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A

Notation

What does P(A j B ; C) mean? P(A j B ; C) is pronounced `the probabilit y
that A is true given that B is true and C is true'. Or, more brie
y , `the
probabilit y of A given B and C'. (SeeChapter 2, p.22.)

What do log and ln mean? In this book, logx means the base-two loga-
rithm, log2 x; ln x meansthe natural logarithm, loge x.

What does ŝ mean? Usually, a `hat' over a variable denotesa guessor es-
timator. So ŝ is a guessat the value of s.

In tegrals . There is no di�erence between
R

f (u) du and
R

du f (u). The inte-
grand is f (u) in both cases.

What does
NY

n=1

mean? This is like the summation
P N

n=1 but it denotesa

product. It's pronounced`product over n from 1 to N'. So, for example,

NY

n=1

n = 1 � 2 � 3 � � � � � N = N ! = exp

"
NX

n=1

ln n

#

: (A.1)

I like to choose the name of the free variable in a sum or a product {
here, n { to be the lower caseversion of the range of the sum. So n
usually runs from 1 to N , and m usually runs from 1 to M . This is a
habit I learnt from Yaser Abu-Mostafa, and I think it makes formulae
easierto understand.

What does
�

N
n

�
mean? This is pronounced `N choose n', and it is the

number of ways of selectingan unordered set of n objects from a set of
sizeN . �

N
n

�
=

N !
(N � n)! n!

: (A.2)

This function is known as the combination function.

What is �( x)? The gamma function is de�ned by �( x) �
R1

0 du ux� 1e� u ,
for x > 0. The gamma function is an extensionof the factorial function
to real number arguments. In general,�( x + 1) = x�( x), and for integer
arguments, �( x + 1) = x!. The digamma function is de�ned by 	 (x) �
d

dx ln �( x).

For large x (for practical purposes,0:1 � x � 1 ),

ln �( x) '
�
x � 1

2

�
ln(x) � x + 1

2 ln 2� + O(1=x); (A.3)
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and for small x (for practical purposes,0 � x � 0:5):

ln �( x) ' ln
1
x

� 
 ex + O(x2) (A.4)

where 
 e is Euler's constant.

What does H � 1
2 (1 � R=C) mean? Just assin� 1(s) denotesthe inversefunc-

tion to s = sin(x), so H � 1
2 (h) is the inversefunction to h = H 2(x).

There is potential confusion when people use sin2 x to denote (sin x)2,
since then we might expect sin� 1 s to denote 1=sin(s); I therefore like
to avoid using the notation sin2 x.

What does f 0(x) mean? The answer depends on the context. Often, a
`prime' is usedto denote di�eren tiation:

f 0(x) �
d

dx
f (x); (A.5)

similarly, a dot denotesdi�eren tiation with respect to time, t:

_x �
d
dt

x: (A.6)

However, the prime is also a useful indicator for `another variable', for
example `a new value for a variable'. So, for example, x0 might denote
`the new value of x'. Also, if there are two integersthat both rangefrom
1 to N , I will often name those integersn and n0.

So my rule is: if a prime occurs in an expressionthat could be a func-
tion, such as f 0(x) or h0(y), then it denotesdi�eren tiation; otherwise it
indicates `another variable'.

What is the error function? De�nitions of this function vary. I de�ne it
to be the cumulativ e probabilit y of a standard (variance = 1) normal
distribution,

�( z) �
Z z

�1
exp(� z2=2)=

p
2� dz: (A.7)

What does E(r ) mean? E[r ] is pronounced`the expectedvalue of r ' or `the
expectation of r ', and it is the mean value of r . Another symbol for
`expected value' is the pair of angle-brackets, hr i :

What does jxj mean? The vertical bars j̀ � j' have two meanings. If A is a
set, then jAj denotesthe number of elements in the set; if x is a number,
then jxj is the absolute value of x.

What does [A jP] mean? Here, A and P are matrices with the samenum-
ber of rows. [A jP] denotesthe double-width matrix obtained by putting
A alongside P. The vertical bar is used to avoid confusion with the
product AP .

What does xT mean? The superscript T is pronounced `transpose'. Trans-
posing a row-vector turns it into a column vector:

(1; 2; 3)T =

0

@
1
2
3

1

A ; (A.8)

and vice versa. [Normally my vectors, indicated by bold face type (x),
are column vectors.]

Similarly, matrices can be transposed. If M ij is the entry in row i and
column j of matrix M , and N = M T, then N j i = M ij .
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600 A | Notation

What are TraceM and det M? The trace of a matrix is the sum of its di-
agonal elements,

TraceM =
X

i

M ii : (A.9)

The determinant of M is denoted det M .

