
Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Index 621

Bob, 199
Boltzmann entropy, 85
Boltzmann machine, 522
bombes, 265
book ISBN, 235
bookies, 456
Bottou, Leon, 121
bound, 85

union, 166, 216, 230
bounded-distance decoder, 207, 212
bounding chain, 419
box, 343, 351
boyish matters, 58
brain, 468
Bridge, 126
British, 260
broadcast channel, 237, 239, 594
Brody, Carlos, 246
Brownian motion, 280, 316, 535
BSC, see channel, binary symmetric
budget, 94, 96
Buffon’s needle, 38
BUGS, 371, 431
buoy, 307
burglar alarm and earthquake, 293
Burrows–Wheeler transform, 121
burst errors, 185, 186
bus-stop paradox, 39, 46, 107
byte, 134, 265

cable labelling, 175
calculator, 320
camera, 549
canonical, 88
capacity, 14, 146, 150, 151, 183, 484

channel with synchronization
errors, 187

constrained channel, 251
Gaussian channel, 182
Hopfield network, 514
neural network, 483
neuron, 483
symmetry argument, 151

car data reception, 594
card, 233
casting out nines, 198
Cauchy distribution, 85, 88, 313, 362
caution, see sermon

equipartition, 83
Gaussian distribution, 312
importance sampling, 362, 382
sampling theory, 64

cave, 214
caveat, see caution and sermon
cellphone, see mobile phone
cellular automaton, 130
central-limit theorem, 36, 41, 88, 131,

see law of large numbers
centre of gravity, 35
chain rule, 528
challenges, 246

Tanner, 569
channel

AWGN, 177
binary erasure, 148, 151

binary symmetric, 4, 146, 148,
151, 206, 211, 215, 229

broadcast, 237, 239, 594
bursty, 185, 557
capacity, 14, 146, 150, 250

connection with physics, 257
coding theorem, see

noisy-channel coding
theorem

complex, 184, 557
constrained, 248, 255, 256
continuous, 178
discrete memoryless, 147
erasure, 188, 219, 589
extended, 153
fading, 186
Gaussian, 155, 177, 186
input ensemble, 150
multiple access, 237
multiterminal, 239
noiseless, 248
noisy, 3, 146
noisy typewriter, 148, 152
symmetric, 171
two-dimensional, 262
unknown noise level, 238
variable symbol durations, 256
with dependent sources, 236
with memory, 557
Z channel, 148, 149, 150, 172

cheat, 200
Chebyshev inequality, 81, 85
checkerboard, 404, 520
Chernoff bound, 85
chess, 451
chess board, 406, 520
chi-squared, 27, 40, 323, 458
Cholesky decomposition, 552
chromatic aberration, 552
cinema, 187
circle, 316
classical statistics, 64

criticisms, 32, 50, 457
classifier, 532
Clockville, 39
clustering, 284, 303
coalescence, 413
cocked hat, 307
code, see error-correcting code, source

code (for data compression),
symbol code, arithmetic
coding, linear code, random
code or hash code

dual, see error-correcting code,
dual

for constrained channel, 249
variable-length, 255

code-equivalent, 576
codebreakers, 265
codeword, see source code, symbol

code, or error-correcting
code

coding theory, 4, 19, 205, 215, 574
coin, 1, 30, 38, 63, 76, 307, 464
coincidence, 267, 343, 351

collective, 403
collision, 200
coloured noise, 179
combination, 2, 490, 598
commander, 241
communication, v, 3, 16, 138, 146,

156, 162, 167, 178, 182, 186,
192, 205, 210, 215, 394, 556,
562, 596

broadcast, 237
of dependent information, 236
over noiseless channels, 248
perspective on learning, 483, 512

competitive learning, 285
complexity, 531, 548
complexity control, 289, 346, 347, 349
compress, 119
compression, see source code

future methods, 129
lossless, 74
lossy, 74, 284, 285
of already-compressed files, 74
of any file, 74
universal, 121

computer, 370
concatenation, 185, 214, 220

error-correcting codes, 16, 21,
184, 185, 579

in compression, 92
in Markov chains, 373

concave _, 35
conditional entropy, 138, 146
cones, 554
confidence interval, 457, 464
confidence level, 464
confused gameshow host, 57
conjugate gradient, 479
conjugate prior, 319
conjuror, 233
connection between

channel capacity and physics, 257
error correcting code and latent

variable model, 437
pattern recognition and

error-correction, 481
supervised and unsupervised

learning, 515
vector quantization and

error-correction, 285
connection matrix, 253, 257
constrained channel, 248, 257, 260,

399
variable-length code, 249

constraint satisfaction, 516
content-addressable memory, 192, 193,

469, 505
continuous channel, 178
control treatment, 458
conventions, see notation
convex hull, 102
convex^, 35
convexity, 370
convolution, 568
convolutional code, 184, 186, 574, 587

equivalence, 576

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

622 Index

Conway, John H., 86, 520
Copernicus, 346
correlated sources, 138, 237
correlations, 505

among errors, 557
and phase transitions, 602
high-order, 524
in images, 549

cost function, 180, 451
cost of males, 277
counting, 241
counting argument, 21, 222
coupling from the past, 413
covariance, 440
covariance function, 535
covariance matrix, 176
covariant algorithm, 442
Cover, Thomas, 456, 482
Cox axioms, 26
crib, 265, 268
critical fluctuations, 403
critical path, 246
cross-validation, 353, 531
crossover, 396
crossword, 260
cryptanalysis, 265, 578
cryptography, 200, 578

digital signatures, 199
tamper detection, 199

cumulative probability function, 156
cycles in graphs, 242
cyclic, 19

Dasher, 119
data compression, 73, see source code

and compression
data entry, 118
data modelling, see modelling
data set, 288
Davey, Matthew C., 569
death penalty, 354, 355
deciban (unit), 264
decibel, 178, 186
decision theory, 346, 451
decoder, 4, 146, 152

bitwise, 220, 324
bounded-distance, 207
codeword, 220, 324
maximum a posteriori, 325
probability of error, 221

deconvolution, 551
degree, 568
degree sequence, see profile
degrees of belief, 26
degrees of freedom, 322, 459
déjà vu, 121
delay line, 575
Delbrück, Max, 446
deletions, 187
delta function, 438, 600
density evolution, 566, 567, 592
density modelling, 284, 303
dependent sources, 138, 237
depth of lake, 359
design theory, 209
detailed balance, 374, 391

detection of forgery, 199
deterministic annealing, 518
dictionary, 72, 119
die, rolling, 38
difference-set cyclic code, 569
differentiator, 254
diffusion, 316
digamma function, 598
digital cinema, 187
digital fountain, 590
digital signature, 199, 200
digital video broadcast, 593
dimensions, 180
dimer, 204
directory, 193
Dirichlet distribution, 316
Dirichlet model, 117
discriminant function, 179
discriminative training, 552
disease, 25, 458
disk drive, 3, 188, 215, 248, 255
distance, 205

DKL, 34
bad, 207, 214
distance distribution, 206
entropy distance, 140
Gilbert–Varshamov, 212, 221
good, 207
Hamming, 206
isn’t everything, 215
of code, 206, 214, 220

good/bad, 207
of concatenated code, 214
of product code, 214
relative entropy, 34
very bad, 207

distribution, 311
beta, 316
biexponential, 313
binomial, 311
Cauchy, 85, 312
Dirichlet, 316
exponential, 311, 313
gamma, 313
Gaussian, 312

sample from, 312
inverse-cosh, 313
log-normal, 315
Luria–Delbrück, 446
normal, 312
over periodic variables, 315
Poisson, 175, 311, 315
Student-t, 312
Von Mises, 315

divergence, 34
DjVu, 121
DNA, 3, 55, 201, 204, 257, 421

replication, 279, 280
do the right thing, 451
dodecahedron code, 20, 206, 207
dongle, 558
doors, on game show, 57
Dr. Bloggs, 462
draw straws, 233
dream, 524

DSC, see difference-set cyclic code
dual, 216
dumb Metropolis, 394, 496

Eb/N0, 177, 178, 223
earthquake and burglar alarm, 293
earthquake, during game show, 57
Ebert, Todd, 222
edge, 251
eigenvalue, 254, 342, 372, 409, 606
Elias, Peter, 111, 135
EM algorithm, 283, 432
email, 201
empty string, 119
encoder, 4
energy, 291, 401, 601
English, 72, 110, 260
Enigma, 265, 268
ensemble, 67

extended, 76
ensemble learning, 429
entropic distribution, 318, 551
entropy, 2, 32, 67, 601

Boltzmann, 85
conditional, 138
Gibbs, 85
joint, 138
marginal, 139
mutual information, 139
of continuous variable, 180
relative, 34

entropy distance, 140
epicycles, 346
equipartition, 80
erasure channel, 219, 589
erasure correction, 188, 190, 220
erf, 156, see error function
ergodic, 120, 373
error bars, 301, 501
error correction, see error-correcting

code
in DNA replication, 280
in protein synthesis, 280

error detection, 198, 199, 203
error floor, 581
error function, 156, 473, 490, 514, 529,

599
error probability

and distance, 215, 221
block, 152
in compression, 74

error-correcting code, 188, 203
bad, 183, 207
block code, 9, 151, 183
concatenated, 184–186, 214, 579
convolutional, 184, 574, 587
cyclic, 19
decoding, 184
density evolution, 566
difference-set cyclic, 569
distance, see distance
dodecahedron, 20, 206, 207
dual, 216, 218
equivalence, 576
erasure channel, 589
error probability, 171, 215, 221

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Index 623

fountain code, 589
Gallager, 557
Golay, 209
good, 183, 184, 207, 214, 218
Hamming, 19, 214
in DNA replication, 280
in protein synthesis, 280
interleaving, 186
linear, 9, 171, 183, 184, 229

coding theorem, 229
low-density generator-matrix,

218, 590
low-density parity-check, 20, 187,

218, 557, 596
fast encoding, 569
profile, 569
staircase, 569

LT code, 590
maximum distance separable, 220
nonlinear, 187
P3, 218
parity-check code, 220
pentagonful, 221
perfect, 208, 211, 212, 219, 589
practical, 183, 187
product code, 184, 214
quantum, 572
random, 184
random linear, 211, 212
raptor code, 594
rate, 152, 229
rateless, 590
rectangular, 184
Reed–Solomon code, 571, 589
repeat–accumulate, 582
repetition, 183
simple parity, 218
sparse graph, 556

density evolution, 566
syndrome decoding, 11, 371
variable rate, 238, 590
very bad, 207
very good, 183
weight enumerator, 206
with varying level of protection,

239
error-reject curves, 533
errors, see channel
estimator, 48, 307, 320, 446, 459
eugenics, 273
euro, 63
evidence, 29, 53, 298, 322, 347, 531

typical behaviour of, 54, 60
evolution, 269, 279

as learning, 277
Baldwin effect, 279
colour vision, 554
of the genetic code, 279

evolutionary computing, 394, 395
exact sampling, 413
exchange rate, 601
exchangeability, 263
exclusive or, 590
EXIT chart, 567
expectation, 27, 35, 37

expectation propagation, 340
expectation–maximization algorithm,

283, 432
experimental design, 463
experimental skill, 309
explaining away, 293, 295
exploit, 453
explore, 453
exponential distribution, 45, 313

on integers, 311
exponential-family, 307, 308
expurgation, 167, 171
extended channel, 153, 159
extended code, 92
extended ensemble, 76
extra bit, 98, 101
extreme value, 446
eye movements, 554

factor analysis, 437, 444
factor graph, 334–336, 434, 556, 557,

580, 583
factorial, 2
fading channel, 186
feedback, 506, 589
female, 277
ferromagnetic, 400
Feynman, Richard, 422
Fibonacci, 253
field, 605, see Galois field
file storage, 188
finger, 119
finite field theory, see Galois field
fitness, 269, 279
fixed point, 508
Florida, 355
fluctuation analysis, 446
fluctuations, 401, 404, 427, 602
focus, 529
football pools, 209
forensic, 47, 421
forgery, 199, 200
forward pass, 244
forward probability, 27
forward–backward algorithm, 326, 330
Fotherington–Thomas, 241
fountain code, 589
Fourier transform, 88, 219, 339, 544,

568
fovea, 554
free energy, 257, 407, 409, 410, see

partition function
minimization, 423
variational, 423

frequency, 26
frequentist, 320, see sampling theory
Frey, Brendan J., 353
Frobenius–Perron theorem, 410
frustration, 406
full probabilistic model, 156
function minimization, 473
functions, 246

gain, 507
Galileo code, 186
Gallager code, 557

Gallager, Robert G., 170, 187, 557
Galois field, 185, 224, 567, 568, 605
gambling, 455
game, see puzzle

Bridge, 126
chess, 451
guess that tune, 204
guessing, 110
life, 520
sixty-three, 70
submarine, 71
three doors, 57, 60, 454
twenty questions, 70

game show, 57, 454
game-playing, 451
gamma distribution, 313, 319
gamma function, 598
ganglion cells, 491
Gaussian channel, 155, 177
Gaussian distribution, 2, 36, 176, 312,

321, 398, 549
N–dimensional, 124
approximation, 501
parameters, 319
sample from, 312

Gaussian processes, 535
variational classifier, 547

general position, 484
generalization, 483
generalized parity-check matrix, 581
generating function, 88
generative model, 27, 156
generator matrix, 9, 183
genes, 201
genetic algorithm, 269, 395, 396
genetic code, 279
genome, 201, 280
geometric progression, 258
geostatistics, 536, 548
GF(q), see Galois field
Gibbs entropy, 85
Gibbs sampling, 370, 391, 418, see

Monte Carlo methods
Gibbs’ inequality, 34, 37, 44
Gilbert–Varshamov conjecture, 212
Gilbert–Varshamov distance, 212, 221
Gilbert–Varshamov rate, 212
Gilks, Wally R., 393
girlie stuff, 58
Glauber dynamics, 370
Glavieux, A., 186
Golay code, 209
golden ratio, 253
good, see error-correcting code
Good, Jack, 265
gradient descent, 476, 479, 498, 529

natural, 443
graduated non-convexity, 518
Graham, Ronald L., 175
grain size, 180
graph, 251

factor graph, 334
of code, 19, 20, 556

graphs and cycles, 242
guerilla, 242

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

624 Index

guessing decoder, 224
guessing game, 110, 111, 115
Gull, Steve, 48, 61, 551
gzip, 119

Haldane, J.B.S., 278
Hamilton, William D., 278
Hamiltonian Monte Carlo, 387, 397,

496, 497
Hamming code, 8, 17, 183, 184, 190,

208, 209, 214, 219
graph, 19

Hamming distance, 206
handwritten digits, 156
hard drive, 593
hash code, 193, 231
hash function, 195, 200, 228

linear, 231
one-way, 200

hat puzzle, 222
heat bath, 370, 601
heat capacity, 401, 404
Hebb, Donald, 505
Hebbian learning, 505, 507
Hertz, 178
Hessian, 501
hidden Markov model, 437
hidden neurons, 525
hierarchical clustering, 284
hierarchical model, 379, 548
high dimensions, life in, 37, 124
hint for computing mutual

information, 149
Hinton, Geoffrey E., 353, 429, 432, 522
hitchhiker, 280
homogeneous, 544
Hooke, Robert, 200
Hopfield network, 283, 505, 506, 517

capacity, 514
Hopfield, John J., 246, 280, 517
horse race, 455
hot-spot, 275
Huffman code, 91, 99, 103

