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Abstract. Linsker has reported the development of structured receptive fields in 
simulations of a Hebb-type synaptic plasticity rule in a feedforward linear network. 
The synapses develop under dynamics determined by a matrix that is closely related 
to the covariance matrix of input cell activities. We analyse the dynamics of the 
learning rule in terms of the eigenvectors of this matrix. These eigenvectors repre 
sent independently evolving weight structures. Some general theorems are presented 
regarding the properties of these eigenvectors and their eigenvalues. For a general 
covariance matrix four principal parameter regimes are predicted. 

We concentrate on the Gaussian covariances at  layer L3 + C of Linsker’s network. 
Analytic and numerical solutions for the eigenvectors a t  this layer are presented. 
Three eigenvectors clonunate the dynamics: a D C  eigenvector, in which all synapses 
have the same sign; a bi-lobed, oriented eigenvector; and a circularly symmetric, 
centre-surround eigenvector. Analysis of the circumstances in which each of these 
vectors dominates yields an explanation of the emergence of centre-surround struc- 
tures and symmetry-breaking bi-lobed structures. Criteria are developed estimating 
the boundary of the parameter regime in which centre-surround structures emerge. 
The application of our analysis to Linsker’s higher layers, a t  which the covariance 
functions were oscillatory, is briefly discussed. 

1. Introduction 

Linsker has studied by simulation the evolution of synaptic weight vectors in a feed- 
forward linear network [3,4].  The  network is shown in figure 1. Synaptic weight 
modification occurred under a teacherless Hebbian rule that was linear up to  saturat-  
ing nonlinearities limiting the sizes of synaptic weights. Linsker found tha t  in certain 
parameter regimes, ‘centre-surround’ synaptic structures emerged at the third layer 
of the  network (figure 2). Concatenation of several successive layers of such centre- 
surround cells and proper selection of parameters yielded a final regime of the Hebbian 
rule in which cells developed oriented receptive fields, consisting of alternating bars 
of positive and negative input synapses. These results are of interest for two reasons. 
First, the  system studied was extremely simple: the network was linear and the con- 
nections developed under a simple teacherless learning rule. I t  seems surprising tha t  
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structured receptive fields a.rose in such a simple network. Secondly, because centre- 
surround and oriented receptive fields are found in the mammalian visual system, it 
seemed possible that these results might illustrate aspects of the dynamics underlying 
early neural development in the visual system. 

1” FEED- 

Figure 1. The first three layers of Linsker’s network. Each neuron receives synapses 
only from neurons in the previous layer. There are no int,ralaminar or feedbadc con- 
nections. The density of synapses received by a neuron has a Gaussian distribution, 
so that most synapses are received from neurons in a circular area directly below. 
This distribution of synapses is fixed; the strengths of the synapses change according 
to equation ( 3 ) .  Cells in layer A are uncorrelated in their activities, and connect via 
excitatory synapses of fixed strength wmLX to cells of layer B. The overlap between 
the inputs to neurons in layer 13 produces Gaussian correlations among the activities 
of those neurons. Cells of layer U in turn connect to layer C through synapses that 
may be posit,ive or negative and which develop according to equation ( 3 )  from a 
random initial configuration. 

Figure 2. Linsker’s results at. layer C. Each circle represents the spatial pattern of 
inputs from layer B to a cell in  layer C that resulted from a given choice of ki /lk21, for 
kz large and negative. As the parameter kl was varied, synaptic structures ranging 
from saturated structures through centre-surround structures to bi-lobed oriented 
structures were reported. 

The dynamical and biological bases for Linsker’s results have not been clearly 
established. It has been pointed out that  a Hebbian mechanism can perform certain 
types of principal component analysis [4,14], but Linsker’s results do not represent 
principal components of the input statistics, as we shall demonstrate. In this paper, 
we present an analysis of the dynamical mechanisms responsible for Linsker’s results. 
We then comment briefly on the relationship of these results to  biology. 