What does � mn mean? The � matrix is the identit y matrix.

� mn =
�

1 if m = n
0 if m 6= n.

Another name for the identit y matrix is I or 1. SometimesI include a
subscript on this symbol { 1K { which indicates the size of the matrix
(K � K ).

What does � (x) mean? The delta function has the property
Z

dx f (x)� (x) = f (0): (A.10)

Another possiblemeaning for � (S) is the truth function, which is 1 if the
proposition S is true but I have adopted another notation for that. After
all, the symbol � is quite busy already, with the two rolesmentioned above
in addition to its role asa small real number � and an increment operator
(as in � x)!

What does
�

[S] mean?
�

[S] is the truth function, which is 1 if the propo-
sition S is true and 0 otherwise. For example, the number of positive
numbers in the set T = f� 2; 1; 3g can be written

X

x2 T

�

[x > 0]: (A.11)

What is the di�erence between `:= ' and `= ' ? In an algorithm, x := y
meansthat the variable x is updated by assigningit the value of y.

In contrast, x = y is a proposition, a statement that x is equal to y.

SeeChapters 23 and 29 for further de�nitions and notation relating to
probabilit y distributions.
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B

SomePhysics

�

B.1 About phase transitions

A system with states x in contact with a heat bath at temperature T = 1=�
has probabilit y distribution

P(x j � ) =
1

Z (� )
exp(� � E (x)) : (B.1)

The partition function is

Z (� ) =
X

x

exp(� � E (x)) : (B.2)

The inverse temperature � can be interpreted as de�ning an exchange rate
between entropy and energy. (1=� ) is the amount of energy that must be
given to a heat bath to increaseits entropy by one nat.

Often, the system will be a�ected by someother parameters such as the
volume of the box it is in, V , in which caseZ is a function of V too, Z (� ; V ).

For any system with a �nite number of states, the function Z (� ) is evi-
dently a continuous function of � , since it is simply a sum of exponentials.
Moreover, all the derivativesof Z (� ) with respect to � are continuous too.

What phasetransitions are all about, however, is this: phasetransitions
correspond to valuesof � and V (called critical points) at which the derivatives
of Z have discontinuities or divergences.

Immediately we can deduce:

Only systems with an in�nite number of states can show phase
transitions.

Often, we include a parameter N describing the sizeof the system. Phase
transitions may appear in the limit N ! 1 . Real systemsmay have a value
of N like 1023.

If we make the system large by simply grouping together N independent
systemswhosepartition function is Z (1) (� ), then nothing interesting happens.
The partition function for N independent identical systemsis simply

Z(N ) (� ) = [Z (1) (� )]N : (B.3)

Now, while this function Z (N ) (� ) may be a very rapidly varying function of � ,
that doesn't mean it is showing phasetransitions. The natural way to look at
the partition function is in the logarithm

ln Z (N ) (� ) = N ln Z (1) (� ): (B.4)
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602 B | SomePhysics

Duplicating the original system N times simply scalesup all properties like
the energyand heat capacity of the systemby a factor of N . So if the original
systemshowed no phasetransitions then the scaledup systemwon't have any
either.

Only systemswith long-rangecorrelations show phasetransitions.

Long-rangecorrelations do not require long-rangeenergeticcouplings; for
example, a magnet has only short-range couplings (between adjacent spins)
but theseare su�cien t to create long-rangeorder.

Why are points at which derivativesdiverge interesting?

The derivatives of ln Z describe properties like the heat capacity of the sys-
tem (that's the secondderivative) or its 
uctuations in energy. If the second
derivative of ln Z divergesat a temperature 1=� , then the heat capacity of the
system divergesthere, which means it can absorb or releaseenergy without
changing temperature (think of ice melting in ice water); when the system is
at equilibrium at that temperature, its energy 
uctuates a lot, in contrast to
the normal law-of-large-numbers behaviour, where the energy only varies by
one part in

p
N .

A toy systemthat showsa phasetransition

Imagine a collection of N coupled spins that have the following energy as a
function of their state x 2 f 0; 1gN .

E (x) =
�

� N � x = (0; 0; 0; : : : ; 0)
0 otherwise.

(B.5)

This energyfunction describesa ground state in which all the spinsare aligned
in the zero direction; the energy per spin in this state is � � . if any spin
changesstate then the energy is zero. This model is like an extreme version
of a magnetic interaction, which encouragespairs of spins to be aligned.