‘optimality’, 99, 101
disadvantages, 100, 115
general alphabet, 104, 107

human, 269
human–machine interfaces, 119, 127
hybrid Monte Carlo, 387, see

Hamiltonian Monte Carlo
hydrogen bond, 280
hyperparameter, 64, 309, 318, 319,

379, 479
hypersphere, 42
hypothesis testing, see model

comparison, sampling theory

i.i.d., 80
ICA, see independent component

analysis
ICF (intrinsic correlation function),

551
identical twin, 111
identity matrix, 600
ignorance, 446
ill-posed problem, 309, 310

image, 549
integral, 246

image analysis, 343, 351
image compression, 74, 284
image models, 399
image processing, 246
image reconstruction, 551
implicit assumptions, 186
implicit probabilities, 97, 98, 102
importance sampling, 361, 379

weakness of, 382
improper, 314, 316, 319, 320, 342, 353
in-car navigation, 594
independence, 138
independent component analysis, 313,

437, 443
indicator function, 600
inequality, 35, 81
inference, 27, 529

and learning, 493
information content, 32, 72, 73, 91,

97, 115, 349
how to measure, 67
Shannon, 67

information maximization, 443
information retrieval, 193
information theory, 4
inner code, 184
Inquisition, 346
insertions, 187
instantaneous, 92
integral image, 246
interleaving, 184, 186, 579
internet, 188, 589
intersection, 66, 222
intrinsic correlation function, 549, 551
invariance, 445
invariant distribution, 372
inverse probability, 27
inverse-arithmetic-coder, 118
inverse-cosh distribution, 313
inverse-gamma distribution, 314
inversion of hash function, 199
investment portfolio, 455
irregular, 568
ISBN, 235
Ising model, 130, 283, 399, 400
iterative probabilistic decoding, 557

Jaakkola, Tommi S., 433, 547
Jacobian, 320
janitor, 464
Jeffreys prior, 316
Jensen’s inequality, 35, 44
Jet Propulsion Laboratory, 186
Johnson noise, 177
joint ensemble, 138
joint entropy, 138
joint typicality, 162
joint typicality theorem, 163
Jordan, Michael I., 433, 547
journal publication policy, 463
judge, 55
juggling, 15
junction tree algorithm, 340
jury, 26, 55

K-means clustering, 285, 303
derivation, 303
soft, 289

kaboom, 306, 433
Kalman filter, 535
kernel, 548
key points

communication, 596
how much data needed, 53
likelihood principle, 32
model comparison, 53
Monte Carlo, 358, 367
solving probability problems, 61

keyboard, 119
Kikuchi free energy, 434
KL distance, 34
Knowlton–Graham partitions, 175
Knuth, Donald, xii
Kolmogorov, Andrei Nikolaevich, 548
Kraft inequality, 94, 521
Kraft, L.G., 95
kriging, 536
Kullback–Leibler divergence, 34, see

relative entropy

Lagrange multiplier, 174
lake, 359
Langevin method, 496, 498
Langevin process, 535
language model, 119
Laplace approximation, see Laplace’s

method
Laplace model, 117
Laplace prior, 316
Laplace’s method, 341, 354, 496, 501,

537, 547
Laplace’s rule, 52
latent variable, 432, 437
latent variable model, 283

compression, 353
law of large numbers, 36, 81, 82, 85
lawyer, 55, 58, 61
Le Cun, Yann, 121
leaf, 336
leapfrog algorithm, 389
learning, 471

as communication, 483
as inference, 492, 493
Hebbian, 505, 507
in evolution, 277

learning algorithms, 468, see

algorithm
backpropagation, 528
Boltzmann machine, 522
classification, 475
competitive learning, 285
Hopfield network, 505
K-means clustering, 286, 289,

303
multilayer perceptron, 528
single neuron, 475

learning rule, 470
Lempel–Ziv coding, 110, 119–122

criticisms, 128
life, 520

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Index 625

life in high dimensions, 37, 124
likelihood, 6, 28, 49, 152, 324, 529, 558

contrasted with probability, 28
subjectivity, 30

likelihood equivalence, 447
likelihood principle, 32, 61, 464
limit cycle, 508
linear block code, 9, 11, 19, 171, 183,

186, 206, 229
coding theorem, 229
decoding, 184

linear regression, 342, 527
linear-feedback shift-register, 184, 574
Litsyn, Simon, 572
little ’n’ large data set, 288
log-normal, 315
logarithms, 2
logit, 307, 316
long thin strip, 409
loopy belief propagation, 434
loopy message-passing, 338, 340, 556
loss function, 451
lossy compression, 168, 284, 285
low-density generator-matrix code,

207, 590
low-density parity-check code, 557,

see error-correcting code
LT code, 590
Luby, Michael G., 568, 590
Luria, Salvador, 446
Lyapunov function, 287, 291, 508,

520, 521

machine learning, 246
macho, 319
MacKay, David J.C., 187, 496, 557
magician, 233
magnet, 602
magnetic recording, 593
majority vote, 5
male, 277
Mandelbrot, Benoit, 262
MAP, see maximum a posteriori

mapping, 92
marginal entropy, 139, 140
marginal likelihood, 29, 298, 322, see

evidence
marginal probability, 23, 147
marginalization, 29, 295, 319
Markov chain, 141, 168

construction, 373
Markov chain Monte Carlo, see Monte

Carlo methods
Markov model, 111, 437, see Markov

chain
marriage, 454
matrix, 409
matrix identities, 438
max–product, 339
maxent, 308, see maximum entropy
maximum distance separable, 219
maximum entropy, 308, 551
maximum likelihood, 6, 152, 300, 347
maximum a posteriori, 6, 307, 325,

538
McCollough effect, 553

MCMC (Markov chain Monte Carlo),
see Monte Carlo methods

McMillan, B., 95
MD5, 200
MDL, see minimum description length
MDS, 220
mean, 1
mean field theory, 422, 425
melody, 201, 203
memory, 468

address-based, 468
associative, 468, 505
content-addressable, 192, 469

MemSys, 551
message passing, 187, 241, 248, 283,

324, 407, 556, 591
BCJR, 330
belief propagation, 330
forward–backward, 330
in graphs with cycles, 338
loopy, 338, 340, 434
sum–product algorithm, 336
Viterbi, 329

metacode, 104, 108
metric, 512
Metropolis method, 496, see Monte

Carlo methods
Mézard, Marc, 340
micro-saccades, 554
microcanonical, 87
microsoftus, 458
microwave oven, 127
min–sum algorithm, 245, 325, 329,

339, 578, 581
mine (hole in ground), 451
minimax, 455
minimization, 473, see optimization
minimum description length, 352
minimum distance, 206, 214, see

distance
Minka, Thomas, 340
mirror, 529
Mitzenmacher, Michael, 568
mixing coefficients, 298, 312
mixture modelling, 282, 284, 303, 437
mixture of Gaussians, 312
mixtures in Markov chains, 373
ML, see maximum likelihood
MLP, see multilayer perceptron
MML, see minimum description

length
mobile phone, 182, 186
model, 111, 120
model comparison, 198, 346, 347, 349

typical evidence, 54, 60
modelling, 285

density modelling, 284, 303
images, 524
latent variable models, 353, 432,

437
nonparametric, 538

moderation, 29, 498, see

marginalization
molecules, 201
Molesworth, 241

momentum, 387, 479
Monte Carlo methods, 357, 498

acceptance rate, 394
acceptance ratio method, 379
and communication, 394
annealed importance sampling,

379
coalescence, 413
dependence on dimension, 358
exact sampling, 413
for visualization, 551
Gibbs sampling, 370, 391, 418
Hamiltonian Monte Carlo, 387,

496
hybrid Monte Carlo, see

Hamiltonian Monte Carlo
importance sampling, 361, 379

weakness of, 382
Langevin method, 498
Markov chain Monte Carlo, 365
Metropolis method, 365

dumb Metropolis, 394, 496
Metropolis–Hastings, 365
multi-state, 392, 395, 398
overrelaxation, 390, 391
perfect simulation, 413
random walk suppression, 370,

387
random-walk Metropolis, 388
rejection sampling, 364

adaptive, 370
reversible jump, 379
simulated annealing, 379, 392
slice sampling, 374
thermodynamic integration, 379
umbrella sampling, 379

Monty Hall problem, 57
Morse, 256
motorcycle, 110
movie, 551
multilayer perceptron, 529, 535
multiple access channel, 237
multiterminal networks, 239
multivariate Gaussian, 176
Munro–Robbins theorem, 441
murder, 26, 58, 61, 354
music, 201, 203
mutation rate, 446
mutual information, 139, 146, 150, 151

how to compute, 149
myth, 347

compression, 74

nat (unit), 264, 601
natural gradient, 443
natural selection, 269
navigation, 594
Neal, Radford M., 111, 121, 187, 374,

379, 391, 392, 397, 419, 420,
429, 432, 496

needle, Buffon’s, 38
network, 529
neural network, 468, 470

capacity, 483
learning as communication, 483
learning as inference, 492

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

626 Index

neuron, 471
capacity, 483

Newton, Isaac, 200, 552
Newton–Raphson method, 303, 441
nines, 198
noise, 3, see channel

coloured, 179
spectral density, 177
white, 177, 179

noisy channel, see channel
noisy typewriter, 148, 152, 154
noisy-channel coding theorem, 15,

152, 162, 171, 229
Gaussian channel, 181
linear codes, 229
poor man’s version, 216

noisy-or, 294
non-confusable inputs, 152
noninformative, 319
nonlinear, 535
nonlinear code, 20, 187
nonparametric data modelling, 538
nonrecursive, 575
noodle, Buffon’s, 38
normal, 312, see Gaussian
normal graph, 219, 584
normalizing constant, see partition

function
not-sum, 335
notation, 598

absolute value, 33, 599
conventions of this book, 147
convex/concave, 35
entropy, 33
error function, 156
expectation, 37
intervals, 90
logarithms, 2
matrices, 147
probability, 22, 30
set size, 33, 599
transition probability, 147
vectors, 147

NP-complete, 184, 325, 517
nucleotide, 201, 204
nuisance parameters, 319
numerology, 208
Nyquist sampling theorem, 178

objective function, 473
Occam factor, 322, 345, 348, 350, 352
Occam’s razor, 343
octal, 575
octave, 478
odds, 456
Ode to Joy, 203
officer for whimsical departmental

rules, 464
Oliver, 56
one-way hash function, 200
optic nerve, 491
optimal decoder, 152
optimal input distribution, 150, 162
optimal linear filter, 549
optimal stopping, 454

optimization, 169, 392, 429, 479, 505,
516, 531

gradient descent, 476
Newton algorithm, 441
of model complexity, 531

order parameter, 604
ordered overrelaxation, 391
orthodox statistics, 320, see sampling

theory
outer code, 184
overfitting, 306, 322, 529, 531
overrelaxation, 390

p-value, 64, 457, 462
packet, 188, 589
paradox, 107

Allais, 454
bus-stop, 39
heat capacity, 401
Simpson’s, 355
waiting for a six, 38

paranormal, 233
parasite, 278
parent, 559
parity, 9
parity-check bits, 9, 199, 203
parity-check code, 220
parity-check constraints, 20
parity-check matrix, 12, 183, 229, 332

generalized, 581
parity-check nodes, 19, 219, 567, 568,

583
parse, 119, 448
Parsons code, 204
parthenogenesis, 273
partial order, 418
partial partition functions, 407
particle filter, 396
partition, 174
partition function, 401, 407, 409, 422,

423, 601, 603
analogy with lake, 360
partial, 407

partitioned inverse, 543
path-counting, 244
pattern recognition, 156, 179, 201
pentagonful code, 21, 221
perfect code, 208, 210, 211, 219, 589
perfect simulation, 413
periodic variable, 315
permutation, 19, 268
Petersen graph, 221
phase transition, 361, 403, 601
philosophy, 26, 119, 384
phone, 125, 594

cellular, see mobile phone
phone directory, 193
phone number, 58, 129
photon counter, 307, 342, 448
physics, 80, 85, 257, 357, 401, 422,

514, 601
pigeon-hole principle, 86, 573
pitchfork bifurcation, 291, 426
plaintext, 265
plankton, 359
point estimate, 432

point spread function, 549
pointer, 119
poisoned glass, 103
Poisson distribution, 2, 175, 307, 311,

342
Poisson process, 39, 46, 448
Poissonville, 39, 313
polymer, 257
poor man’s coding theorem, 216
porridge, 280
portfolio, 455
positive definite, 539
positivity, 551
posterior probability, 6, 152
power cost, 180
power law, 584
practical, 183, see error-correcting

code
precision, 176, 181, 312, 320, 383
precisions add, 181
prediction, 29, 52
predictive distribution, 111
prefix code, 92, 95
prior, 6, 308, 529

assigning, 308
improper, 353
Jeffreys, 316
subjectivity, 30

prior equivalence, 447
priority of bits in a message, 239
prize, on game show, 57
probabilistic model, 111, 120
probabilistic movie, 551
probability, 26, 38

Bayesian, 50
contrasted with likelihood, 28
density, 30, 33

probability distributions, 311, see

distribution
probability of block error, 152
probability propagation, see

sum–product algorithm
product code, 184, 214
profile, of random graph, 568
pronunciation, 34
proper, 539
proposal density, 364, 365
Propp, Jim G., 413, 418
prosecutor’s fallacy, 25
prospecting, 451
protein, 204, 269

regulatory, 201, 204
synthesis, 280

protocol, 589
pseudoinverse, 550
Punch, 448
puncturing, 222, 580
pupil, 553
puzzle, see game

cable labelling, 173
chessboard, 520
fidelity of DNA replication, 280
hat, 222, 223
life, 520
magic trick, 233, 234

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Index 627

poisoned glass, 103
secretary, 454
southeast, 520
transatlantic cable, 173
weighing 12 balls, 68

quantum error-correction, 572
queue, 454
QWERTY, 119

R3, see repetition code
race, 354
radial basis function, 535, 536
radio, 186
radix, 104
RAID, 188, 190, 219, 593
random, 26, 357
random cluster model, 418
random code, 156, 161, 164, 165, 184,

192, 195, 214, 565
for compression, 231

random number generator, 578
random variable, 26, 463
random walk, 367

suppression, 370, 387, 390, 395
random-coding exponent, 171
random-walk Metropolis method, 388
rant, see sermon
raptor codes, 594
rate, 152
rate-distortion theory, 167
rateless code, 590
reading aloud, 529
receiver operating characteristic, 533
recognition, 204
record breaking, 446
rectangular code, 184
reducible, 373
redundancy, 4, 33

in channel code, 146
redundant array of independent disks,

188, 190, 219, 593
redundant constraints in code, 20
Reed–Solomon code, 185, 571, 589
regression, 342, 536
regret, 455
regular, 557
regularization, 529, 550
regularization constant, 309, 479
reinforcement learning, 453
rejection, 364, 366, 533
rejection sampling, 364

adaptive, 370
relative entropy, 34, 98, 102, 142, 422,

429, 435, 475
reliability function, 171
repeat–accumulate code, 582
repetition code, 5, 13, 15, 16, 46, 183
responsibility, 289
retransmission, 589
reverse, 110
reversible, 374
reversible jump, 379
Richardson, Thomas J., 570, 595
Rissanen, Jorma, 111
ROC, 533

rolling die, 38
roman, 127
rule of thumb, 380
runlength, 256
runlength-limited channel, 249

saccades, 554
saddle-point approximation, 341
sailor, 307
sample, 312, 356

from Gaussian, 312
sampler density, 362
sampling distribution, 459
sampling theory, 38, 320

criticisms, 32, 64
sandwiching method, 419
satellite communications, 186, 594
scaling, 203
Schönberg, 203
Schottky anomaly, 404
scientists, 309
secret, 200
secretary problem, 454
security, 199, 201
seek time, 593
Sejnowski, Terry J., 522
self-delimiting, 132
self-dual, 218
self-orthogonal, 218
self-punctuating, 92
separation, 242, 246
sequence, 344
sequential decoding, 581
sequential probability ratio test, 464
sermon, see caution

classical statistics, 64
confidence level, 465
dimensions, 180
gradient descent, 441
illegal integral, 180
importance sampling, 382
interleaving, 189
MAP method, 283, 306
maximum entropy, 308
maximum likelihood, 306
most probable is atypical, 283
p-value, 463
sampling theory, 64
sphere-packing, 209, 212
stopping rule, 463
turbo codes, 581
unbiased estimator, 307
worst-case-ism, 207

set, 66
shannon (unit), 265
Shannon, Claude, 3, 14, 15, 152, 164,

212, 215, 262, see

noisy-channel coding
theorem, source coding
theorem, information
content

shattering, 485
shifter ensemble, 524
Shokrollahi, M. Amin, 568
shortening, 222
Siegel, Paul, 262

sigmoid, 473, 527
signal-to-noise ratio, 177, 178, 223
significance level, 51, 64, 457, 463
simplex, 173, 316
Simpson’s paradox, 355
Simpson, O.J., see wife-beaters
simulated annealing, 379, 392, see

annealing
six, waiting for, 38
Skilling, John, 392
sleep, 524, 554
Slepian–Wolf, see dependent sources
slice sampling, 374

multi-dimensional, 378
soft K-means clustering, 289
softmax, softmin, 289, 316, 339
software, xi

arithmetic coding, 121
BUGS, 371
Dasher, 119
free, xii
Gaussian processes, 534
hash function, 200
VIBES, 431

solar system, 346
soldier, 241
soliton distribution, 592
sound, 187
source code, 73, see compression,

symbol code, arithmetic
coding, Lempel–Ziv

algorithms, 119, 121
block code, 76
block-sorting compression, 121
Burrows–Wheeler transform, 121
for complex sources, 353
for constrained channel, 249, 255
for integers, 132
Huffman, see Huffman code
implicit probabilities, 102
optimal lengths, 97, 102
prefix code, 95
software, 121
stream codes, 110–130
supermarket, 96, 104, 112
symbol code, 91
uniquely decodeable, 94
variable symbol durations, 125,

