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Abstract

Several authors have studied the relationship between hidden Markov models and ‘Boltzmann chains’
with a linear or ‘time-sliced’ architecture. Boltzmann chains model sequences of states by defining state-
state transition energies instead of probabilities. In this note I demonstrate that, under the simple
condition that the state sequence has a mandatory end state, the probability distribution assigned by a
strictly linear Boltzmann chain is identical to that assigned by a hidden Markov model.

Several authors have made a link between hidden Markov models for time series and energy-based
models (Luttrell 1989, Williams 1990, Saul and Jordan 1995). Saul and Jordan (1995) discuss a linear
Boltzmann chain model with state-state transition energies A;; (going from state 7 to state ¢') and symbol
emission energies B;;, under which the probability of an entire state {i, 51}¥ given the length of the
sequence [, is:
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where Z(I1, A, B, L) is the obvious normalizing constant. Here the symbol 7 runs over n discrete ‘hidden’
states, and j runs over m visible states. In contrast, a hidden Markov model (HMM) assigns a probability
distribution of the form:
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where 7; is a prior probability vector for the initial state, a;; is a transition probability matrix, and b;; is
a matrix of emission probabilities satisfying respectively:

Zm =1, Eaii’ =1 Vi, and Ebiﬁ =1 V. (3)
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Here again, the symbol ¢ runs over an alphabet of n hidden states, and j runs over m visible states.

Whilst any HMM can be written as a linear Boltzmann chain by setting exp(—A;) = a;ir, exp(—B;;) =
b;; and exp(—Il;) = m;, not all linear Boltzmann chains can be represented as HMMs (Saul and Jordan
1995). However, the difference between the two models is minimal. To be precise, if the final hidden
state i1, of a linear Boltzmann chain is constrained to be a particular end state, then the distribution over
sequences is tdentical to that of a hidden Markov model.



Proor

Start from the distribution (1) and consider the quantity in the exponent. The probability distribu-
tion over states {ij, j;}} is unchanged if we subtract arbitrary constants p,v from this exponent. The
distribution will also be unaffected if we add arbitrary terms §3;, to every appearance of B;,;,, provided we

also subtract 3;, from every term Aiziz+1- And we may similarly add a;,,, to every term Aim“

subtract «;,, from the following term A;; ,. The probability distribution may therefore be rewritten

unchanged (except for the normalizing constant) as

if we also
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where u, v, {a;, 0;} are arbitrary quantities. This probability distribution has the form of an HMM (equa-
tion 2) if

1. the quantities m; = exp(—(IL; + o + ), air = exp(a; + F; — Ajir — ay —v) and b = exp(—(B;; + 5i))
satisfy the normalization conditions (3).

2. the trailing term «;, + 3;, can be treated as a constant, which holds if we assume that ¢z, is fixed to
a particular end state iz, = n, say (a commonly applied constraint in the HMM literature).

Does a solution over yu, v, {a;, ;} of the normalization conditions (3) exist? Trivially, we find for 3;:

Ebij =1= §;,=log [Zexp(—BZ])
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The normalization condition that {a;} and v must satisfy is:
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Rearranging, we obtain:

> [exp(B: — Asir))] [exp(—apr)] = exp(v) [exp(—a;)] Vi
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which can be recognised as an eigenvector/eigenvalue equation for the matrix M;; = [exp(5; — A;iv)], with
exp(v) being the eigenvalue and [exp(—a;)]| being the eigenvector. This eigenproblem has a solution, by
the Perron-Frobenius theorem (Seneta 1973, p.1), which states that a positive matrix (i.e., one in which
every element M;; is positive) has a positive eigenvector with positive eigenvalue. A solution for {«;} and
v therefore exists. Finally p is given by:

=log Zexp(—(ﬂi + ;)

This completes the proof.

The linear Boltzmann chain therefore can only differ from an HMM in having a pseudo-prior over its
final state as well as a pseudo-prior over its initial state. However the equivalence of linear Boltzmann
chains to HMMSs may prove fruitful in stimulating the development of new optimization methods for these
models. And it may be found that Saul and Jordan’s generalizations to Boltzmann chains with more
complex architectures provide useful new modelling capabilities.



The Boltzmann chain, and its relationship to HMMSs, have also been studied by Luttrell (1989) who
calls it the ‘Gibbs machine’, and by Williams (1990), who calls it a ‘Boltzmann machine with a time-sliced
architecture and Potts units’. Luttrell discusses an alternative optimization algorithm to the decimation
method suggested by Saul and Jordan, and notes that the Gibbs machine is only an improvement on the
HMM when generalized to architectures with loops and other non-tree structures. Williams also shows
how to translate an HMM into a Boltzmann machine and notes that a generalized Boltzmann machine
with a ‘componential’ structure (similar to the ‘coupled parallel Boltzmann chains’ of Saul and Jordan)
has greater representational power than a single HMM of the same size.
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