We can contrast it with an ordinary systemof N independent spins whose
energy is:

E 0(x) = �
X

n

(2xn � 1): (B.6)

Like the �rst system, the system of independent spins has a single ground
state (0; 0; 0; : : : ; 0) with energy� N � , and it hasroughly 2N stateswith energy
very closeto 0, sothe low-temperature and high-temperature properties of the
independent-spin systemand the coupled-spinsystem are virtually identical.

The partition function of the coupled-spinsystem is

Z (� ) = e� N � + 2N � 1: (B.7)

The function
ln Z (� ) = ln

�
e� N � + 2N � 1

�
(B.8)

is sketched in �gure B.1a along with its low temperature behaviour,

ln Z (� ) ' N � �; � ! 1 ; (B.9)

and its high temperature behaviour,

ln Z (� ) ' N ln 2; � ! 0: (B.10)
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(a)
beta

log Z
N beta epsilon

N log (2)

(c)
beta

var(E) N=24
var(E)  N=8

(b)
beta

log Z
N beta epsilon

N log (2)

FigureB.1. (a) Partition function
of toy systemwhich shows a phase
transition for large N . The arrow
marks the point � c = log2=�. (b)
The same,for larger N .
(c) The variance of the energy of
the system as a function of � for
two system sizes.As N increases
the variance has an increasingly
sharp peak at the critical point � c.
Contrast with �gure B.2.

(a)
beta

log Z
N beta epsilon

N log (2)

(b)
beta

var(E) N=24
var(E)  N=8

FigureB.2. The partition function
(a) and energy-variance (b) of a
system consisting of N
independent spins. The partition
function changesgradually from
one asymptote to the other,
regardlessof how large N is; the
variance of the energy doesnot
have a peak. The 
uctuations are
largest at high temperature (small
� ) and scalelinearly with system
sizeN .

The arrow marks the point

� =
ln 2
�

(B.11)

at which these two asymptotes intersect. In the limit N ! 1 , the graph of
ln Z (� ) becomesmore and more sharply bent at this point (�gure B.1b).

The secondderivative of ln Z , which describes the variance of the energy
of the system, has a peak value, at � = ln 2=�, roughly equal to

N 2� 2

4
; (B.12)

which corresponds to the systemspending half of its time in the ground state
and half its time in the other states.

At this critical point, the heat capacity of this systemis thus proportional
to N 2; the heat capacity per spin is proportional to N , which, for in�nite N , is
in�nite, in contrast to the behaviour of systemsaway from phasetransitions,
whosecapacity per atom is a �nite number.

For comparison,�gure B.2 showsthe partition function and energy-variance
of the ordinary independent-spin system.

More generally

Phasetransitions can be categorizedinto `�rst-order' and `continuous' transi-
tions. In a �rst-order phasetransition, there is a discontinuous changeof one
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604 B | SomePhysics

or more order-parameters; in a continuous transition, all order-parameters
changecontinuously. [What's an order-parameter? { a scalar function of the
state of the system; or, to be precise,the expectation of such a function.]

In the vicinit y of a critical point, the concept of `typicalit y' de�ned in
Chapter 4 does not hold. For example, our toy system, at its critical point,
has a 50% chanceof being in a state with energy� N � , and roughly a 1=2N +1

chanceof being in each of the other statesthat have energyzero. It is thus not
the casethat ln 1=P(x) is very likely to be closeto the entropy of the system
at this point, unlike a systemwith N i.i.d. components.

Remember that information content (ln 1=P(x)) and energyarevery closely
related. If typicalit y holds, then the system's energy has negligible 
uctua-
tions, and vice versa.
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C

SomeMathematics

�

C.1 Finite �eld theory

Most linear codesare expressed in the languageof Galois theory

Why are Galois �elds an appropriate languagefor linear codes? First, a de�-
nition and someexamples.

A �eld F is a set F = f 0; F 0g such that

1. F forms an Abelian group under an addition operation `+', with
0 being the identit y; [Abelian means all elements commute, i.e.,
satisfy a + b = b+ a.]

2. F 0 forms an Abelian group under a multiplication operation �̀';
multiplication of any element by 0 yields 0;

3. theseoperations satisfy the distributiv e rule (a+ b) � c = a � c+ b� c.

+ 0 1
0 0 1
1 1 0

� 0 1
0 0 0
1 0 1

TableC.1. Addition and
multiplication tables for GF (2).

For example, the real numbers form a �eld, with `+' and �̀' denoting
ordinary addition and multiplication.

A Galois �eld GF (q) is a �eld with a �nite number of elements q.