256
source coding theorem, 78, 91, 229,

231
southeast puzzle, 520
span, 331
sparse-graph code, 338, 556

density evolution, 566
profile, 569

sparsifier, 255
species, 269
spell, 201
sphere packing, 182, 205
sphere-packing exponent, 172
Spielman, Daniel A., 568
spin system, 400
spines, 525
spline, 538

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

628 Index

spread spectrum, 182, 188
spring, 291
spy, 464
square, 38
staircase, 569, 587
stalactite, 214
standard deviation, 320
stars, 307
state diagram, 251
statistic, 458

sufficient, 300
statistical physics, see physics
statistical test, 51, 458
steepest descents, 441
stereoscopic vision, 524
stiffness, 289
Stirling’s approximation, 1, 8
stochastic, 472
stochastic dynamics, see Hamiltonian

Monte Carlo
stochastic gradient, 476
stop-when-it’s-done, 561, 583
stopping rule, 463
straws, drawing, 233
stream codes, 110–130
student, 125
Student-t distribution, 312, 323
subjective probability, 26, 30
submarine, 71
subscriber, 593
subset, 66
substring, 119
sufficient statistics, 300
sum rule, 39, 46
sum–product algorithm, 187, 245, 326,

336, 407, 434, 556, 572, 578
summary, 335
summary state, 418
summation convention, 438
super-channel, 184
supermarket (codewords), 96, 104, 112
support vector, 548
surprise value, 264
survey propagation, 340
suspicious coincidences, 351
symbol code, 91

budget, 94, 96
codeword, 92
disadvantages, 100
optimal, 91
self-delimiting, 132
supermarket, 112

symmetric channel, 171
symmetry argument, 151
synchronization, 249
synchronization errors, 187
syndrome, 10, 11, 20
syndrome decoding, 11, 216, 229, 371
systematic, 575

t-distribution, see Student-t
tail, 85, 312, 313, 440, 446, 503, 584
tamper detection, 199
Tank, David W., 517
Tanner challenge, 569
Tanner product code, 571
Tanner, Michael, 569

Tanzanite, 451
tap, 575
telephone, see phone
telescope, 529
temperature, 392, 601
termination, 579
terminology, 598, see notation

Monte Carlo methods, 372
test

fluctuation, 446
statistical, 51, 458

text entry, 118
thermal distribution, 88
thermodynamic integration, 379
thermodynamics, 404, 601

third law, 406
Thiele, T.N., 548
thin shell, 37, 125
third law of thermodynamics, 406
Thitimajshima, P., 186
three cards, 142
three doors, 57
threshold, 567
tiling, 420
time-division, 237
timing, 187
training data, 529
transatlantic, 173
transfer matrix method, 407
transition, 251
transition probability, 147, 356, 607
translation-invariant, 409
travelling salesman problem, 246, 517
tree, 242, 336, 343, 351
trellis, 251, 326, 574, 577, 580, 583,

608
section, 251, 257
termination, 579

triangle, 307
truth function, 211, 600
tube, 257
turbo code, 186, 556
turbo product code, 571
Turing, Alan, 265
twenty questions, 70, 103
twin, 111
twos, 156
typical evidence, 54, 60
typical set, 80, 154, 363

for compression, 80
for noisy channel, 154

typical-set decoder, 165, 230
typicality, 78, 80, 162

umbrella sampling, 379
unbiased estimator, 307, 321, 449
uncompression, 231
union, 66
union bound, 166, 216, 230
uniquely decodeable, 93, 94
units, 264
universal, 110, 120, 121, 135, 590
universality, in physics, 400
Urbanke, Rüdiger, 570, 595
urn, 31
user interfaces, 118
utility, 451

vaccination, 458
Vapnik–Chervonenkis dimension, 489
variable-length code, 249, 255
variable-rate error-correcting codes,

238, 590
variance, 1, 27, 88, 321
variance–covariance matrix, 176
variances add, 1, 181
variational Bayes, 429
variational free energy, 422, 423
variational methods, 422, 433, 496,

508
typical properties, 435
variational Gaussian process, 547

VC dimension, 489
vector quantization, 284, 290
very good, see error-correcting code
VIBES, 431
Virtakallio, Juhani, 209
vision, 554
visualization, 551
Viterbi algorithm, 245, 329, 340, 578
volume, 42, 90
Von Mises distribution, 315

Wainwright, Martin, 340
waiting for a bus, 39, 46
warning, see caution and sermon
Watson–Crick base pairing, 280
weather collator, 236
weighing babies, 164
weighing problem, 66, 68
weight

importance sampling, 362
in neural net, 471
of binary vector, 20

weight decay, 479, 529
weight enumerator, 206, 211, 214, 216

typical, 572
weight space, 473, 474, 487
Wenglish, 72, 260
what number comes next?, 344
white, 355
white noise, 177, 179
Wiberg, Niclas, 187
widget, 309
Wiener process, 535
Wiener, Norbert, 548
wife-beater, 58, 61
Wilson, David B., 413, 418
window, 307
Winfree, Erik, 520
wodge, 309
Wolf, Jack, 262
word-English, 260
world record, 446
worst-case-ism, 207, 213
writing, 118

Yedidia, Jonathan, 340

Z channel, 148, 149–151, 155
Zipf plot, 262, 263, 317
Zipf’s law, 40, 262, 263
Zipf, George K., 262

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Extra Solutions to Exercises

This is the solutions manual for Information Theory, Inference, and Learning
Algorithms. Solutions to many of the exercises are provided in the book itself.
This manual contains solutions to most of the other core exercises. These so-
lutions are supplied on request to instructors using this book in their teaching;
please email solutions@cambridge.org to obtain the latest version. For the
benefit of instructors, please do not circulate this document to students.

c©2003 David J.C. MacKay. Version 7.2 – March 28, 2005.
Please send corrections or additions to these solutions to David MacKay,

mackay@mrao.cam.ac.uk.

Reminder about internet resources

The website

http://www.inference.phy.cam.ac.uk/mackay/itila

contains several resources for this book.

Extra Solutions for Chapter 1

Solution to exercise 1.4 (p.12). The matrix HGT mod2 is equal to the all-zero
3 × 4 matrix, so for any codeword t = GTs, Ht = HGTs = (0, 0, 0)T.

Solution to exercise 1.5 (p.13). (a) 1100 (b) 0100 (c) 0100 (d) 1111.

Solution to exercise 1.8 (p.13). To be a valid hypothesis, a decoded pattern
must be a codeword of the code. If there were a decoded pattern in which the
parity bits differed from the transmitted parity bits, but the source bits didn’t
differ, that would mean that there are two codewords with the same source
bits but different parity bits. But since the parity bits are a deterministic
function of the source bits, this is a contradiction.

So if any linear code is decoded with its optimal decoder, and a decoding
error occurs anywhere in the block, some of the source bits must be in error.

Extra Solutions for Chapter 2

Solution to exercise 2.8 (p.30). Tips for sketching the posteriors: best tech-
nique for sketching p29(1 − p)271 is to sketch the logarithm of the posterior,
differentiating to find where its maximum is. Take the second derivative at
the maximum in order to approximate the peak as ∝ exp[(p − pMAP)2/2s2]
and find the width s.

Assuming the uniform prior (which of course is not fundamentally ‘right’
in any sense, indeed it doesn’t look very uniform in other bases, such as the
logit basis), the probability that the next outcome is a head is

nH + 1

N + 2
(D.1)

701

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

702 Solutions manual

(a) N = 3 and nH = 0: 1
5 ;

(b) N = 3 and nH = 2: 3
5 ;

(c) N = 10 and nH = 3: 4
12 ;

(d) N = 300 and nH = 29: 30
302 .

Solution to exercise 2.27 (p.37). Define, for each i > 1, p∗
i = pi/(1 − p1).

H(p) = p1 log 1/p1 +
∑

i>1

pi log 1/pi (D.2)

= p1 log 1/p1 + (1 − p1)
∑

i>1

p∗i [log 1/(1 − p1) + log 1/p∗i] (D.3)

= p1 log 1/p1 + (1−p1) log 1/(1−p1) + (1−p1)
∑

i>1

p∗i [log 1/p∗i] (D.4)

Similar approach for the more general formula.

Solution to exercise 2.28 (p.38). P (0) = fg; P (1) = f(1−g); P (2) = (1−f)h;
P (3) = (1−f)(1−h); H(X) = H2(f)+fH2(g)+(1−f)H2(h). dH(X)/df =
log[(1 − f)/f] + H2(g) − H2(h).

Solution to exercise 2.29 (p.38). Direct solution: H(X) =
∑

i pi log 1/pi =
∑

∞

i=1(1/2
i)i = 2. [The final step, summing the series, requires mathemat-

ical skill, or a computer algebra system; one strategy is to define Z(β) =
∑

∞

i=1(1/2
βi), a series that is easier to sum (it’s Z = 1/(2β − 1)), then differ-

entiate log Z with respect to β, evaluating at β = 1.]

Solution using decomposition: the entropy of the string of outcomes, H,
is the entropy of the first outcome, plus (1/2)(the entropy of the remaining
outcomes, assuming the first is a tail). The final expression in parentheses is
identical to H. So H = H2(1/2) + (1/2)H. Rearranging, (1/2)H = 1 implies
H = 2.

Solution to exercise 2.30 (p.38). P (first is white) = w/(w + b).

P (first is white, second is white) = w
w+b

w−1
w+b−1 .

P (first is black, second is white) = b
w+b

w
w+b−1 .

Now use the sum rule:

P (second is white) = w
w+b

w−1
w+b−1 + b

w+b
w

w+b−1 = w(w−1)+bw
(w+b)(w+b−1) = w

(w+b) .

Solution to exercise 2.31 (p.38). The circle lies in a square if the centre of
the circle is in a smaller square of size b − a. The probability distribution of
the centre of the circle is uniform over the plane, and these smaller squares
make up a fraction (b−a)2/b2 of the plane, so this is the probability required.
(b − a)2/b2 = (1 − a/b)2.

Solution to exercise 2.32 (p.38). Buffon’s needle. The angle t of the needle
relative to the parallel lines is chosen at random. Once the angle is cho-
sen, there is a probability a sin t/b that the needle crosses a line, since the
distance between crossings of the parallel lines by the line aligned with the

needle is b/ sin t. So the probability of crossing is
∫ π/2
t=0 dt a sin t/b/

∫ π/2
t=0 dt =

a/b[− cos t]
π/2
0 /(π/2) = (2/π)(a/b).

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 703

Solution to exercise 2.33 (p.38). Let the three segments have lengths x, y,
and z. If x + y > z, and x + z > y, and y + z > x, then they can form
a triangle. Now let the two points be located at a and b with b > a, and
define x = a, y = b − a, and z = 1 − b. Then the three constraints imply
b > 1 − b ⇒ b > 1/2, similarly a < 1/2, and b − a < 1/2. Plotting these
regions in the permitted (a, b) plane, we find that the three constraints are
satisfied in a triangular region of area 1/4 of the full area (a > 0, b > 0, b > a),
so the probability is 1/4.

Solution to exercise 2.36 (p.39). Assuming ignorance about the order of the
ages F , A, and B, the six possible hypotheses have equal probability. The
probability that F > B is 1/2.

The conditional probability that F > B given that F > A is given by the
joint probability divided by the marginal probability:

P (F > B |F > A) =
P (F > B,F > A)

P (F > A)
=

2/6

1/2
=

2

3
. (D.5)

(The joint probability that F > B and F > A is the probability that Fred is
the oldest, which is 1/3.)

Solution to exercise 2.37 (p.39). 1/5.

Extra Solutions for Chapter 3

Solution to exercise 3.6 (p.54). The idea that complex models can win (in log
evidence) by an amount linear in the number of data, F , and can lose by only
a logarithmic amount is important and general.

For the biggest win by H1, let Fa = F and Fb = 0.

log
P (s |F,H1)

P (s |F,H0)
= log

1/F + 1

pF
0

= − log(F + 1) + F log 1/p0. (D.6)

The second term dominates, and the win for H1 is growing linearly with F .
For the biggest win by H0, let Fa = p0F and Fb = (1−p0)F . We now need

to use an accurate version of Stirling’s approximation (1.17), because things
are very close. The difference comes down to the square root terms in Stirling.

log
P (s |F,H1)

P (s |F,H0)
= log Fa!Fb!

(Fa+Fb+1)!
/pFa

0 (1 − p0)
Fb (D.7)

= log(1/F + 1) − log

(

F

Fa

)

− log pp0F
0 pp1F

1 (D.8)

= − log(F + 1) +
1

2
log

[

2πF
p0F

F

p1F

F

]

(D.9)

= −1

2
log

[

(F + 1)

(

1 +
1

F

)]

+
1

2
log [2π p0 p1] . (D.10)

Of these two terms, the second is asymptotically independent of F , and the
first grows as half the logarithm of F .

Solution to exercise 3.10 (p.57). Let the variables be l,m, n, denoting the sex
of the child who lives behind each of the three doors, with l = 0 meaning the
first child is male. We’ll assume the prior distribution is uniform, P (l,m, n) =
(1/2)3, over all eight possibilities. (Strictly, this is not a perfect assumption,
since genetic causes do sometimes lead to some parents producing only one
sex or the other.)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

704 Solutions manual

The first data item establishes that l = 1; the second item establishes that
at least one of the three propositions l = 0, m = 0, and n = 0 is true.

The viable hypotheses are
l = 1, m = 0, n = 0;
l = 1, m = 1, n = 0;
l = 1, m = 0, n = 1.

These had equal prior probability. The posterior probability that there are
two boys and one girl is 1/3.