1.1. Derivation of Linsker’s equations 

We begin by reviewing the derivation of the equation that Linsker simulated. Consider 
a layer of cells, layer C, connected to  a single cell in the next layer, layer M .  Let xf 
be the activity of cell i in layer C, and let w, be the strength of that  input’s connection 
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to  the cell in layer M .  Then the activity of the neuron in layer M is assumed to  be 
a linear combination of the inputs: 

where a l  is a constant. 
A Hebbian rule for synaptic plasticity is one in which a syna.ptic strength is in- 

creased when pre- and post-synaptic firing are correlated, and possibly decreased when 
they are anticorrelated. The Hebb-type learning rule used by Linsker for modification 
of the connection strength wi is: 

(2) 
d 
dt 
-wi = ( Z M  - c,)(zi" - c1) + c3 

where c1, c2,  and c3 are constants. The dependence of this rule on the a.ctivity of the 
postsynaptic cell can be removed by substituting the value of tM given by equation (1). 
This yields an equation for the evolution of the weightss from layer C to the post,synaptic 
cell in terms of those weights and the mtivities of the cells in the presynaptic layer C: 

Assuming that  w changes on a much longer tiinescale than the random variations in 
the inputs, we average over the ensemble of patterns tf in layer C. The mean rate 
of change of wi is then given in terms of the mean activities Zf and the covariance 
matrix Q& E ((xf - Zf) ( t j "  - 2;)) by: 

-c. -e d 
- W .  = Z(Q& + tj (ti - cl))wj + (al - cl)(Zf - c1) + c3 
dt  ' jec 

It is characteristic of Hebbian rules that  synaptic strengths tend to  increase without 
limit. To avoid this, Linsker added upper and lower bounds for all synaptic strengthst: 

The number of constants involved in this equation can be substantially reduced 
by assuming that the first-order statistics of the patterns in layer C are uniform, i.e. 
Zf = i? V i .  Then the equation for development of the synaptic weight vector becomes: 

Wmax I Wi I Wrnax. - 

d 
-wi = k ,  + C(Q$' + k2)wj 

j €  L: 
dt subject to -wmax 5 wi 5 wmax (3) 

where 
k ,  = (U, - c2)(Zc - c1) + c3 

k, = z."(ZL - c1). 
(4) 

Linsker based his simulations on equation (3).  Our definitions of the parameters 
differ slightly from Linsker's, in that  no implicit dependence on the number of synapses 
is introduced$. 

t Linsker allowed more general hard limits, n~ - 1 5 w ,  5 n ~ ,  0 < n E  < 1 ,  which he implemented 
either directly or by allowing fractions n~ and 1 - n~ of the synapses to be excitatory and inhibitory 
respectively. Linsker reported no dependence of results upon 71.3 for the range that he studied, 
0.35 5 = 0.5,  and we have worked with this simplest 
case. 
$ Note that the transformation between equations (2)  and (3) yields constants {kl, kz} that depend 

5 0.65. He concentrated on the case 
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1.2. Overview 

The covariance matrix of activities of the inputs to the neuron, Q ,  depends on two 
factors: the  covariance function, which describes the dependence of the covariance of 
two input cells’ activities on their separation in the input field; and the location of the 
synapses, which is determined by a synaptic density functioni. 

Depending on the covariance function, the synaptic density function, and the 
choice of the two parameters k, and k2, different weight structures emerge. Linsker 
used a Gaussian synaptic density function. Cells in his initial layer, layer A,  were 
taken to  be uncorrelated in their activities (figure 1). Cells in that layer connect via 
excitatory synapses of fixed strength w,,, to cells of layer B. The overlap between 
the inputs t o  neurons in layer B causes the covariance in the activities of two layer B 
neurons to be a Gaussian function of the separation between the neurons. Using these 
Gaussian covariances, Linslter reported in his layer B i C connections the emergence 
of non-trivial weight structures: as the parameters were varied, these ranged from sat- 
urated structures through centre-surround st,ructures to  bi-lobed oriented structures 
(figure 2). Given covariances tha t  oscillate as a function of separation of the inputs 
(his layer F -+ G ) ,  the development of cells with tri-lobed or multi-lobed oriented 
receptive fields was also reported. 