A unique Galois �eld exists for any q = pm , where p is a prime number
and m is a positive integer; there are no other �nite �elds.

GF (2): The addition and multiplication tables for GF (2) are shown in ta-
ble C.1. Theseare the rules of addition and multiplication modulo 2.

GF (p): For any prime number p, the addition and multiplication rules are
those for ordinary addition and multiplication, modulo p.

GF (4): The rules for GF (pm ), with m > 1, are not thoseof ordinary addition
and multiplication. For examplethe tables for GF (4) (table C.2) are not

+ 0 1 A B
0 0 1 A B
1 1 0 B A
A A B 0 1
B B A 1 0

� 0 1 A B
0 0 0 0 0
1 0 1 A B
A 0 A B 1
B 0 B 1 A

TableC.2. Addition and
multiplication tables for GF (4).

the rules of addition and multiplication modulo 4. Notice that 1+ 1 = 0,
for example. So how can GF (4) be described? It turns out that the
elements can be related to polynomials. Consider polynomial functions
of x of degree1 and with coe�cien ts that are elements of GF (2). The
polynomials shown in table C.3 obey the addition and multiplication
rules of GF (4) if addition and multiplication are modulo the polynomial
x2 + x + 1, and the coe�cien ts of the polynomials are from GF (2). For
example,B � B = x2 + (1 + 1)x + 1 = x = A. Each element may also be
represented as a bit pattern as shown in table C.3, with addition being
bitwise modulo 2, and multiplication de�ned with an appropriate carry
operation.

Element Polynomial Bit pattern

0 0 00
1 1 01
A x 10
B x + 1 11

TableC.3. Representations of the
elements of GF (4).
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606 C | SomeMathematics

GF (8). Wecandenotethe elements of GF (8) by f 0; 1; A; B ; C; D ; E ; F g. Each
element can be mapped onto a polynomial over GF (2). The multiplica-
tion and addition operations are given by multiplication and addition of
the polynomials, modulo x3 + x + 1. The multiplication table is given
below.

element polynomial binary representation

0 0 000
1 1 001
A x 010
B x + 1 011
C x2 100
D x2 + 1 101
E x2 + x 110
F x2 + x + 1 111

� 0 1 A B C D E F
0 0 0 0 0 0 0 0 0
1 0 1 A B C D E F
A 0 A C E B 1 F D
B 0 B E D F C 1 A
C 0 C B F E A D 1
D 0 D 1 C A F B E
E 0 E F 1 D B A C
F 0 F D A 1 E C B

Why are Galois �elds relevant to linear codes? Imagine generalizinga binary
generatormatrix G and binary vector s to a matrix and vector with elements
from a larger set, and generalizingthe addition and multiplication operations
that de�ne the product Gs. In order to produce an appropriate input for
a symmetric channel, it would be convenient if, for random s, the product
Gs produced all elements in the enlarged set with equal probabilit y. This
uniform distribution is easiest to guarantee if these elements form a group
under both addition and multiplication, becausethen theseoperations do not
break the symmetry among the elements. When two random elements of a
multiplicativ e group are multiplied together, all elements are produced with
equal probabilit y. This is not true of other setssuch as the integers,for which
the multiplication operation is more likely to give rise to someelements (the
composite numbers) than others. Galois �elds, by their de�nition, avoid such
symmetry-breaking e�ects.

�

C.2 Eigenvectors and eigenvalues

A right-eigenvector of a squarematrix A is a non-zerovector eR that satis�es

Ae R = � eR; (C.1)

where � is the eigenvalue associated with that eigenvector. The eigenvalue
may be a real number or complex number and it may be zero. Eigenvectors
may be real or complex.

A left-eigenvector of a matrix A is a vector eL that satis�es

eT
LA = � eT

L: (C.2)

The following statements for right-eigenvectors alsoapply to left-eigenvectors.

� If a matrix has two or more linearly independent right-eigenvectors with
the sameeigenvalue then that eigenvalue is calleda degenerateeigenvalue
of the matrix, or a repeatedeigenvalue. Any linear combination of those
eigenvectors is another right-eigenvector with the sameeigenvalue.

� The principal right-eigenvector of a matrix is, by de�nition, the right-
eigenvector with the largest associated eigenvalue.

