, choosing b 6= a, we obtain:

e
(b)
L

(0)Ve
(a)
R

(0) =
[

λ(a)(0) − λ(b)(0)
]

e
(b)
L

(0)f
(a)
R

(C.24)

⇒ e
(b)
L

(0)f
(a)
R

=
1

λ(a)(0) − λ(b)(0)
e

(b)
L

(0)Ve
(a)
R

(0). (C.25)

Now, assuming that the right-eigenvectors {e(b)
R

(0)}N
b=1 form a complete basis,

we must be able to write

f
(a)
R

=
∑

b

wbe
(b)
R

(0), (C.26)
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where
wb = e

(b)
L

(0)f
(a)
R

, (C.27)

so, comparing (C.25) and (C.27), we have:

f
(a)
R

=
∑

b6=a

e
(b)
L

(0)Ve
(a)
R

(0)

λ(a)(0) − λ(b)(0)
e

(b)
R

(0). (C.28)

Equations (C.23) and (C.28) are the solution to the first-order perturbation
theory problem, giving respectively the first derivative of the eigenvalue and
the eigenvectors.

Second-order perturbation theory

If we expand the eigenvector equation (C.11) to second order in ε, and assume
that the equation

H(ε) = H(0) + εV (C.29)

is exact, that is, H is a purely linear function of ε, then we have:

(H(0) + εV)(e
(a)
R

(0) + εf
(a)
R

+
1

2
ε2g

(a)
R

+ · · ·)

= (λ(a)(0) + εµ(a) + 1
2ε2ν(a) + · · ·)(e(a)

R
(0) + εf

(a)
R

+ 1
2ε2g

(a)
R

+ · · ·) (C.30)

where g
(a)
R

and ν(a) are the second derivatives of the eigenvector and eigenvalue.
Equating the second-order terms in ε in equation (C.30),

Vf
(a)
R

+
1

2
H(0)g

(a)
R

=
1

2
λ(a)(0)g

(a)
R

+
1

2
ν(a)e

(a)
R

(0) + µ(a)f
(a)
R

. (C.31)

Hitting this equation on the left with e
(a)
L

(0), we obtain:

e
(a)
L

(0)Vf
(a)
R

+
1

2
λ(a)e

(a)
L

(0)g
(a)
R

= 1
2λ(a)(0)e

(a)
L

(0)g
(a)
R

+ 1
2ν(a)e

(a)
L

(0)e
(a)
R

(0) + µ(a)e
(a)
L

(0)f
(a)
R

. (C.32)

The term e
(a)
L

(0)f
(a)
R

is equal to zero because of our constraints (C.19), so

e
(a)
L

(0)Vf
(a)
R

=
1

2
ν(a), (C.33)

so the second derivative of the eigenvalue with respect to ε is given by

1

2
ν(a) = e

(a)
L

(0)V
∑

b6=a

e
(b)
L

(0)Ve
(a)
R

(0)

λ(a)(0) − λ(b)(0)
e

(b)
R

(0) (C.34)

=
∑

b6=a

[e
(b)
L

(0)Ve
(a)
R

(0)][e
(a)
L

(0)Ve
(b)
R

(0)]

λ(a)(0) − λ(b)(0)
. (C.35)

This is as far as we will take the perturbation expansion.

Summary

If we introduce the abbreviation Vba for e
(b)
L

(0)Ve
(a)
R

(0), we can write the
eigenvectors of H(ε) = H(0) + εV to first order as

e
(a)
R

(ε) = e
(a)
R

(0) + ε
∑

b6=a

Vba

λ(a)(0) − λ(b)(0)
e

(b)
R

(0) + · · · (C.36)

and the eigenvalues to second order as

λ(a)(ε) = λ(a)(0) + εVaa + ε2
∑

b6=a

VbaVab

λ(a)(0) − λ(b)(0)
+ · · · . (C.37)
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�
C.4 Some numbers

28192 102466 Number of distinct 1-kilobyte files
21024 10308 Number of states of a 2D Ising model with 32×32 spins

21000 10301 Number of binary strings of length 1000
2500 3×10150

2469 10141 Number of binary strings of length 1000 having 100 1s and 900 0s
2266 1080 Number of electrons in universe

2200 1.6×1060

2190 1057 Number of electrons in solar system
2171 3×1051 Number of electrons in the earth

2100 1030

298 3×1029 Age of universe/picoseconds

258 3×1017 Age of universe/seconds
250 1015

240 1012

1011 Number of neurons in human brain
1011 Number of bits stored on a DVD

3×1010 Number of bits in the wheat genome
6×109 Number of bits in the human genome

232 6×109 Population of earth
230 109

2.5 × 108 Number of fibres in the corpus callosum
2×108 Number of bits in C. Elegans (a worm) genome
2×108 Number of bits in Arabidopsis thaliana (a flowering plant related to broccoli) genome

225 3×107 One year/seconds
2×107 Number of bits in the compressed PostScript file that is this book
2×107 Number of bits in unix kernel

107 Number of bits in the E. Coli genome, or in a floppy disk
4×106 Number of years since human/chimpanzee divergence

220 106 1 048 576

2×105 Number of generations since human/chimpanzee divergence
3 × 104 Number of genes in human genome
3 × 104 Number of genes in Arabidopsis thaliana genome
1.5×103 Number of base pairs in a gene

210 e7 103 210 = 1024; e7 = 1096

20 100 1

2−2 2.5×10−1 Lifetime probability of dying from smoking one pack of cigarettes per day.
10−2 Lifetime probability of dying in a motor vehicle accident

2−10 10−3

10−5 Lifetime probability of developing cancer because of drinking 2 litres per day of
water containing 12 p.p.b. benzene

2−20 10−6

3×10−8 Probability of error in transmission of coding DNA, per nucleotide, per generation
2−30 10−9

2−60 10−18 Probability of undetected error in a hard disk drive, after error correction