Solution to exercise 3.12 (p.58). There are two hypotheses: let H = 0 mean
that the original counter in the bag was white and H = 1 that is was black.
Assume the prior probabilities are equal. The data is that when a randomly
selected counter was drawn from the bag, which contained a white one and
the unknown one, it turned out to be white. The probability of this result
according to each hypothesis is:

P (D |H =0) = 1; P (D |H =1) = 1/2. (D.11)

So by Bayes’ theorem, the posterior probability of H is

P (H =0 |D) = 2/3; P (H =1 |D) = 1/3. (D.12)

Solution to exercise 3.14 (p.58). It’s safest to enumerate all four possibilities.
Call the four equiprobable outcomes HH,HT, TH, TT . In the first three cases,
Fred will declare he has won; in the first case, HH, whichever coin he points
to, the other is a head; in the second and third cases, the other coin is a tail.
So there is a 1/3 probability that ‘the other coin’ is a head.

Extra Solutions for Chapter 4

Solution to exercise 4.2 (p.68).

H(X,Y) =
∑

x,y

P (x, y)h(x, y) =
∑

x,y

P (x, y)(h(x) + h(y)) (D.13)

=

[

∑

x,y

P (x, y)h(x)

]

+

[

∑

x,y

P (x, y)h(y)

]

. (D.14)

Because h(x) has no dependence on y, it’s easy to sum over y in the first term.
∑

y P (x, y) = P (x). Summing over x in the second term similarly, we have

H(X,Y) =
∑

x

P (x)h(x) +
∑

y

P (y)h(y) = H(X) + H(Y).

Solution to exercise 4.9 (p.84). If six are weighed against six, then the first
weighing conveys no information about the question ‘which is the odd ball?’
All 12 balls are equally likely, both before and after.

If six are weighed against six, then the first weighing conveys exactly one
bit of information about the question ‘which is the odd ball and is it heavy or
light?’ There are 24 viable hypotheses before, all equally likely; and after, there
are 12. A halving of the number of (equiprobable) possibilities corresponds to
gaining one bit. (Think of playing sixty-three.)

Solution to exercise 4.10 (p.84). Let’s use our rule of thumb: always maximize
the entropy. At the first step we weigh 13 against 13, since that maximizes the
entropy of the outcome. If they balance, we weigh 5 of the remainder against 4

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 705

of the remainder (plus one good ball). The outcomes have probabilities 8/26
(balance), 9/26, and 9/26, which is the most uniform distribution possible.
Let’s imagine that the ‘5’ are heavier than the ‘4 plus 1’. We now ensure that
the next weighing has probability 1/3 for each outcome: leave out any three of
the nine suspects, and allocate the others appropriately. For example, leaving
out HHH, weigh HLL against HLL, where H denotes a possibly heavy ball and
L a possibly light one. Then if those balance, weigh an omitted pair of H’s; if
they do not balance, weigh the two L’s against each other.

John Conway’s solution on page 86 of the book gives an explicit and more
general solution.

Solution to exercise 4.11 (p.84). Going by the rule of thumb that the most
efficient strategy is the most informative strategy, in the sense of having all
possible outcomes as near as possible to equiprobable, we want the first weigh-
ing to have outcomes ‘the two sides balance’ in eight cases and ‘the two sides
do not balance’ in eight cases. This is achieved by initially weighing 1,2,3,4
against 5,6,7,8, leaving the other eight balls aside. Iterating this binary divi-
sion of the possibilities, we arrive at a strategy requiring 4 weighings.

The above strategy for designing a sequence of binary experiments by
constructing a binary tree from the top down is actually not always optimal;
the optimal method of constructing a binary tree will be explained in the next
chapter.

Solution to exercise 4.12 (p.84). The weights needed are 1, 3, 9, and 27. Four
weights in total. The set of 81 integers from −40 to +40 can be represented in
ternary, with the three symbols being interpreted as ‘weight on left’, ‘weight
omitted’, and ‘weight on right’.

Solution to exercise 4.14 (p.84).

(a) A sloppy answer to this question counts the number of possible states,
(

12
2

)

22 = 264, and takes its base 3 logarithm, which is 5.07, which exceeds
5. We might estimate that six weighings suffice to find the state of the
two odd balls among 12. If there are three odd balls then there are
(12

3

)

23 = 1760 states, whose logarithm is 6.80, so seven weighings might
be estimated to suffice.

However, these answers neglect the possibility that we will learn some-
thing more from our experiments than just which are the odd balls. Let
us define the oddness of an odd ball to be the absolute value of the
difference between its weight and the regular weight. There is a good
chance that we will also learn something about the relative oddnesses of
the two odd balls. If balls m and n are the odd balls, there is a good
chance that the optimal weighing strategy will at some point put ball m
on one side of the balance and ball n on the other, along with a load of
regular balls; if m and n are both heavy balls, say, the outcome of this
weighing will reveal, at the end of the day, whether m was heavier than
n, or lighter, or the same, which is not something we were asked to find
out. From the point of view of the task, finding the relative oddnesses
of the two balls is a waste of experimental capacity.

A more careful estimate takes this annoying possibility into account.

In the case of two odd balls, a complete description of the balls, includ-
ing a ranking of their oddnesses, has three times as many states as we
counted above (the two odd balls could be odd by the same amount, or

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

706 Solutions manual

by amounts that differ), i.e., 264 × 3 = 792 outcomes, whose logarithm
is 6.07. Thus to identify the full state of the system in 6 weighings is
impossible – at least seven are needed. I don’t know whether the original
problem can be solved in 6 weighings.

In the case of three odd balls, there are 3! = 6 possible rankings of the
oddnesses if the oddnesses are different (e.g., 0 < A < B < C), six if
two of them are equal (e.g., 0 < A < B = C and 0 < A = B < C), and
just one if they are equal (0 < A = B = C). So we have to multiply
the sloppy answer by 13. We thus find that the number of full system
states is 13 × 1760, whose logarithm is 9.13. So at least ten weighings
are needed to guarantee identification of the full state. I can believe that
nine weighings might suffice to solve the required problem, but it is not
clear.

(b) If the weights of heavy, regular and light balls are known in advance,
the original sloppy method becomes correct. At least six weighings are
needed to guarantee identification of the two-odd-out-of-twelve, and at
least seven to identify three out of twelve.

Solution to exercise 4.16 (p.85). The curves 1
N Hδ(Y

N) as a function of δ for
N = 1, 2, 3 and 100 are shown in figure D.1. Note that H2(0.5) = 1 bit.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N=1
N=2
N=3

N=100

N = 2

δ 1
N Hδ(Y) 2Hδ(Y)

0–0.25 1 4
0.25–0.5 0.79248 3
0.5–0.75 0.5 2

0.75–1 0 1

N = 3

δ 1
N Hδ(Y) 2Hδ(Y)

0–0.125 1 8
0.125–0.25 0.93578 7
0.25–0.375 0.86165 6

0.375–0.5 0.77398 5
0.5–0.625 0.66667 4

0.625–0.75 0.52832 3
0.75–0.875 0.33333 2

0.875–1 0 1

Figure D.1. 1

N
Hδ(Y) (vertical

axis) against δ (horizontal), for
N = 1, 2, 3, 100 binary variables
with p1 = 0.5.

Solution to exercise 4.19 (p.85). Chernoff bound. Let t = exp(sx) and α =
exp(sa). If we assume s > 0 then x ≥ a implies t ≥ α.

Assuming s > 0, P (x ≥ a) = P (t ≥ α) ≤ t̄/α =
∑

x P (x) exp(sx)/ exp(sa) =
e−sag(s).

Changing the sign of s means that instead x ≤ a implies t ≥ α; so assuming
s < 0, P (x ≤ a) = P (t ≥ α); the remainder of the calculation is as above.

Extra Solutions for Chapter 5

Solution to exercise 5.19 (p.102). The code {00, 11, 0101, 111, 1010, 100100,
0110} is not uniquely decodeable because 11111 can be realized from c(2)c(4)
and c(4)c(2).

Solution to exercise 5.20 (p.102). The ternary code {00, 012, 0110, 0112, 100, 201, 212, 22}
is uniquely decodeable because it is a prefix code.

Solution to exercise 5.23 (p.102). Probability vectors leading to a free choice
in the Huffman coding algorithm satisfy p1 ≥ p2 ≥ p3 ≥ p4 ≥ 0 and

p1 = p3 + p4. (D.15)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 707

The convex hull of Q is most easily obtained by turning two of the three
inequalities p1 ≥ p2 ≥ p3 ≥ p4 into equalities, and then solving equation (D.15)
for p. Each choice of equalities gives rise to one of the set of three vectors

{1/3, 1/3, 1/6, 1/6}, {2/5, 1/5, 1/5, 1/5} and {1/3, 1/3, 1/3, 0}. (D.16)

Solution to exercise 5.24 (p.103). An optimal strategy asks questions that
have a 50:50 chance of being answered yes or no. An essay on this topic
should discuss practical ways of approaching this ideal.

Solution to exercise 5.25 (p.103). Let’s work out the optimal codelengths.
They are all integers. Now, the question is, can a set of integers satisfying
the Kraft equality be arranged in an appropriate binary tree? We can do this
constructively by going to the codeword supermarket and buying the shortest
codewords first. Having bought them in order, they must define a binary tree.

Solution to exercise 5.27 (p.103).

ai pi log2
1
pi

li c(ai)

a 0.09091 3.5 4 0000

b 0.09091 3.5 4 0001

c 0.09091 3.5 4 0100

d 0.09091 3.5 4 0101

e 0.09091 3.5 4 0110

f 0.09091 3.5 4 0111

g 0.09091 3.5 3 100

h 0.09091 3.5 3 101

i 0.09091 3.5 3 110

j 0.09091 3.5 3 111

k 0.09091 3.5 3 001

The entropy is log2 11 = 3.4594 and the expected length is L = 3 × 5
11 +

4 × 6
11 which is 3 6

11 = 3.54545.

Solution to exercise 5.28 (p.103). The key steps in this exercise are all spelled
out in the problem statement. Difficulties arise with these concepts: (1) When
you run the Huffman algorithm, all these equiprobable symbols will end up
having one of just two lengths, l+ = dlog2 Ie and l− = blog2 Ic. The steps up
to (5.32) then involve working out how many have each of these two adjacent
lengths, which depends on how close I is to a power of 2. (2) The excess length
was only defined for integer I, but we are free to find the maximum value is
attains for any real I; this maximum will certainly not be exceeded by any
integer I.

Solution to exercise 5.29 (p.103). The sparse source PX = {0.99, 0.01} could
be compressed with a Huffman code based on blocks of length N , but N would
need to be quite large for the code to be efficient. The probability of the all-0
sequence of length N has to be reduced to about 0.5 or smaller for the code
to be efficient. This sets N ' log 0.5/ log 0.99 = 69. The Huffman code would
then have 269 entries in its tree, which probably exceeds the memory capacity
of all the computers in this universe and several others.

There are other ways that we could describe the data stream. One is run-
length encoding. We could chop the source into the substrings 1, 01, 001, 0001, 00001, . . .
with the last elements in the set being, say, two strings of equal maximum
length 00 . . . 01 and 00 . . . 00. We can give names to each of these strings and

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

708 Solutions manual

compute their probabilities, which are not hugely dissimilar to each other.
This list of probabilities starts {0.01, 0.0099, 0.009801, . . .}. For this code to
be efficient, the string with largest probability should have probability about
0.5 or smaller; this means that we would make a code out of about 69 such
strings. It is perfectly feasible to make such a code. The only difficulty with
this code is the issue of termination. If a sparse file ends with a string of 20
0s still left to transmit, what do we do? This problem has arisen because we
failed to include the end-of-file character in our source alphabet. The best
solution to this problem is to use an arithmetic code as described in the next
chapter.

Solution to exercise 5.30 (p.103). The poisoned glass problem was intended to
have the solution ‘129’, this being the only number of the form 2m +1 between
100 and 200. However the optimal strategy, assuming all glasses have equal
probability, is to design a Huffman code for the glasses. This produces a binary
tree in which each pair of branches have almost equal weight. On the first
measurement, either 64 or 65 of the glasses are tested. (Given the assumption
that one of the glasses is poisoned, it makes no difference which; however, going
for 65 might be viewed as preferable if there were any uncertainty over this
assumption.) There is a 2/129 probability that an extra test is needed after
seven tests have occurred. So the expected number of tests is 7 2

129 , whereas
the strategy of the professor takes 8 tests with probability 128/129 and one
test with probability 1/129, giving a mean number of tests 7 122

129 . The expected
waste is 40/43 tests.

Extra Solutions for Chapter 6

Solution to exercise 6.2 (p.117). Let’s assume there are 128 viable ASCII char-
acters. Then the Huffman method has to start by communicating 128 integers,
each of which could in principle be as large as 127 or as small as 1, but plausi-
ble values will range from 2 to 17. There are correlations among these integers:
if one of them is equal to 1, then none of the others can be 1. For practical
purposes we might say that all the integers must be between 1 and 32 and use
a binary code to represent them in 5 bits each. Then the header will have a
size of 5 × 128 = 640bits.

If the file to be compressed is short – 400 characters, say – then (taking 4 as
a plausible entropy per character, if the frequencies are known) the compressed
length would be 640 (header) + 1600 (body) ' 2240, if the compression of
the body is optimal. For any file much shorter than this, the header is clearly
going to dominate the file length.

When we use the Laplace model, the probability distribution over charac-
ters starts out uniform and remains roughly so until roughly 128 characters
have been read from the source. In contrast, the Dirichlet model with α = 0.01
only requires about 2 characters to be read from the source for its predictions
to be strongly swung in favour of those characters.

For sources that do use just a few characters with high probability, the
Dirichlet model will be better. If actually all characters are used with near-
equal probability then α = 1 will do better.

The special case of a large file made entirely of equiprobable 0s and 1s is
interesting. The Huffman algorithm has to assign codewords to all the other
characters. It will assign one of the two used characters a codeword of length
1, and the other gets length 2. The expected filelength is thus more than
(3/2)N , where N is the source file length. The arithmetic codes will give an
expected filelength that asymptotically is ∼ N .

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 709

It is also interesting to talk through the case where one character has
huge probability, say 0.995. Here, the arithmetic codes give a filelength that’s
asymptotically less than N , and the Huffman method tends to N from above.

Solution to exercise 6.4 (p.119). Assume a code maps all strings onto strings
of the same length or shorter. Let L be the length of the shortest string that is
made shorter by this alleged code, and let that string be mapped to an output
string of length l. Take the set of all input strings of length less than or equal
to l, and count them. Let’s say there are nin(l) of length l. [nin(l) = Al, where
A is the alphabet size.]

Now, how many output strings of length l do these strings generate? Well,
for any length < L, by the definition of L, all the input strings were mapped to
strings with the same length. So the total number of output strings of length
l must be at least nin(l) + 1, since not only all the inputs of length l, but also
the ‘shortest’ input string, defined above, maps to an output of length l.

By the pigeonhole principle, that’s too many pigeons for the available holes.
Two of those output strings must be identical, so the mapping is not uniquely
decodeable.

Solution to exercise 6.7 (p.123). Figure D.2 shows the left-hand side of the
arithmetic encoder for the case N = 5, K = 2.

1
1
0

0
0

1

0
0

0
1

1
0

0
1

1

0
0

1
0
0

1

0

1

0

1

0
1

1

1

0

0

0

0

Figure D.2. Arithmetic encoder
for binary strings of length N = 5
with fixed weight K = 2. (The
right-hand side, a regular binary
scale, has been omitted.)

Solution to exercise 6.9 (p.124). Using the Huffman algorithm we arrive at
the symbol code shown in the margin. The expected length is roughly 1. The

ai pi h(pi) li c(ai)

111 1e-6 19.9 5 00000

110 1e-4 13.3 5 00001

101 1e-4 13.3 5 00010

011 1e-4 13.3 5 00011

001 0.0098 6.7 3 001

010 0.0098 6.7 3 010

100 0.0098 6.7 3 011

000 0.97 0.0 1 1

entropy of x is 0.24. The ratio length / entropy is 4, to 1 decimal place.
An arithmetic code for a string of length N = 1000, neglecting the termi-

nation overhead, gives an expected length equal to N times the entropy, i.e.
80 bits.