� If a real matrix has a right-eigenvector with complex eigenvalue � =
x + yi then it also has a right-eigenvector with the conjugate eigenvalue
� � = x � yi .
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Symmetric matrices

If A is a real symmetric N � N matrix then

1. all the eigenvaluesand eigenvectors of A are real;

2. every left-eigenvector of A is alsoa right-eigenvector of A with the same
eigenvalue, and vice versa;

3. a set of N eigenvectors and eigenvalues f e(a) ; � agN
a=1 can be found that

are orthonormal, that is,

e(a) �e(b) = � ab; (C.3)

the matrix can be expressedas a weighted sum of outer products of the
eigenvectors:

A =
NX

a=1

� a[e(a) ][e(a) ]T: (C.4)

(Whereas I often usei and n as indices for setsof sizeI and N , I will usethe
indices a and b to run over eigenvectors, even if there are N of them. This is
to avoid confusionwith the components of the eigenvectors,which are indexed
by n, e.g. e(a)

n .)

General square matrices

An N � N matrix can have up to N distinct eigenvalues. Generically, there
are N eigenvalues,all distinct, and each hasoneleft-eigenvector and oneright-
eigenvector. In caseswhere two or more eigenvaluescoincide, for each distinct
eigenvalue that is non-zerothere is at least one left-eigenvector and oneright-
eigenvector.

Left- and right-eigenvectors that have di�eren t eigenvalue are orthogonal,
that is,

if � a 6= � b then e(a)
L �e(b)

R = 0: (C.5)

Non-negative matrices

De�nition. If all the elements of a non-zeromatrix C satisfy Cmn � 0 then C
is a non-negative matrix. Similarly, if all the elements of a non-zerovector c
satisfy cn � 0 then c is a non-negative vector.

Properties. A non-negative matrix has a principal eigenvector that is non-
negative. It may also have other eigenvectors with the sameeigenvalue that
are not non-negative. But if the principal eigenvalue of a non-negative matrix
is not degenerate,then the matrix hasonly oneprincipal eigenvector e(1) , and
it is non-negative.

Generically, all the other eigenvalues are smaller in absolute magnitude.
[There can be several eigenvaluesof identical magnitude in special cases.]

Transition probability matrices

An important example of a non-negative matrix is a transition probabilit y
matrix Q.

De�nition. A transition probabilit y matrix Q hascolumnsthat are probabilit y
vectors, that is, it satis�es Q � 0 and

X

i

Qij = 1 for all j : (C.6)
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Matrix Eigenvaluesand eigenvectors eL; eR

2

4
1 2 0
1 1 0
0 0 1

3

5

2:41 1 � 0:412

4
:58
:82

0

3

5

2

4
:82
:58

0

3

5

2

4
0
0
1

3

5

2

4
0
0
1

3

5

2

4
� :58

:82
0

3

5

2

4
� :82

:58
0

3

5

�
0 1
1 1

� 1:62 � 0:62�
:53
:85

� �
:53
:85

� �
:85

� :53

� �
:85

� :53

�

2

6
6
4

1 1 0 0
0 0 0 1
1 0 0 0
0 0 1 1

3

7
7
5

1:62 0:5+ 0:9i 0:5� 0:9i � 0:622

6
6
4

:60
:37
:37
:60

3

7
7
5

2

6
6
4

:60
:37
:37
:60

3

7
7
5

2

6
6
4

:1� :5i
� :3� :4i

:3+ :4i
� :1+ :5i

3

7
7
5

2

6
6
4

:1� :5i
:3+ :4i

� :3� :4i
� :1+ :5i

3

7
7
5

2

6
6
4

:1+ :5i
� :3+ :4i

:3� :4i
� :1� :5i

3

7
7
5

2

6
6
4

:1+ :5i
:3� :4i

� :3+ :4i
� :1� :5i

3

7
7
5

2

6
6
4

:37
� :60
� :60

:37

3

7
7
5

2

6
6
4

:37
� :60
� :60

:37

3

7
7
5

TableC.4. Somematrices and their eigenvectors.

TableC.5. Transition probabilit y matrices for generating random paths through trellises.

Matrix Eigenvaluesand eigenvectors eL; eR

�
0 :38
1 :62

� 1 � 0:38�
:71
:71

� �
:36
:93

� �
� :93

:36

� �
� :71

:71

�

2

4
0 :35 0
0 0 :46
1 :65 :54

3

5

1 � 0:2� 0:3i � 0:2+ 0:3i2

4
:58
:58
:58

3

5

2

4
:14
:41
:90

3

5

2

4
� :8+ :1i
� :2� :5i

:2+ :2i

3

5

2

4
:2� :5i

� :6+ :2i
:4+ :3i

3

5

2

4
� :8� :1i
� :2+ :5i

:2� :2i

3

5

2

4
:2+ :5i

� :6� :2i
:4� :3i

3

5

This property canberewritten in terms of the all-onesvector n = (1; 1; : : : ; 1)T:

nTQ = nT: (C.7)