The  analysis in this paper examines the properties of equation (3) .  We concen- 
t ra te  on the class of covariance functions that are non-negative and monotonically 
decreasing, and in particular on the Gaussian covariances in Linsker’s layer B -+ C 
connections. We give an explanat#ion of the occurrence of the structures shown in 
figure 2 and discuss criteria for the emergence of centre-surround weight structures. 
Several of the results are more general, applying to any covariance matrix Q. Based on 
these general results, we comment briefly on the emergence of multilobed oriented cells 
a t  higher layers. We also briefly discuss the biological plausibility of the dynamical 
mechanisms found to  underly Linsker’s results. In appendix G the same methods are 
applied to a model one-dimensional network analogous to Linsker’s two-dimensional 
network. Some of these results have been presented in briefer form elsewhere [6,7]. 

2. Analysis in terms of eigenvectors 

We write equation (3) as a first-order differential equation for the weight vector w: 

2i, = (Q + k,J)w + k1n subject to -wWmax 5 wi 5 w,,, ( 5 )  

where J is the matrix Jij = l V i , j ,  and n is the DC vector ni = 1 V i .  This equation 
is linear, up to the hard limits on wi. These hard limits define a hypercube in weight 
space within which the dynamics are confined. We make the following assumption: 

Assumption 1. The principal feaiures of the dynamics are established before the hard 
limits are reached. When the hypercube is reached, it captures and preserves the exist- 
ing weight structure with little subsequent change. 

on & (equation (4)). So the generality of a set of constants does not carry over between the two 
equations. For example, a choice of {cl, cz, CJ} that is used for several layers of a network does not 
necessarily map onto a set of constants {kl, kz} that is the same for all layers. 
t The synaptic density function and covariance function can be treated explicitly, as discussed in 
subsection 3.2 and appendix A. 
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The  matrix Q +k,J  is symmetric, so it has a complete orthonormal set of eigenvec- 
torst e(,)  with real eigenvalues A,. Each eigenvector represents a weight configuration 
that evolves independently from the others. We now review how the linear dynam- 
ics within the hypercube can be fully characterized in terms of these eigenvectors and 
eigenvalues. Equation ( 5 )  has afixed point a t  w = wFP where ( Q + k , J ) w F P + k , n  = 0. 
The  fixed point can be expressed explicitly in terms of the eigenvectors: 

Relative t o  the fixed point, the component of w in the direction of an eigenvector grows 
or decays exponentially a t  a rate proportional to  the corresponding eigenvalue. The  
weight vector a t  time t can be written in the eigenvector basis as w(t) = E, wa(i )e ( , ) ,  
where w,(t) w(t) e(") is the component of w(t) in the direction of the eigenvector 
e(") .  Then, within the hypercube, equation (5) yields 

FP e x a t  
w,(i) - w y  = (W,(O) - w, ) . 

Suppose the typical initial weight vectors are distributed without bias around the 
origin. If the fixed point is near the origin then each eigenvector with A, > 0 reinforces 
itself and grows exponentially with rate A,. This means that  after a short time the 
dynamics are typically dominated by the eigenvector with largest eigenvalue, which 
outgrows all the others (figure 3(a)). But if  one component of the fixed point wFp is 
much larger than the typical size of the initial components, then the corresponding 
component wb receivcs a substantial 'head start '  in its growth rate, and may initially 
outgrow eigenvectors with larger eigenvalue (figure 3 ( b ) ) .  The component of w in 
the direction of an eigenvector e(C)  with negative eigenvalue decays towards the fixed 
point (figure 3 ( c ) ) ,  and the final weight vector w is constrained to  lie in the hyperplane 
defined by w, = wFp. 