The variance of the length is found from the variance of the number of 1s,
which is Npq; the length is linearly related to the number of 1s, r

l(r) = r log
1

f1
+ (N − r) log

1

f0
= r log

f0

f1
+ N log

1

f0
, (D.17)

so the standard deviation is 3.14 log[f0/f1] = 21. So the compressed length
is expected to be 80 ± 21 bits. Or at most two more than this, allowing for
worst-case termination.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

710 Solutions manual

Solution to exercise 6.10 (p.124). One can generate strings with density f by
running dense random bits into the decoder corresponding to the arithmetic
encoder for a sparse source with density f . See figure D.3.

a

b

aa

ab

aaa

aab

aaaa

aaab

aaba

aabb

aba

abb

abaa

abab

ba

bb

baa

bab

baaa

baab

0

1

00

01

000

001

0000

0001

00000

00001

00010

00011

0010

0011

00100

00101

00110

00111

010

011

0100

0101

01000

01001

01010

01011

0110

0111

01100

01101

01110

01111

10

11

100

101

1000

1001

10000

10001

10010

10011

1010

1011

10100

10101

10110

10111

110

111

1100

1101

11000

11001

11010

11011

1110

1111

11100

11101

11110

11111

Figure D.3. Arithmetic encoder
for a sparse source with f = 1/6.

Solution to exercise 6.11 (p.124). The encoding is 001101011000000110100101000011,
coming from the following parsed message:

(, 0), (0,1), (1, 0), (10, 1), (10,0), (00, 0), (011, 0), (100, 1), (010, 0), (001,1)

The highlighted symbols would be omitted in the further improved coding
system.

Extra Solutions for Chapter 6.8

Solution to exercise 6.15 (p.125). Using the Huffman coding algorithm, we

ai pi h(pi) li ci

a 0.01 6.6 6 000000

b 0.02 5.6 6 000001

c 0.04 4.6 5 00001

d 0.05 4.3 4 0010

e 0.06 4.1 4 0011

f 0.08 3.6 4 0001

g 0.09 3.5 3 100

h 0.1 3.3 3 101

i 0.25 2.0 2 11

j 0.3 1.7 2 01

arrive at the answer shown, which is unique (apart from trivial modifications
to the codewords).

The expected length is 2.81. The entropy is 2.78.

Solution to exercise 6.16 (p.125). The entropy of y = x1x2 is twice H(X);
H(X) = 1.295 bits so H(Y) = 2.59 bits.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 711

The optimal binary symbol code is constructed using the Huffman coding
algorithm. There are several valid answers; the codelengths should be iden-
tical to one of the two lists below. The strings ab and ba, marked ?, are
interchangeable.

ai pi h(pi) l
(1)
i c(ai) l

(2)
i c(2)(ai)

aa 0.01 6.6 6 000000 6 000000

ab? 0.03 5.1 6 000001 6 000001

ba? 0.03 5.1 5 00001 5 00001

ac 0.06 4.1 4 0010 4 0010

ca 0.06 4.1 4 0011 4 0011

bb 0.09 3.5 4 0001 4 0001

bc 0.18 2.5 3 010 2 10

cb 0.18 2.5 3 011 2 11

cc 0.36 1.5 1 1 2 01

The expected length is 2.67.

Solution to exercise 6.17 (p.125). 470 ± 30.

Solution to exercise 6.18 (p.125). Maximize R = S/L =
∑

pn log(1/pn)/
∑

pnln
subject to normalization. gives (dS/dpnL−dL/dpnS)/L2 = µ gives dS/dpn =
Rln + µL, with dS/dpn = −1 − log pn. Thus pn = exp(−Rln)/Z.

Notice that this distribution has two properties: d log Z/dR = −L

S = log Z + RL

S/L = log Z/L + R

this instantly means log Z = 0 without my having to do any differentiation!

Solution to exercise 6.19 (p.126). There are 52! orderings of a pack of cards, so
the minimum number of bits required to make a perfect shuffle is log2(52!) '
226 bits.

Solution to exercise 6.20 (p.126). (Draft solution, more below.)

(a) After the cards have been dealt, the number of bits needed for North
to convey her hand to South (remember that he already knows his own
hand) is

log2

(

39

13

)

' 33 bits. (D.18)

Now, North does not know South’s hand, so how, in practice, could this
information be conveyed efficiently? [This relates to the Slepian–Wolf
dependent information comunication problem.]

(b) The maximum number of bits is equal to 35, the number of distinct
bids in the list 1♣ . . . 7NT . Given the assumption that E and W do
not bid, the bidding process can be viewed as defining a binary string of
length 35, with a 1 against every bid that was made by N or S, and a 0
against every bid that was skipped. The complete bidding history can
be reconstructed from this binary string, since N and S alternate (we
assumed that the bidding stops if either of them does not bid). So the
maximum total information conveyed cannot exceed 35 bits.

A bidding system that achieved this maximum information content would
be one in which a binary code is agreed such that 0s and 1s are equally

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

712 Solutions manual

probable; then each bidder chooses the next bid by raising the bid by
the appropriate number of notches. There will be a probability of 1/2

that they raise the bid by one notch; a probability of 1/4 that they raise
it by two notches; and so forth.

Solution to exercise 6.20 (p.126). (a) From the point of view of South, the
information content of North’s hand is log

((52−13)
13

)

' 33 bits.
(b) The list of bids not made and bids made forms a binary string. We

could write the omitted bids as 0s and the made bids as 1s. Then North and
South, by their raises, are defining a binary string of length 35. They can thus
convey a total of at most 35 bits to each other. It’s conceivable therefore that
each could learn about half of the information content of the other’s hand (33
bits).

Solution to exercise 6.21 (p.127). (First of two solutions.)

(a) The arabic keypad can produce the times 0:01–0:09 in two symbols and
the times 0:10–0:59 in three symbols. The roman keypad can produce
the times 0:01, 0:10, 1:00, and 10:00 in two symbols, and 0:02, 0:11,
0:20, 1:01, 1:10, 2:00, 20:00, 11:00, 10:10, and 10:01 in three symbols.
The times 0:11, 1:01, 1:10, 11:00, 10:10, and 10:01 can all be produced
in two different ways, because the two keys with numbers can be pressed
in either sequence.

(b) The arabic code is incomplete because

i. The keys 0 and 2 are both illegal first symbols.

ii. After a four-digit number has been entered, the only legal symbol
is 2.

The roman code is incomplete because

i. The key 2 is an illegal first symbol.

ii. Some times can be produced by several symbol-strings. A time
such as 1:23 can be entered as CXXIII2 or as IICIXX2.

iii. After a key has been pressed a number of times (five or nine, de-
pending which key) it may not be pressed any more times.

(c) The arabic code can produce 3:15, 2:30, and 5:00 in four symbols, and
the roman code cannot. The roman code can produce 12:00 and 21:00
in four symbols, and the arabic code cannot.

(d) Both codes allow the time 0:01 to be encoded with a very short sequence,
length two. This is implicitly one of the most probable times for both
models. In the arabic model, the implicit probability of a time is roughly
1/11l+1, where l is the length of the time when encoded in decimal. In
the roman model, times that contain many ones and zeroes are the most
probable, with the probability of a time decreasing roughly as the sum
of its digits: P (x) ∼ 1/5s, where s =

∑

i xi.

(e) When I use the microwave, my probability distribution is roughly:

x 0:10 0:20 0:30 1:00 1:10 1:20 1:30 2:00 3:00
P (x) 0.1 0.05 0.01 0.1 0.01 0.1 0.5 0.03 0.03

x 5:00 7:00 8:00 10:00 12:00 20:00 other
P (x) 0.02 0.02 0.02 0.01 0.01 0.01 ε

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 713

The arabic system is poorly matched to my distribution because it forces
me to push the zero button at the end of every time, to specify ‘zero
seconds’, which I always want. The roman system similarly wastes an
entire button (the I button) which I never use. The arabic system is
otherwise quite well matched to my probability distribution, except that
my favourite time (1:30 for a cafe latte) could do with a shorter sequence.
The roman system is well–matched to some of my times, but terribly
matched to others, in particular, the time 8:00.

The arabic system has a maximum codelength of five symbols. The
roman system has a terrible maximum codelength of 28 symbols, for the
time 59:59.

(f) An alternative encoder using five buttons would work as follows.

i. The display starts by offering as a default the median of the last
one hundred times selected. If the user has a favourite time, then
this will probably be offered. It can be accepted by pressing the 2

key.

ii. The other four keys are marked +, ++, −, and −−.

• The + symbol increments the displayed time by a little bit,
e.g.16%.

• The − symbol decrements the displayed time by a little bit,
e.g.16%.

• The ++ symbol increments the displayed time by a lot, e.g., a
factor of two.

• The −− symbol decrements the displayed time by a lot, e.g., a
factor of two.

To make this system even more adaptive to its user, these four
buttons could have their effect by moving the percentile around the
distribution of times recently used by the user. The initial time is
the median. The + button takes us to the 63rd percentile and ++

takes us to the 87th, say, with the step size decreasing adaptively as
the time is selected. If a user has five preferred times, these could
adaptively be discovered by the system so that, after time, the five
times would be invoked by the sequences −− 2, − 2, 2, + 2,
and ++ 2 respectively.

Second solution (a) The arabic microwave can generate the times 0, 1, 2, . . . 9
seconds with two symbols, and the times from 0 to 59 seconds (or perhaps 99
seconds) with three symbols. Not a very good use of the shortest strings!

The roman microwave can generate 1 second, 10 seconds, 1 minute, and 10
minutes with two symbols, and any of the 10 sums of those 4 quantities with
three symbols. Again, not a good use of the shortest strings, except perhaps
1 minute and 10 minutes. Also there is a bit of inefficiency: the sequences CX
and XC both produce 1 minute and 10 seconds.

(b) The codes are not complete. In a complete code, there would be a
unique way to encode each cooking time, and there would be no redundant
symbols (whereas all times in both codes end with “Start”, which is in at least
some cases redundant).

(c) 1 minute 23 seconds; 30 minutes.

(d) The implicit probability distribution over digits is uniform with arabic,
and the distribution over the number of non-zero digits is an exponential, with

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

714 Solutions manual

short strings (such as 8 seconds) being more probable than long ones (such as
10 minutes).

The implicit distribution over digits is highly nonuniform in the roman
microwave. The digit 1 is much more probable than the digit 9.

For most large times (such as twenty minutes) there are intermediate and
small times (such as twenty seconds, and two seconds) that have the same
implicit probability. So the roman distribution, while rather strange, does
have a scale-free property.

(e) My distribution over times has a lot of mass around 1:30, 2:00, and
4:00.

(f) No-one needs a ten-minute cooking event timed to within a second.
An efficient system would have variable grain size, with 1-second precision
at the ten-second end of things, 5-second precision in the 1-minute area, and
twenty-second precision at ten minutes.

Extra Solutions for Chapter 7

Solution to exercise 7.2 (p.134).

• The self-delimiting representations of n are:

cα(n) = 00

000000000000000000000000000000000000000

10000111101100110000111101011100100110010101000001010011110

100011000011101110110111011011111101110.

cβ(n) = 000000

1100010

0000111101100110000111101011100100110010101000001010011110

100011000011101110110111011011111101110.

cγ(n) = 00111

100010

0000111101100110000111101011100100110010101000001010011110

100011000011101110110111011011111101110.

cδ(n) = 011

11

100010

0000111101100110000111101011100100110010101000001010011110

100011000011101110110111011011111101110.

• Byte based, base 3.

010010100110101010011010010110000010101001010101010110001010010

110011000010000010010100101000010101010010100101001100001100011

• base 7

011000101000101000100011100110010100001100000110011001101100000

100000100000010101000011001011100100010100111

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 715

• base 15

100111101010010000100110010000101011100011101011101000001110111

00011101110101010111001111101110100001111

Solution to exercise 7.3 (p.135). A code that has shorter codelengths asymp-
totically (e.g., for n > 2100) uses the same idea but first encodes the number
of levels of recursion that the encoder will go through, using any convenient
prefix code for integers, for example Cω; then the encoder can use cB(n) in-
stead of cb(n) to encode each successive integer in the recursion, and can omit
the terminal zero.

Extra Solutions for Chapter 8

Solution to exercise 8.1 (p.140).

H(X,Y) = H(U, V, V,W) = H(U, V,W) = Hu + Hv + Hw. (D.19)

H(X|Y) = Hu. (D.20)

I(X;Y) = Hv. (D.21)

Solution to exercise 8.5 (p.140). The entropy distance:

DH(X,Y) ≡ H(X,Y) − I(X;Y) =
∑

x,y

P (x, y) log
P (x)P (y)

P (x, y)2
. (D.22)

is fairly easily shown to satisfy the first three axioms DH(X,Y) ≥ 0, DH(X,X) =
0, DH(X,Y)=DH(Y,X).

A proof that it obeys the triangle inequality is not so immediate. It helps
to know in advance what the difference D(X,Y) + D(Y,Z)−D(X,Z) should
add up to; this is most easily seen by first making a picture in which the
quantities H(X),H(Y), and H(Z) are represented by overlapping areas, cf.
figure 8.2 and exercise 8.8 (p.141). Such a picture indicates that D(X,Y) +
D(Y,Z) − D(X,Z) = H(Y |X,Z) + I(X;Z|Y).

D(X,Y) + D(Y,Z) − D(X,Z)

=
∑

x,y,z

P (x, y, z) log
P (x)P (y)P (y)P (z)P (xz)2

P (xy)2P (x)P (z)P (y, z)2
(D.23)

= 2
∑

x,y,z

P (x, y, z) log
P (x, z)P (x, z | y)

P (x, y, z)P (x | y)P (z | y)
(D.24)

= 2
∑

x,y,z

P (x, y, z)

[

log
1

P (y |xz)
+ log

P (x, z | y)

P (x | y)P (z | y)

]

(D.25)

= 2
∑

x,z

P (x, z)
∑

y

P (y |x, z) log
1

P (y |x, z)
+ (D.26)

2
∑

y

P (y)
∑

x,z

P (x, z | y) log
P (x, z | y)

P (x | y)P (z | y)
(D.27)

= 2
∑

x,z

P (x, z)H(Y |x, z) + 2
∑

y

P (y)I(X;Z | y). (D.28)

= 2H(Y |X,Z) + 2I(X;Z |Y). (D.29)

The quantity I(X;Z |Y) is a conditional mutual information, which like a
mutual information is positive. The other term H(Y |X,Z) is also positive,
so D(X,Y) + D(Y,Z) − D(X,Z) ≥ 0.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

716 Solutions manual

Solution to exercise 8.10 (p.142). Seeing the top of the card does convey in-
formation about the colour of its other side. Bayes’ theorem allows us to draw
the correct inference in any given case, and Shannon’s mutual information is
the measure of how much information is conveyed, on average.

This inference problem is equivalent to the three doors problem. One
quick way to justify the answer without writing down Bayes’ theorem is ‘The
probability that the lower face is opposite in colour to the upper face is always
1/3, since only one of the three cards has two opposite colours on it’.