So n is the principal left-eigenvector of Q with eigenvalue � 1 = 1.

e(1)
L = n: (C.8)

Becauseit is a non-negative matrix, Q has a principal right-eigenvector that
is non-negative, e(1)

R . Generically, for Markov processesthat are ergodic, this
eigenvector is the only right-eigenvector with eigenvalue of magnitude 1 (see
table C.6 for illustrativ e exceptions). This vector, if we normalize it such that
e(1)

R �n = 1, is called the invariant distribution of the transition probabilit y
matrix. It is the probabilit y density that is left unchangedunder Q. Unlike
the principal left-eigenvector, which we explicitly identi�ed above, we can't
usually identify the principal right-eigenvector without computation.

The matrix may have up to N � 1 other right-eigenvectors all of which are
orthogonal to the left-eigenvector n, that is, they are zero-sumvectors.

�

C.3 Perturbation theory

Perturbation theory is not used in this book, but it is useful in this book's
�elds. In this section we derive �rst-order perturbation theory for the eigen-
vectors and eigenvalues of square,not necessarily symmetric, matrices. Most
presentations of perturbation theory focus on symmetric matrices, but non-
symmetric matrices (such astransition matrices) alsodeserve to be perturb ed!
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TableC.6. Illustrativ e transition probabilit y matrices and their eigenvectors showing the two ways of
being non-ergodic. (a) More than one principal eigenvector with eigenvalue 1 becausethe
state spacefalls into two unconnectedpieces. (a0) A small perturbation breaks the degen-
eracy of the principal eigenvectors. (b) Under this chain, the density may oscillate between
two parts of the state space. In addition to the invariant distribution, there is another
right-eigenvector with eigenvalue � 1. In general such circulating densities correspond to
complex eigenvalueswith magnitude 1.

Matrix Eigenvaluesand eigenvectors eL; eR

(a)

2

6
6
4

:90 :20 0 0
:10 :80 0 0
0 0 :90 :20
0 0 :10 :80

3

7
7
5

1 1 0:70 0:702

6
6
4

0
0

:71
:71

3

7
7
5

2

6
6
4

0
0

:89
:45

3

7
7
5

2

6
6
4

:71
:71

0
0

3

7
7
5

2

6
6
4

:89
:45

0
0

3

7
7
5

2

6
6
4

:45
� :89

0
0

3

7
7
5

2

6
6
4

:71
� :71

0
0

3

7
7
5

2

6
6
4

0
0

� :45
:89

3

7
7
5

2

6
6
4

0
0

� :71
:71

3

7
7
5

(a0)

2

6
6
4

:90 :20 0 0
:10 :79 :02 0
0 :01 :88 :20
0 0 :10 :80

3

7
7
5

1 0:98 0:70 0:692

6
6
4

:50
:50
:50
:50

3

7
7
5

2

6
6
4

:87
:43
:22
:11

3

7
7
5

2

6
6
4

� :18
� :15

:66
:72

3

7
7
5

2

6
6
4

� :66
� :28

:61
:33

3

7
7
5

2

6
6
4

:20
� :40
� :40

:80

3

7
7
5

2

6
6
4

:63
� :63
� :32

:32

3

7
7
5

2

6
6
4

� :19
:41

� :44
:77

3

7
7
5

2

6
6
4

� :61
:65

� :35
:30

3

7
7
5

(b)

2

6
6
4

0 0 :90 :20
0 0 :10 :80

:90 :20 0 0
:10 :80 0 0

3

7
7
5

1 0:70 � 0:70 � 12

6
6
4

:50
:50
:50
:50

3

7
7
5

2

6
6
4

:63
:32
:63
:32

3

7
7
5

2

6
6
4

� :32
:63

� :32
:63

3

7
7
5

2

6
6
4

:50
� :50

:50
� :50

3

7
7
5

2

6
6
4

:32
� :63
� :32

:63

3

7
7
5

2

6
6
4

� :50
:50
:50

� :50

3

7
7
5

2

6
6
4

:50
:50

� :50
� :50

3

7
7
5

2

6
6
4

:63
:32

� :63
� :32

3

7
7
5

We assumethat we have an N � N matrix H that is a function H (� ) of
a real parameter � , with � = 0 being our starting point. We assumethat a
Taylor expansionof H (� ) is appropriate:

H (� ) = H (0) + � V + � � � (C.9)

where

V �
@H
@�

: (C.10)

We assumethat for all � of interest, H (� ) has a complete set of N right-
eigenvectorsand left-eigenvectors, and that theseeigenvectorsand their eigen-
valuesare continuous functions of � . This last assumption is not necessarilya
good one: if H (0) has degenerateeigenvaluesthen it is possiblefor the eigen-
vectors to be discontinuous in � ; in such cases,degenerateperturbation theory
is needed. That's a fun topic, but let's stick with the non-degeneratecase
here.