The joint probability of the two colours is

P (u, l) u = 0 u = 1

l = 0 1/3 1/6

l = 1 1/6 1/3

(D.30)

The marginal entropies are H(U) = H(L) = 1 bit, and the mutual information
is

I(U ;L) = 1 − H2(1/3) = 0.08 bits. (D.31)

Extra Solutions for Chapter 9

Solution to exercise 9.17 (p.155). The conditional entropy of Y given X is
H(Y |X) = log 4. The entropy of Y is at most H(Y) = log 10, which is
achieved by using a uniform input distribution. The capacity is therefore

C = max
PX

H(Y) − H(Y |X) = log 10/4 = log 5/2 bits. (D.32)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 717

Solution to exercise 9.19 (p.156). The number of recognizable ‘2’s is best es-

Figure D.4. Four random samples
from the set of 2219 ‘miniature 2s’
defined in the text.

timated by concentrating on the type of patterns that make the greatest con-
tribution to this sum. These are patterns in which just a small patch of the
pixels make the shape of a 2 and most of the other pixels are set at random. It
is unlikely that the random pixels will take on some other recognizable shape,
as we will confirm later. A recognizable letter 2 surrounded by a white border
can be written in 6×7 pixels. This leaves 214 pixels that can be set arbitrarily,
and there are also 12 × 11 possible locations for the miniature 2 to be placed,
and two colourings (white on black / black on white). There are thus about
12 × 11 × 2 × 2214 ' 2219 miniature 2 patterns, almost all of which are recog-
nizable only as the character 2. This claim that the noise pattern will not look
like some other character is confirmed by noting what a small fraction of all
possible patterns the above number of 2s is. Let’s assume there are 127 other
characters to worry about. Only a fraction 2−37 of the 2256 random patterns
are recognizable 2s, so similarly, of the 2219 miniature 2 patterns identified
above, only a fraction of about 127× 2−37 of them also contain another recog-
nizable character. These double-hits decrease undetectably the above answer,
2219.

Another way of estimating the entropy of a 2, this time banning the option
of including background noise, is to consider the number of decisions that are
made in the construction of a font. A font may be bold (2) or not bold;
italic (2) or not; sans-serif (2) or not. It may be normal size (2), small (2) or
tiny (2). It may be calligraphic, futuristic, modern, or gothic. Most of these
choices are independent. So we have at least 24 × 32 distinct fonts. I imagine
that Donald Knuth’s metafont, with the aid of which this document was
produced, could turn each of these axes of variation into a continuum so that
arbitrary intermediate fonts can also be created. If we can distinguish, say,
five degrees of boldness, ten degrees of italicity, and so forth, then we can
imagine creating perhaps 106 ' 220 distinguishable fonts, each with a distinct
2. Extra parameters such as loopiness and spikiness could further increase this
number. It would be interesting to know how many distinct 2s metafont can
actually produce in a 16 × 16 box.

The entropy of the probability distribution P (y |x=2) depends on the
assumptions about noise and character size. If we assume that noise is unlikely,
then the entropy may be roughly equal to the number of bits to make a clean
2 as discussed above. The possibility of noise increases the entropy. The
largest it could plausibly be is the logarithm of the number derived above
for the number of patterns that are recognizable as a 2, though I suppose
one could argue that when someone writes a 2, they may end up producing
a pattern y that is not recognizable as a 2. So the entropy could be even
larger than 220 bits. It should be noted however, that if there is a 90% chance
that the 2 is a clean 2, with entropy 20 bits, and only a 10% chance that it
is a miniature 2 with noise, with entropy 220 bits, then the entropy of y is
H2(0.1)+0.1×220+0.9×20 ' 40 bits, so the entropy would be much smaller
than 220 bits.

Solution to exercise 9.21 (p.156). The probability of error is the probability
that the selected message is not uniquely decodeable by the receiver, i.e., it
is the probability that one or more of the S−1 other people has the same
birthday as our selected person, which is

1 −
(

A − 1

A

)S−1

= 1 − 0.939 = 0.061. (D.33)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

718 Solutions manual

The capacity of the communication channel is log 365 ' 8.5 bits. The rate of
communication attempted is log 24 ' 4.6 bits.

So we are transmitting substantially below the capacity of this noiseless
channel, and our communication scheme has an appreciable probability of
error (6%). Random coding looks a rather silly idea.

Solution to exercise 9.22 (p.157). The number of possible K-tuples is AK , and
we select qK such K-tuples, where q is the number of people in each of the K
rooms. The probability of error is the probability that the selected message is
not uniquely decodeable by the receiver,

1 −
(

AK − 1

AK

)qK−1

. (D.34)

In the case q = 364 and K = 1 this probability of error is

1 −
(

1 − 1

A

)q−1

' 1 − e−(q−1)/A ' 1 − e = 0.63. (D.35)

[The exact answer found from equation (D.34) is 0.631.] Thus random coding
is highly likely to lead to a communication failure.

As K gets large, however, we can approximate

1 −
(

AK − 1

AK

)qK−1

= 1 −
(

1 − 1

AK

)qK−1

' qK − 1

AK
'

(q

A

)K
. (D.36)

In the example q = 364 and A = 365, this probability of error decreases as
10−0.0012K , so, for example, if K ' 6000 then the probability of error is smaller
than 10−6.

For sufficiently large blocklength K, random coding becomes a reliable,
albeit bizarre, coding strategy.

Extra Solutions for Chapter 10

Solution to exercise 10.2 (p.169). A perl program that finds this derivative
and optimizes I in order to find the capacity of a channel is available at
http://www.inference.phy.cam.ac.uk/mackay/perl/capacity.p.

Solution to exercise 10.1 (p.168). Consider a string of bit pairs bk, b̂k, having
the property that

∑K
k=1 P (b̂k 6= bk)/K = pb. These bits are concatenated in

blocks of size K = NR to define the quantities s and ŝ. Also, P (bk =1) =
1/2. We wish to show that these properties imply I(s; ŝ) ≥ K(1 − H2(pb)),
regardless of whether there are correlations among the bit errors.

More to come here.

Solution to exercise 10.12 (p.172). I(X;Y) = H(X) − H(X |Y).
I(X;Y) = H2(p0) − qH2(p0).
Maximize over p0, get C = 1 − q.
The (2, 1) code is {01, 10}. With probability q, the 1 is lost, giving the out-

put 00, which is equivalent to the “?” output of the Binary Erasure Channel.
With probability (1 − q) there is no error; the two input words and the same
two output words are identified with the 0 and 1 of the BEC. The equivalent
BEC has erasure probability q. Now, this shows the capacity of the Z channel
is at least half that of the BEC.

This result is a bound, not an inequality, because our code constrains the
input distribution to be 50:50, which is not necessarily optimal, and because
we’ve introduced simple anticorrelations among successive bits, which optimal
codes for the channel would not do.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 719

Extra Solutions for Chapter 11

Solution to exercise 11.3 (p.184). In a nutshell, the encoding operations in-
volve ‘additions’ and ‘multiplies’, and these operations are associative.

Let the source block be {sk2k1} and the transmitted block be {tn2n1}. Let
the two generator matrices be G(1) and G(2). To conform to convention, these
matrices have to be transposed if they are to right-multiply.

If we encode horizontally first, then the intermediate vector is

uk2n1 =
∑

k1

G
(1)T
n1k1

sk2k1 (D.37)

and the transmission is

tn2n1 =
∑

k2

G
(2)T
n2k2

uk2n1 (D.38)

=
∑

k2

G
(2)T
n2k2

∑

k1

G
(1)T
n1k1

sk2k1 . (D.39)

Now, by the associative property of addition and multiplication, we can reorder
the summations and multiplications:

tn2n1 =
∑

k1

∑

k2

G
(2)T
n2k2

G
(1)T
n1k1

sk2k1 (D.40)

=
∑

k1

G
(1)T
n1k1

∑

k2

G
(2)T
n2k2

sk2k1 . (D.41)

This is identical to what happens if we encode vertically first, getting inter-
mediate vector

vn2k1 =
∑

k2

G
(2)T
n2k2

sk2k1 (D.42)

then transmitting

tn2n1 =
∑

k1

G
(1)T
n1k1

vn2k1 . (D.43)

Solution to exercise 11.6 (p.188). The fraction of all codes that are linear is
absolutely tiny. We can estimate the fraction by counting how many linear
codes there are and how many codes in total.

A linear (N,K) code can be defined by the M = N − K constraints that
it satisfies. The constraints can be defined by a M × N parity-check matrix.
Let’s count how many parity-check matrices there are, then correct for over-
counting in a moment. There are 2MN distinct parity-check matrices. Most
of these have nearly full rank. If the rows of the matrix are rearranged, that
makes no difference to the code. Indeed, you can multiply the matrix H
by any square invertible matrix, and there is no change to the code. Row-
permutation is a special case of multiplication by a square matrix. So the size
of the equivalence classes of parity-check matrix is 2M2

. (For every parity-
check matrix, there are 2M2

ways of expressing it.) So the number of different
linear codes is 2MN/2M2

= 2MK .

The total number of codes is the number of choices of 2K words from the
set of 2N possible words, which is

(

2N

2K

)

, which is approximately

(2N)2
K

(2K)!
=

2N2K

(2K)!
. (D.44)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

720 Solutions manual

The fraction required is thus

2N2R(1−R)(2K)!

2N2K
. (D.45)

Solution to exercise 11.8 (p.188). A code over GF (8) We can denote the ele-
ments of GF (8) by {0, 1, A,B,C,D,E, F}. Each element can be mapped onto
a polynomial over GF (2).

element polynomial binary representation

0 0 000

1 1 001

A x 010

B x + 1 011

C x2 100

D x2 + 1 101

E x2 + x 110

F x2 + x + 1 111

(D.46)

The multiplication and addition operations are given by multiplication and
addition of the polynomials, modulo x3 + x + 1.

Here is the multiplication table:

· 0 1 A B C D E F

0 0 0 0 0 0 0 0 0
1 0 1 A B C D E F
A 0 A C E B 1 F D
B 0 B E D F C 1 A
C 0 C B F E A D 1
D 0 D 1 C A F B E
E 0 E F 1 D B A C
F 0 F D A 1 E C B

(D.47)

Here is a (9,2) code over GF (8) generated by the generator matrix

G =

[

1 0 1 A B C D E F
0 1 1 1 1 1 1 1 1

]

(D.48)

000000000 011111111 0AAAAAAAA 0BBBBBBBB 0CCCCCCCC 0DDDDDDDD 0EEEEEEEE 0FFFFFFFF

101ABCDEF 110BADCFE 1AB01EFCD 1BA10FEDC 1CDEF01AB 1DCFE10BA 1EFCDAB01 1FEDCBA10

A0ACEB1FD A1BDFA0EC AA0EC1BDF AB1FD0ACE ACE0AFDB1 ADF1BECA0 AECA0DF1B AFDB1CE0A

B0BEDFC1A B1AFCED0B BA1CFDEB0 BB0DECFA1 BCFA1B0DE BDEB0A1CF BED0B1AFC BFC1A0BED

C0CBFEAD1 C1DAEFBC0 CAE1DC0FB CBF0CD1EA CC0FBAE1D CD1EABF0C CEAD10CBF CFBC01DAE

D0D1CAFBE D1C0DBEAF DAFBE0D1C DBEAF1C0D DC1D0EBFA DD0C1FAEB DEBFAC1D0 DFAEBD0C1

E0EF1DBAC E1FE0CABD EACDBF10E EBDCAE01F ECABD1FE0 EDBAC0EF1 EE01FBDCA EF10EACDB

F0FDA1ECB F1ECB0FDA FADF0BCE1 FBCE1ADF0 FCB1EDA0F FDA0FCB1E FE1BCF0AD FF0ADE1BC

Further exercises that can be based on this example:

. Exercise D.1.[2] Is this code a perfect code?

. Exercise D.2.[2] Is this code a maximum distance separable code?

Extra Solutions

Solution to exercise D.1 (p.720). The (9, 2) code has M = 7 parity checks,
and its distance is d = 8. If the code were perfect, then all points would be
at a distance of at most d/2 from the nearest codeword, and each point would
only have one nearest codeword.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 721

The (9, 2) code is not a perfect code. Any code with even distance cannot
be a perfect code because it must have vectors that are equidistant from the
two nearest codewords, for example, 000001111 is at Hamming distance 4
from both 000000000 and 011111111.

We can also find words that are at a distance greater than d/2 from all
codewords, for example 111110000, which is at a distance of five or more from
all codewords.

Solution to exercise D.2 (p.720). The (9, 2) code is maximum distance sepa-
rable. It has M = 7 parity checks, and when any 7 characters in a codeword
are erased we can restore the others. Proof: any two by two submatrix of G
is invertible.

Extra Solutions for Chapter 12

Solution to exercise 12.9 (p.201). log36 6, 000, 000, 000 = 6.3, so a 7-character
address could suffice, if we had no redundancy. One useful internet service
provided by shortURL.com is the service of turning huge long URLs into tiny
ones, using the above principle.

Email addresses can be as short as four characters (I know m@tc), but
roughly 15 is typical.

Extra Solutions for Chapter 13

Solution to exercise 13.6 (p.216). With β(f) = 2f 1/2(1 − f)1/2, combining
(13.14) and (13.25), the average probability of error of all linear codes is
bounded by

〈P (block error)〉 ≤
∑

w>0

〈A(w)〉[β(f)]w '
∑

w>0

2N [H2(w/N)−(1−R)][β(f)]w

(D.49)
This is a sum of terms that either grow or shrink exponentially with N , depend-
ing whether the first factor or the second dominates. We find the dominant
term in the sum over w by differentiating the exponent.

d

dw
N [H2(w/N) − (1 − R)] + w log β(f) = log

1 − (w/N)

w/N
+ log β(f) (D.50)

the maximum is at
w/N

1 − (w/N)
= β(f) (D.51)

i.e.,

w/N =
β(f)

1 + β(f)
=

1

1 + 1/β(f)
. (D.52)

We require the exponent

N [H2(w/N) − (1 − R)] + w log β(f) (D.53)

to be negative at this point, then we can guarantee that the average error
probability vanishes as N increases. Plugging in the maximum-achieving

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

Poor man
Shannon

Figure D.5. Poor man’s capacity
(D.55) compared with Shannon’s.

w/N , we have shown that the average error probability vanishes if

H2

(

1

1 + 1/β(f)

)

+
1

1 + 1/β(f)
log β(f) < (1 − R), (D.54)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

722 Solutions manual

and we have thus proved a coding theorem, showing that reliable communi-
cation can be achieved over the binary symmetric channel at rates up to at
least

Rpoor man = 1 −
[

H2

(

1

1 + 1/β(f)

)

+
1

1 + 1/β(f)
log β(f)

]

. (D.55)

Extra Solutions for Chapter 13

Solution to exercise 13.15 (p.221). All the Hamming codes have distance d =
3.

Solution to exercise 13.16 (p.221). A code has a word of weight 1 if an entire
column of the parity-check matrix is zero. There is a chance of 2−M = 2−360

that all entries in a given column are zero. There are M = 360 columns. So
the expected value at w = 1 is

A(1) = M2−M = 360 × 2−360 ' 10−111. (D.56)

Solution to exercise 13.17 (p.221). This (15,5) code is unexpectedly good:
While the Gilbert distance for a (15,5) code is 2.6, the minimum distance of
the code is 7. The code can correct all errors of weight 1, 2, or 3. The weight
enumerator function is (1,0,0,0,0,0,0,15,15,0,0,0,0,0,0,1).

Solution to exercise 13.18 (p.221). See figure D.6.

w A(w)

0 1
5 12
6 10
8 15
9 20

10 6

Total 64

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 15

1

10

0 1 2 3 4 5 6 7 8 9 10 15

Figure D.6. The weight
enumerator function of the
pentagonful code (solid lines).
The dotted lines show the average
weight enumerator function of all
random linear codes with the
same size of generator matrix.
The lower figure shows the same
functions on a log scale. While
the Gilbert distance is 2.2, the
minimum distance of the code is 5.

Solution to exercise 13.25 (p.223). Here’s a suggested attack on this still-
open problem. [I use dual-containing as an abbreviation for “having a self-
orthogonal dual”.] Pick an ensemble of low-density parity-check codes – for
example, defined by making an M × N matrix in which every column is a
random vector of weight j. Each column involves

(j
2

)

pairs of rows. There are

a total of N
(j
2

)

such pairs. If the code is dual-containing, every such pair must
occur an even number of times, most probably twice.

Estimate the probability of every pair’s occuring twice. Multiply this prob-
ability by the total number of codes in the ensemble to estimate the number
that are dual-containing.

Solution to exercise 13.26 (p.223). The formula for the error probability pro-
duced by a single codeword of weight d is Φ̃(

√
dx), where x is the signal-to-

noise ratio and Φ̃(u) = 1 − Φ(u) is the tail area of a unit normal distribution.

Eb/N0 = 10 log10
x2

2R .

Extra Solutions for Chapter 15

Solution to exercise 15.1 (p.233).

(a) dlog2 166751e = 18 bits.

(b) 1.67 × 10−3

Solution to exercise 15.2 (p.233).

(a) H2(0.4804) = 0.998891.

(b) 0.496 × H2(0.5597) + 0.504 × H2(0.6) = 0.9802 bits

(c) 1 bit.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 723

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 0.5 1 1.5 2

S(1/2)

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1 1.5 2 2.5

S(2/3)

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1.5 2 2.5 3 3.5

S(3/4)

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

2.5 3 3.5 4

S(5/6)

d=10
d=20
d=30
d=40
d=50
d=60

Figure D.7. Error probability associated with a single codeword of weight d as a
function of the rate-compensated signal-to-noise ratio Eb/N0. Curves are
shown for d = 10, 20, . . . and for R = 1/2, 2/3, 3/4, and 5/6. In each plot
the Shannon limit for a code of that rate is indicated by a vertical mark.

(d) H2(0.6) = 0.9709 bits.

Solution to exercise 15.3 (p.233). The optimal symbol code (i.e., questioning
strategy) has expected length 3 11

36 .

Solution to exercise 15.6 (p.234). Two solutions to the 52-card problem: the
first one is not easy to memorize.

(1) Decide on a mapping of the 52 cards onto integers 1...52. Order the five
cards and inspect the differences (with wraparound) between all neighbours.
Call these differences g12, g23, g34, g45, and g51. Now, one of these gaps is the
biggest. If there’s a tie for biggest, no worries, just pick one of the biggest
gaps. Say the biggest is g45. We’ll choose the hidden card to be the left-
hand endpoint of this gap. The revealed cards will thus have a gap in them
even larger than g45; and this gap will certainly be the biggest gap among the
revealed cards. We’ll always choose the card at the left-hand end of the biggest
gap to be the one that’s hidden. Then we’ll identify that card by sending the
size of that gap to the left of the biggest gap. Now, the following inequalities
hold: g34 ≥ 1; g45 ≥ 1; g34 + g45 ≤ 49. If g45 > 24 then g34 ≤ 24. So since
g45 is the biggest gap of all, it’s certainly so that g34 ≤ 24, so Esmerelda
can encode the quantity g34 using the permutation of the other four cards to
convey a number between 1 and 24. The decoder orders the revealed cards
(deducing the number between 1 and 24, let’s call it g) and finds the biggest
gap. Starting from the bottom of the gap, he counts up g and recovers the
number of the hidden card.

(2) This solution is taken from New Scientist vol 177 issue 2376 - 04 January
2003, page 38. by Ian Stewart, who got it from people.brandeis.edu/∼kleber/Papers/card.pdf

It is, says mathematician Michael Kleber, ”the best card trick there is”.
The trick is not a new one - it was invented in the 1920s by the recipient of
MIT’s first mathematics PhD, William Fitch Cheney, Jr.

At first glance, it just seems impossible - especially to anyone who knows
about information theory. To transmit information, you need to encode it in

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

724 Solutions manual

something that can be set in a variety of arrangements. For example, in the
binary code used in computing and telecoms, specifying the number 8 requires
a minimum of four binary digits, or bits: “1000”. And the same principle is
true in this card trick. Here, though, the information is not transmitted via
a specific ordering of zeros and ones. The only way to do it is by a specific
ordering of the cards Esme presents.

But there’s a problem. There are only 24 ways to order four cards, so,
according to information theory, Esme can only pass me one of 24 possible
messages. So how can she tell me what that hidden card is of the 48 possibil-
ities remaining?

Aha! Esme has a further option: she gets to choose which card remains
hidden. With five cards, at least two must have the same suit. So Esme and
I agree that whichever card she shows me first will have the same suit as the
hidden card. Since she showed me the nine of spades, the hidden card will be
one of the 12 other spades in the pack.

I’m gaining ground - or am I? Now there are only three cards that Esme
can use to transmit information by selecting their order. And three cards can
be presented in precisely six distinct orderings. So Esme is still unable to
specify which of the 12 remaining possibilities is the hidden card. Somehow
she has to reduce everything to six options. And she can.

Imagine all 13 spades arranged in a circle, reading clockwise in ascending
numerical order, with ace = 1, jack = 11, queen = 12, king = 13. Given
any two cards, you can start at one of them, move no more than six spaces
clockwise round the circle, and get to the other one.

So all that Esmerelda has to do is make sure that the first spade she shows
me is the one from which we can reach the other in six steps or less. Then
she can use the three remaining cards to convey the necessary number by
presenting them in a particular one of the six possible orderings. There are
lots of ways to do this, but the easiest is probably to establish a code based on
the cards’ relative numerical value. If any two carry the same number, they
can be ordered by suit. The bridge system - clubs, hearts, diamonds, spades
- would work.

The three cards she is looking at constitute a smaller value one (S), a
bigger one (B), and one somewhere in between (M). By choosing the right
order for the second, third, and fourth cards, say SMB = 1, SBM = 2, MSB =
3, MBS = 4, BSM = 5, BMS = 6, Esmerelda can tell me that crucial number
between 1 and 6. Remember the five cards we started with: six of clubs, ten
of diamonds, four of hearts, nine of spades, queen of spades. There are two
spades, so my lovely assistant has to show me a spade first. Which one? Well,
reading 9 - 10 - J - Q gets me from the nine to the queen in three steps,
whereas Q - K - A - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 takes more than six steps, so
that’s no good. Esmerelda therefore shows me the nine of spades first.

Then she has to show me the remaining cards in whichever order is the
agreed code for “3”. Using the code above, the correct order is six of clubs,
four of hearts, ten of diamonds. Now I can count three steps on from the
nine of spades, which takes me to the queen of spades. And that, ladies and
gentlemen, is how it’s done.

It’s an interesting exercise in the principles of number theory, but perhaps
not earth-shattering. So why are mathematicians so interested in this trick?

Well, picking 5 cards from 52 is what mathematicians call a special case.
What happens with different numbers? Could you, for instance, pick the
hidden card among 5 drawn from a pack of 100 cards? In a generalisation of
the trick, suppose the pack contains p cards (still sticking with four suits) and

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 725

we draw n of them. The assistant shows all but one of the n cards, and the
magician works out the final one. How big can p be?

Information theory tells us that the trick is impossible if there are more
hands of n cards than there are messages formed by n − 1 of them. Doing
the calculation, we find that p can be at most n! + (n − 1). Work it out, and
you find that you can - in principle at least - do the above 5-card trick using
a pack of 124 cards. With 6 cards drawn, the pack can have up to 725 cards.
Picking 7 cards, the pack can have 5046, and with 8 it can have 40,327.

The calculations show only that the trick is in principle possible with
these numbers of cards - that there are enough possible messages to convey
the information needed to specify the final card. But magicians need an actual
method for doing the trick. This is where more complex information theory
ideas (to be precise, the “marriage theorem” and the Birkhoff-von Neumann
theorem) come in.

Kleber, of Brandeis University in Waltham, Massachusetts, has laid out
his route to working out a manageable way to do the trick with 124 cards in a
recent issue of The Mathematical Intelligencer (2002: vol 24, number 1, p 9).

Solution to exercise 15.8 (p.234). |T | = 2716.

Solution to exercise 15.4 (p.233). An arithmetic coding solution: use the coin
to generate the bits of a binary real number between 0.000 . . . and 0.11111 . . .;
keep tossing until the number’s position relative to 0.010101010 . . . and 0.101010101 . . .
is apparent.

Interestingly, I think that the simple method
HH: Tom wins; HT: Dick wins; TH: Harry wins; TT: do over

is slightly more efficient in terms of the expected number of tosses.

Solution to exercise 15.11 (p.234). By symmetry, the optimal input distribu-
tion for the channel

Q =





1 0 0
0 1−f f
0 f 1−f



 (D.57)

has the form ((1 − p), p/2, p/2). The optimal input distribution is given by

p∗ =
1

1 + 2H2(f)−1
. (D.58)

In the case f = 1/3, p∗ = 0.514 and the capacity is C = 1.041 bits.

Solution to exercise 15.15 (p.236). The optimal input distribution is (1/6, 1/6, 1/3, 1/3),
and the capacity is log2 3 bits.

More details for exercise 15.14 (p.235)

For the first part, for any x10, 10x10 = (11 − 1)x10 = −x10 mod11, so sum9
1

= x10 implies sum9
1 +10x10 = 0mod 11.

ISBN. Any change to a single digit violates the checksum.
Any interchange of two digits equal to a and b, separated by distance s

in the word (for example, s = 1 for adjacent digits) produces a change in the
checksum given by

[an + b(n + s) − (bn + a(n + s))]mod 11 = [bs − as]mod 11 = (b − a)smod11

Here s is between 1 and 9. And b−a is between ±9. If b−a = 0 then the digits
are identical and their interchange doesn’t matter. Now since 11 is prime, if

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

726 Solutions manual

(b − a)s = 0mod 11, then b − a = 0. So all interchanges of two digits that
matter can be detected.

If we used modulo 10 arithmetic then several things would go wrong. First,
we would be unable to detect an interchange of the last two adjacent digits.
For example 91 and 19 both check out, if they are the last two digits. Second,
there would be other interchanges of pairs of digits which would be undetected
because 10 is not prime. So for example, . . . 005. . . and . . . 500. . . would be
indistinguishable. (This example uses two digits differing by 5 and separated
by a space of size 2.) Third, a minor point: the probability of detecting a
completely bogus ISBN is slightly higher (10/11) in the modulo 11 system
than in the modulo 10 system (9/10).

More details for exercise 15.12 (p.235)

Let the transmitted string be t and the received string r. The mutual infor-
mation is:

H(t; r) = H(r) − H(r | t). (D.59)

Given the channel model, the conditional entropy H(r | t) is log2(8) = 3 bits,
independent of the distribution chosen for t.

By symmetry, the optimal input distribution is the uniform distribution,

and this gives H(r) = 8 bits.

So the capacity, which is the maximum mutual information, is [1]

C(Q) = 5 bits. (D.60)

Encoder: A solution exists using a linear (8, 5) code in which the first
seven bits are constrained to be a codeword of the (7, 4) Hamming code, which
encodes 4 bits into 7 bits. The eighth transmitted bit is simply set to the fifth
source bit.

Decoder: The decoder computes the syndrome of the first seven received
bits using the 3 × 7 parity-check matrix of the Hamming code, and uses the
normal Hamming code decoder to detect any single error in bits 1–7. If such
an error is detected, the corresponding received bit is flipped, and the five
source bits are read out. If on the other hand the syndrome is zero, then the
final bit must be flipped.

Extra Solutions for Chapter 19

Theory of sex when the fitness is a sum of exclusive-ors

The following theory gives a reasonable fit to empirical data on evolution
where the fitness function is a sum of exclusive-ors of independent pairs of
bits. Starting from random genomes, learning is initially slow because the
populatin has to decide, for each pair of bits, in which direction to break the
symmetry: should they go for 01 or 10?

We approximate the situation by assuming that at time t, the fraction of
the population that has 01 at a locus is a(t), for all loci, and the fraction that
have 10 is d(t), for all loci. We thus assume that the symmetry gets broken in
the same way at all loci. To ensure that this assumption loses no generality,
we reserve the right to reorder the two bits. We assume that the other states
at a locus, 00 and 11, both appear in a fraction b(t) ≡ 1

2(1 − (a(t) + d(t))).

Now, we assume that all parents’ genomes are drawn independently at
random from this distribution. The probability distribution of the state of

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 727

one locus in one child is then

P (00) = b′(t) ≡ 1

2
(b + (a + b)(b + d))

P (01) = a′(t) ≡ 1

2
(a + (a + b)2)

P (10) = d′(t) ≡ 1

2
(d + (d + b)2) (D.61)

P (11) = b′(t)

where the first terms (1
2b, 1

2a, etc.) come from the event that both bits inher-
ited from a single parent.

The mean fitness of one locus in an offspring is then

p ≡ (a′(t) + d′(t)), (D.62)

and the total fitness, which is the sum of G/2 such terms, has a binomial
distribution with parameters (N, p) = (G/2, p), i.e., mean µ = Np and vari-
ance σ2 = Np(1 − p). Approximating this distribution by a Gaussian, and
assuming truncation selection keeps the top half of the distribution, the mean
fitness after truncation will be µ +

√

2/πσ, and the fractions at one locus are
adjusted, by this selection, to:

a′′(t) ≡ a′(t)
p′′

p
, d′′(t) ≡ d′(t)

p′′

p
(D.63)

where

p′′ = p +
√

2/π
1

√

G/2

√

p(1 − p). (D.64)

The parents of the next generation thus have fractions given by a(t+1) = a′′(t)
and d(t + 1) = d′′(t).

add graphs here from gene/xortheory

Extra Solutions for Chapter 22

Solution to exercise 22.15 (p.309). The likelihood has N maxima: it is in-
finitely large if µ is set equal to any datapoint xn and σn is decreased to zero,
the other σn′ being left at non-zero values. Notice also that the data’s mean
and median both give lousy answers to the question ‘what is µ?’

We’ll discuss the straightforward Bayesian solution to this problem later.

Extra Solutions for Chapter 29

Solution to exercise 29.1 (p.362). The solution in the book is incomplete, as
the expression for the variance of

Φ̂ ≡
∑

r wrφ(x(r))
∑

r wr
, (D.65)

where

wr ≡ P ∗(x(r))

Q∗(x(r))
, (D.66)

is not given. We focus on the variance of the numerator. (The variance of the
ratio is messier.)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

728 Solutions manual

But first, let’s note the key insight here: what is the optimal Q(x) going
to look like? If φ(x) is a positive function, then the magic choice

Q(x) =
1

ZQ
P ∗(x)φ(x) (D.67)

(if we could make it) has the perfect property that every numerator term will
evaulate to the same constant,

P ∗(x(r))

Q∗(x(r))
φ(x(r)) =

P ∗(x(r))ZQ

P ∗(x(r))φ(x(r))
φ(x(r)) = ZQ, (D.68)

which is the required answer ZQ =
∫

dxP ∗(x)φ(x). The choice (D.67) for Q
thus minimizes the variance of the numerator. The denominators meanwhile
would have the form

wr ≡ P ∗(x(r))

Q∗(x(r))
=

ZQ

φ(x(r))
. (D.69)

It’s intriguing to note that for this special choice of Q, where the numerator,
even for just a single random point, is exactly the required answer, so that
the best choice of denominator would be unity, the denominator created by
the standard method is not unity (in general). This niggle exposes a general
problem with importance sampling, which is that there are multiple possi-
ble expressions for the estimator, all of which are consistent asymptotically.
Annoying, hey? The main motivation for estimators that include the denom-
inator is so that the normalizing constants of the distributions P and Q do
not need to be known.