We write the eigenvectors and eigenvaluesas follows:

H (� )e(a)
R (� ) = � (a) (� )e(a)

R (� ); (C.11)

and we Taylor-expand

� (a) (� ) = � (a) (0) + �� (a) + � � � (C.12)

with

� (a) �
@� (a) (� )

@�
(C.13)

and
e(a)

R (� ) = e(a)
R (0) + � f (a)

R + � � � (C.14)
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with

f (a)
R �

@e(a)
R

@�
; (C.15)

and similar de�nitions for e(a)
L and f (a)

L . We de�ne theseleft-vectors to be row
vectors, so that the `transpose' operation is not neededand can be banished.

Wearefreeto constrain the magnitudesof the eigenvectorsin whatever way
we please. Each left-eigenvector and each right-eigenvector has an arbitrary
magnitude. The natural constraints to useare as follows. First, we constrain
the inner products with:

e(a)
L (� )e(a)

R (� ) = 1; for all a: (C.16)

Expanding the eigenvectors in � , equation (C.19) implies

(e(a)
L (0) + � f (a)

L + � � �)(e(a)
R (0) + � f (a)

R + � � �) = 1; (C.17)

from which we can extract the terms in � , which say:

e(a)
L (0)f (a)

R + f (a)
L e(a)

R (0) = 0 (C.18)

We are now free to choosethe two constraints:

e(a)
L (0)f (a)

R = 0; f (a)
L e(a)

R (0) = 0; (C.19)

which in the special caseof a symmetric matrix correspond to constraining
the eigenvectors to be of constant length, as de�ned by the Euclidean norm.

OK, now that we have de�ned our cast of characters, what do the de�ning
equations (C.11) and (C.9) tell us about our Taylor expansions(C.13) and
(C.15)? We expand equation (C.11) in � .

(H (0)+ � V + � � �)(e(a)
R (0)+ � f (a)

R + � � �) = (� (a) (0)+ �� (a)+ � � �)(e(a)
R (0)+ � f (a)

R + � � �):
(C.20)

Identifying the terms of order � , we have:

H (0)f (a)
R + Ve(a)

R (0) = � (a) (0)f (a)
R + � (a)e(a)

R (0): (C.21)

We can extract interesting results from this equation by hitting it with e(b)
L (0):

e(b)
L (0)H (0)f (a)

R + e(b)
L (0)Ve(a)

R (0) = e(b)
L (0)� (a) (0)f (a)

R + � (a)e(b)
L (0)e(a)

R (0):

) � (b)e(b)
L (0)f (a)

R + e(b)
L (0)Ve(a)

R (0) = � (a) (0)e(b)
L (0)f (a)

R + � (a) � ab: (C.22)

Setting b = a we obtain

e(a)
L (0)Ve(a)

R (0) = � (a) : (C.23)

Alternativ ely, choosing b 6= a, we obtain:

e(b)
L (0)Ve(a)

R (0) =
h
� (a) (0) � � (b) (0)

i
e(b)

L (0)f (a)
R (C.24)

) e(b)
L (0)f (a)

R =
1

� (a) (0) � � (b) (0)
e(b)

L (0)Ve(a)
R (0): (C.25)

Now, assumingthat the right-eigenvectors f e(b)
R (0)gN

b=1 form a completebasis,
we must be able to write

f (a)
R =

X

b

wbe
(b)
R (0); (C.26)
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where
wb = e(b)

L (0)f (a)
R ; (C.27)

so, comparing (C.25) and (C.27), we have:

f (a)
R =

X

b6= a

e(b)
L (0)Ve(a)

R (0)
� (a) (0) � � (b) (0)

e(b)
R (0): (C.28)

Equations (C.23) and (C.28) are the solution to the �rst-order perturbation
theory problem, giving respectively the �rst derivative of the eigenvalue and
the eigenvectors.

Second-order perturbation theory

If we expand the eigenvector equation (C.11) to secondorder in � , and assume
that the equation

H (� ) = H (0) + � V (C.29)

is exact, that is, H is a purely linear function of � , then we have:

(H (0) + � V )(e(a)
R (0) + � f (a)

R +
1
2

� 2g(a)
R + � � �)

= (� (a) (0) + �� (a) + 1
2 � 2� (a) + � � �)(e(a)

R (0) + � f (a)
R + 1

2 � 2g(a)
R + � � �) (C.30)

whereg(a)
R and � (a) arethe secondderivativesof the eigenvector and eigenvalue.

Equating the second-orderterms in � in equation (C.30),

Vf (a)
R +

1
2

H (0)g(a)
R =

1
2

� (a) (0)g(a)
R +

1
2

� (a)e(a)
R (0) + � (a) f (a)

R : (C.31)

Hitting this equation on the left with e(a)
L (0), we obtain:

e(a)
L (0)Vf (a)

R +
1
2

� (a)e(a)
L (0)g(a)

R

= 1
2 � (a) (0)e(a)

L (0)g(a)
R + 1

2 � (a)e(a)
L (0)e(a)

R (0) + � (a)e(a)
L (0)f (a)

R : (C.32)

The term e(a)
L (0)f (a)

R is equal to zero becauseof our constraints (C.19), so

e(a)
L (0)Vf (a)

R =
1
2

� (a) ; (C.33)

so the secondderivative of the eigenvalue with respect to � is given by

1
2

� (a) = e(a)
L (0)V

X

b6= a

e(b)
L (0)Ve(a)

R (0)
� (a) (0) � � (b) (0)

e(b)
R (0) (C.34)

=
X

b6= a

[e(b)
L (0)Ve(a)

R (0)][e(a)
L (0)Ve(b)

R (0)]

� (a) (0) � � (b) (0)
: (C.35)

This is as far as we will take the perturbation expansion.

Summary

If we introduce the abbreviation Vba for e(b)
L (0)Ve(a)

R (0), we can write the
eigenvectors of H (� ) = H (0) + � V to �rst order as

e(a)
R (� ) = e(a)

R (0) + �
X

b6= a

Vba

� (a) (0) � � (b) (0)
e(b)

R (0) + � � � (C.36)

and the eigenvalues to secondorder as

� (a) (� ) = � (a) (0) + �Vaa + � 2
X

b6= a

VbaVab

� (a) (0) � � (b) (0)
+ � � � : (C.37)
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�

C.4 Some numbers

28192 102466 Number of distinct 1-kilobyte �les
21024 10308 Number of states of a 2D Ising model with 32� 32 spins

21000 10301 Number of binary strings of length 1000
2500 3� 10150

2469 10141 Number of binary strings of length 1000having 100 1s and 900 0s
2266 1080 Number of electrons in universe

2200 1:6� 1060

2190 1057 Number of electrons in solar system
2171 3� 1051 Number of electrons in the earth

2100 1030

298 3� 1029 Age of universe/picoseconds

258 3� 1017 Age of universe/seconds
250 1015

240 1012

1011 Number of neuronsin human brain
1011 Number of bits stored on a DVD

3� 1010 Number of bits in the wheat genome
6� 109 Number of bits in the human genome

232 6� 109 Population of earth
230 109

2:5 � 108 Number of �bres in the corpus callosum
2� 108 Number of bits in C. Elegans(a worm) genome
2� 108 Number of bits in Arabidopsisthaliana (a 
o wering plant related to broccoli) genome

225 3� 107 One year/seconds
2� 107 Number of bits in the compressedPostScript �le that is this book
2� 107 Number of bits in unix kernel

107 Number of bits in the E. Coli genome,or in a 
opp y disk
4� 106 Number of yearssincehuman/chimpanzeedivergence

220 106 1048576

2� 105 Number of generationssincehuman/chimpanzeedivergence
3 � 104 Number of genesin human genome
3 � 104 Number of genesin Arabidopsisthaliana genome
1:5� 103 Number of basepairs in a gene

210 e7 103 210 = 1024;e7 = 1096

20 100 1

2� 2 2:5� 10� 1 Lifetime probabilit y of dying from smoking one pack of cigarettes per day.
10� 2 Lifetime probabilit y of dying in a motor vehicle accident

2� 10 10� 3

10� 5 Lifetime probabilit y of developing cancer becauseof drinking 2 litres per day of
water containing 12p.p.b. benzene

2� 20 10� 6

3� 10� 8 Probabilit y of error in transmission of coding DNA, per nucleotide, per generation
2� 30 10� 9

2� 60 10� 18 Probabilit y of undetected error in a hard disk drive, after error correction