So, to the variance. The variance of a single term in the numerator is, for
normalized Q,

var

[

P ∗(x)

Q(x)
φ(x)

]

=

∫

dx

[

P ∗(x)

Q(x)
φ(x)

]2

Q(x) − Φ2 =

∫

dx
P ∗(x)2

Q(x)
φ(x)2 − Φ2

(D.70)
To minimize this variance with respect to Q, we can introduce a Lagrange
multiplier λ to enforce normalization. The functional derivative with respect
to Q(x) is then

−P ∗(x)2

Q(x)2
φ(x)2 − λ, (D.71)

which is zero if

Q(x) ∝ P ∗(x)|φ(x)|. (D.72)

Solution to exercise 29.14 (p.382). Fred’s proposals would be appropriate if
the target density P (x) were half as great on the two end states as on all other
states. If this were the target density, then the factor of two difference in Q for
a transition in or out of an end state would be balanced by the factor of two
difference in P , and the acceptance probability would be 1. Fred’s algorithm
therefore samples from the distribution

P ′(x) =







1/20 x ∈ {1, 2, . . . , 19}
1/40 x ∈ {0, 20}
0 otherwise

. (D.73)

If Fred wished to retain the new proposal density, he would have to change
the acceptance rule such that transitions out of the end states would only be
accepted with probability 0.5.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 729

Solution to exercise 29.19 (p.384). Typical samples differ in their value of
log P (x) by a standard deviation of order

√
N , let’s say c

√
N . But the value

of log P (x) varies during a Metropolis simulation by a random walk whose
steps when negative are roughly of unit size; and thus by detailed balance the
steps when positive are also roughly of unit size. So modelling the random
walk of log P (x) as a drunkard’s walk, it will take a time T ' c2N to go a
distance c

√
N using unit steps.

Gibbs sampling will not necessarily take so long to generate independent
samples because in Gibbs sampling it is possible for the value of log P (x) to
change by a large quantity up or down in a single iteration. All the same,
in many problems each Gibbs sampling update only changes log P (x) by a
small amount of order 1, so log P (x) evolves by a random walk which takes a
time T ' c2N to traverse the typical set. However this linear scaling with the
system size, N , is not unexpected – since Gibbs sampling updates only one
coordinate at a time, we know that at least N updates (one for each variable)
are needed to get to an independent point.

Extra Solutions for Chapter 31

Solution to exercise 31.3 (p.412). This is the problem of creating a system
whose stable states are a desired set of memories. See later chapters for some
ideas.

Extra Solutions for Chapter 35

Solution to exercise 35.3 (p.446). To answer this question, P (x) can be trans-
formed to a uniform density. Any property of intervals between record-breaking
events that holds for the uniform density also holds for a general P (x), since
we can associate with any x a variable u equal to the cumulative probability
density

∫ x
P (x), and u’s distribution is uniform. Whenever a record for x is

broken, a record for u is broken also.

Solution to exercise 35.7 (p.448). Let’s discuss the two possible parsings. The
first parsing Ha produces a column of numbers all of which end in a decimal
point. This might be viewed as a somewhat improbable parsing. Why is the
decimal point there if no decimals follow it? On the other hand, this pars-
ing makes every number four digits long, which has a pleasing and plausible
simplicity to it.

However, if we use the second parsing Hb then the second column of num-
bers consists almost entirely of the number ‘0.0’. This also seems odd.

We could assign subjective priors to all these possibilities and suspicious
coincidences. The most compelling evidence, however, comes from the fourth
column of digits which are either the initial digits of a second list of numbers,
or the final, post-decimal digits of the first list of numbers. What is the prob-
ability distribution of initial digits, and what is the probability distribution of
final, post-decimal digits? It is often our experience that initial digits have a
non-uniform distribution, with the digit ‘1’ being much more probable than
the digit ‘9’. Terminal digits often have a uniform distribution, or if they have
a non-uniform distribution, it would be expected to be dominated either by
‘0’ and ‘5’ or by ‘0’, ‘2’, ‘4’, ‘6’, ‘8’. We don’t generally expect the distribution
of terminal digits to be asymmetric about ‘5’, for example, we don’t expect
‘2’ and ‘8’ to have very different probabilities.

The empirical distribution seems highly non-uniform and asymmetric, hav-
ing 20 ‘1’s, 21 ‘2’s, one ‘3’ and one ‘5’. This fits well with the hypothesis that

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

730 Solutions manual

the digits are initial digits (cf. section 35.1), and does not fit well with any of
the terminal digit distributions we thought of.

We can quantify the evidence in favour of the first hypothesis by picking
a couple of crude assumptions: First, for initial digits,

P (n |Ha) =

{

1
Z

1
n

n ≥ 1
1

Z

1

10
n = 0

, (D.74)

where Z = 2.93, and second, for terminal digits,

P (n |Hb) =
1

10
. (D.75)

Then the probability of the given 43 digits is

P ({n} |Ha) = 2.71 × 10−28. (D.76)

P ({n} |Hb) = 10−43. (D.77)

So the data consisting of the fourth column of digits favour Ha over Hb by
about 1015 to 1.

This is an unreasonably extreme conclusion, as is typical of carelessly con-
structed Bayesian models (Mosteller and Wallace, 1984). But the conclusion
is correct; the data are real data that I received from a colleague, and the
correct parsing is that of Ha.

Solution to exercise 35.8 (p.448). Bayes’ theorem:

P (µ | {xn}) =
P (µ)

∏

n P (xn |µ)

P ({xn})
(D.78)

The likelihood function contains a complete summary of what the experiment
tells us about µ. The log likelihood,

L(µ) = −
∑

n

|xn − µ|, (D.79)

is sketched in figure D.8.
The most probable values of µ are 0.9–2, and the posterior probability falls

by a factor of e2 once we reach −0.1 and 3, so a range of plausible 0 values for
µ is (−0.1, 3).

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Figure D.8. Sketches of likelihood
function. Top: likelihood function
on a log scale. The gradient
changes by 2 as we pass each data
point. Gradients are 4, 2, 0, −2,
−4. Bottom: likelihood function
on a linear scale. The exponential
functions have lengthscales 1/4,
1/2, 1/2, 1/4.

Extra Solutions for Chapter 36

Solution to exercise 36.5 (p.454).
Preference of A to B means

u(1) > .89u(1) + .10u(2.5) + .01u(0) (D.80)

Whereas preference of D to C means

.89u(0) + .11u(1) < .90u(0) + .10u(2.5) (D.81)

.11u(1) < .01u(0) + .10u(2.5) (D.82)

u(1) < .89u(1) + .10u(2.5) + .01u(0) (D.83)

which contradicts (D.80).

Solution to exercise 36.9 (p.456). The probability of winning either of the
first two bets is 6/11 = 0.54545. The probability that you win the third bet
is 0.4544. Joe simply needs to make the third bet with a stake that is bigger
than the sum of the first two stakes to have a positive expectation on the
sequence of three bets.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 731

A��
��

7��
��

E��
��

68��
��

E7��
��

77��
��

678��
��

E77��
��p7

p6+p7+p8

p7

p6+p7+p8

p6+p8

p6+p7+p8

p6

p6+p7

p6+p8

p6+p7+p8

p7

p6+p7

p6

p6+p7

p7

p6+p7

�
�

��3

Q
Q

QQs

�
�

��3

Q
Q

QQs

�
�

��3

Q
Q

QQs

�
�

��3

Q
Q

QQs

A��
��

7��
��

E��
��

68��
��

E7��
��

77��
��

678��
��

E77��
��6

16

6
16

10
16

5
11

10
16

6
11

5
11

6
11

�
�

��3

Q
Q

QQs

�
�

��3

Q
Q

QQs

�
�

��3

Q
Q

QQs

�
�

��3

Q
Q

QQs

Figure D.9. Markov process
describing the Las Vegas dice
game, pruned of all irrelevant
outcomes. The end states 68 and
678 are wins for Joe. States E77
and 77 are wins for you. Please do
not confuse this state diagram, in
which arrows indicate which
states can follow from each other,
with a graphical model, in which
each node represents a different
variables and arrows indicate
causal relationships between
them.

The Las Vegas trickster

Solution to exercise 36.9 (p.456). On a single throw of the two dice, let the
outcomes 6 and 7 have probabilities P (6) = p6 and P (7) = p7. Note P (8) = p6.
The values are p6 = 5/36 and p7 = 6/36 = 1/6. For the first bet, we can
ignore other outcomes apart from the winning and losing outcomes 7 and 6
and compute the probability that the outcome is a 7, given that the game has
terminated,

p7

p6 + p7
= 6/11 = 0.54545. (D.84)

The second bet is identical. Both are favourable bets.
The third bet is the interesting one, because it is not a favourable bet for

you, even though it sounds similar to the two bets that have gone before. The
essential intuition for why two sevens are less probable than an 8 and a 6 is
that the 8 and the 6 can come in either of two orders, so a rough factor of two
appears in the probability for 8 and 6.

Computing the probability of winning is quite tricky if a neat route is not
found. The probability is most easily computed if, as above, we discard all the
irrelevant events and just compute the conditional probability of the different
ways in which the state of the game can advance by one ‘step’. The possible
paths taken by this ‘pruned’ game with their probabilities are shown in the
figure as a Markov process. (The original unpruned game is a similar Markov
process in which an extra path emerges from each node, giving a transition
back to the same node.) The node labelled ‘A’ denotes the initial state in
which no 6s, 7s or 8s have been thrown. From here transitions are possible
to state ‘7’ in which exactly one 7 has been thrown, and no 6s or 8s; and to
state ‘E’, in which either [one or more 8s have occurred and no 6s or 7s] or
[one or more 6s have occurred and no 6s or 7s]. The probabilities of these
transitions are shown. We can progress from state E only if Joe’s winning 6
or 8 (whichever it is) is thrown, or if a 7 occurs. These events take us to the
states labelled ‘68’ and ‘E7’ respectively. From state ‘7’ the game advances
when a 6 or 8 is thrown, or when a 7 is thrown, taking us to states ‘E7’ and
‘77’ respectively. Finally, from state E7, if a 7 is thrown we transfer to state
E77, and if Joe’s required 6 or 8 is thrown, we move to state 678. States 68
and 678 are wins for Joe; states 77 and E77 are wins for you.

We first need the probability of state E7,

(10/16)(6/11) + (6/16)(10/16) = 405/704 = 0.5753 (D.85)

The probability that you win is

P (77) + P (E77) = (6/16)2 + P (E7)(6/11) = 3519/7744 = 0.4544 (D.86)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

732 Solutions manual

The bet is not favourable. Notice that Joe simply needs to make the third
bet with a stake that is bigger than the sum of the first two stakes to have a
positive expectation on the sequence of three bets.

Extra Solutions for Chapter 39

Solution to exercise 39.1 (p.472). One answer, given in the text on page 472,
is that the single neuron function was encountered under ‘the best detection
of pulses’. The same function has also appeared in the chapter on variational
methods when we derived mean field theory for a spin system. Several of the
solutions to the inference problems in chapter 1 were also written in terms of
this function.

Solution to exercise 39.5 (p.480). If we let x and s be binary ∈ {±1}7, the
likelihood is (1− f)NfM , where N = (sTx + 7)/2 and M = (7− sTx)/2. From
here, it is straightforward to obtain the log posterior probability ratio, which
is the activation.

The LED displays a binary code of length 7 with 10 codewords. Some
codewords are very confusable – 8 and 9 differ by just one bit, for example.
A superior binary code of length 7 is the (7, 4) Hamming code. This code has
15 non-zero codewords, all separated by a distance of at least 3 bits.

Here are those 15 codewords, along with a suggested mapping to the inte-
gers 0–14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Solution to exercise 39.6 (p.480).

log
P (s = 1 | r)
P (s = 2 | r) = log

P (r | s = 1)P (s = 1)

P (r | s = 2)P (s = 2)

= log

(

1 − f

f

)2r1−1

+ log

(

1 − f

f

)−(2r3−1)

+ log
P (s = 1)

P (s = 2)
= w1r1 + w3r3 + w0,

where

w1 = 2 log

(

1 − f

f

)

, w3 = −2 log

(

1 − f

f

)

, w0 = log
P (s = 1)

P (s = 2)
, (D.87)

and w2 = 0, which we can rearrange to give

P (s = 1 | r) =
1

1 + exp
(

−w0 −
∑3

n=1 wnrn

) .

This can be viewed as a neuron with two or three inputs, one from r1 with a
�
�
�
��

A
A

A
AA

b b

b���w0 ��
��

6
P (s = 1 | r)

r1 r3

w1 w3

positive weight, and one from r3 with a negative weight, and a bias.

Extra Solutions for Chapter 40

Solution to exercise 40.6 (p.490).

(a) w = (1, 1, 1).

(b) w = (1/4, 1/4,−1).

The two unrealizable labellings are {0, 0, 0, 1} and {1, 1, 1, 0}.
Solution to exercise 40.8 (p.490). With just a little compression of the raw
data, it’s possible your brain could memorize everything.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

Solutions manual 733

(a)

0.001

0.01

0.1

1

-6 -4 -2 0 2 4 6

f(a)
g(a)

(b)

0.0001

0.001

0.01

0.1

1

-6 -4 -2 0 2 4 6

 f(a)g(a)
Q

Figure D.11. (a) The log of the
sigmoid function
f(a) = 1/(1 + e−a) and the log of
a Gaussian g(a) ∝ Normal(0, 42).
(b) The product P = f(a)g(a)
and a Gaussian approximation to
it, fitted at its mode. Notice that
for a range of negative values of a,
the Gaussian approximation Q is
bigger than P , while for values of
a to the right of the mode, Q is
smaller than P .

Extra Solutions for Chapter 41

Solution to exercise 41.2 (p.502). When w ∼ Normal(wMP,A−1), the scalar
a = a(x;wMP) + (w − wMP) · x is Gaussian distributed with mean a(x;wMP)
and variance s2 =xTA−1x.

This is easily shown by simply computing the mean and variance of a,
then arguing that a’s distribution must be Gaussian, because the marginals of
a multivariate Gaussian are Gaussian. (See page 176 for a recap of multivariate
Gaussians.) The mean is

〈a〉 = 〈a(x;wMP) + (w −wMP) · x〉 = a(x;wMP)+〈(w −wMP)〉·x = a(x;wMP).

The variance is
〈

(a − a(x;wMP))2
〉

= 〈x · (w −wMP)(w −wMP) · x〉 (D.88)

= xT 〈(w −wMP)(w −wMP)T〉x = xTA−1x.

Solution to exercise 41.3 (p.503). In the case of a single data point, the like-
lihood function, as a function of one parameter wi, is a sigmoid function; an
example of a sigmoid function is shown on a logarithmic scale in figure D.11a.
The same figure shows a Gaussian distribution on a log scale. The prior dis-
tribution in this problem is assumed to be Gaussian; and the approximation
Q is also a Gaussian, fitted at the maximum of the sum of the log likelihood
and the log prior.

The log likelihood and log prior are both concave functions, so the curva-
ture of log Q must necessarily be greater than the curvature of the log prior.
But asymptotically the log likelihood function is linear, so the curvature of the
log posterior for large |a| decreases to the curvature of the log prior. Thus for
sufficiently large values of wi, the approximating distribution is lighter-tailed
than the true posterior.

This conclusion may be a little misleading however. If we multiply the
likelihood and the prior and find the maximum and fit a Gaussian there, we
might obtain a picture like figure D.11b. Here issues of normalization have
been ignored. The important point to note is that since the Gaussian is
fitted at a point where the log likelihood’s curvature is not very great, the
approximating Gaussian’s curvature is too small for a between aMP and −aMP,
with the consequence that the approximation Q is substantially larger than
P for a wide range of negative values of a. On the other hand, for values of a
greater than aMP, the approximation Q is smaller in value than P .

Thus whether Q is for practical purposes a heavy-tailed or light-tailed
approximation to P depends which direction one looks in, and how far one
looks.

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

734 Solutions manual

The Gaussian approximation becomes most accurate when the amount of
data increases, because the log of the posterior is a sum of more and more bent
functions all of which contribute curvature to the log posterior, making it more
and more Gaussian (cf. figure 41.1). The greatest curvature is contributed by
data points that are close (in terms of a) to the decision boundary, so the
Gaussian approximation becomes good fastest if the optimized parameters
are such that all the points are close to the decision boundary, that is, if the
data are noisy.