Thus (while the weight vector is not in contact with the hard-limits) the dynamics 
are fully characterized by the eigenvalues and eigenvectors of Q + k,J .  The principal 
emergent features of the dynamics are determined by the following three factors: 

1. 

2.  

3 .  

3. 

The principal eigenvectors of Q + k , J ,  that is, the eigenvectors with largest eigen- 
values. These are the fastest growing weight configurations. 
Eigenvectors of Q + k,J with negative eigenvalue. These are associated with at- 
tracting constraint surfaces. 
The location of the fixed point of equation ( 5 ) .  This is important for two reasons: 
0 I t  determines the location of the constraint surfaces. The constraint, surfaces 

always contain the fixed point, so increasing the distance to the fixed point 
increases the distance of the constraint surfaces from the origin. 
The fixed point gives a 'head start '  to  the growth rate of eigenvectors that  have 
a component in the direction of the fixed point. 

Eigenvectors of Q 

We first examine the eigenvectors and eigenvalues of the covariance matrix Q for 
Linsker's layer B ---$ C connect,ions. The principal eigenvector of Q dominates the 
dynamics of equation (5) for k, = 0, k, = 0. The subsequent eigenvectors of Q 
become important as k, and k, are varied. 

t The indices a and b will be used t o  denote the eigenvector basis for w, while the indices i and j will 
be used for the synaptic basis. 
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Figure 3. Dynamics of w relative to the fixed point. ( a )  Relative to the fixed point, 
the component of the weight vector in the direction of the eigenvector e ( a )  with largest 
eigenvalue event.ually grows fastest, if sat,uration limits are ignored. ( b )  Typical init.ial 
weight vectors resulting from the iriit,ial random distribution of synaptic st,rengths are 
indicated by t,he grey cloud at origin. If the fixed point is displaced from the origin a 
sufficient distance, relative to the size of a typical initial weight vector, an eigenvector 
e(b)  with smaller eigenvalue can init,ially grow faster than the principal eigenvector. 
(c) The component in the direction of an eigenvector e ( C )  with negative eigenvalue 
decays. Ignoring saturation limits, the weight vector is eventually constrained to lie 
in the plane that is perpendicular to that, eigenvector and that contains the fixed 
point. 

3.1. Eigenvectors of non-negative covariance matrices 

In general, where there are only positive correlations in the inputs, Q is a non-negative 
matrix, and the Perron-Frobenius theorem [15, p I] holds: 

Theorem 1. For a matrix whose entries are all  non-negative, the components of the 
principal eigenvector all  have th,e same sign. 

This means that where there are no anti-correlations in a cell’s input field, and 
IC, = 0 , k 2  = 0, all the cell’s synapses tend to reinforce each others’ growth, and the 
final configuration is expected to  be all-excitatory or all-inhibitory. This property 
applies to  Linsker’s layer f? -+ C connections. 

3.2. Continuum approximation 
To make analytic results possible we go to  the continuum limit, that  is, the limit of 
an infinite number of synapses. Here the vector of synaptic strengths 20 is replaced 
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by a weight function v ( T ) ,  with an associated synaptic density function A ( T ) .  W ( T )  

represents the average strength of a synapse from position T ,  while A ( T )  represents 
the  number of synapses per unit area from the region about T .  Details of the  trans- 
formation between the v and w representations are presented in appendix A. 

T h e  covariance between synapses from locations T and T’ is described by the 
covariance function C(T,  T ’ ) .  In the continuum limit, the matrix Q + k,J is replaced 
by an  integral operator. The  continuum version of equation (3) is then: 

(7) 
J d 

- v ( T )  = k ,  + dt  
(C (T ,T ’ )  + I C , )  A(T’ )v(T ’ )  d 2 d  subject t o  -tu,,, 5 W ( T )  5 w,,, 

At Linsker’s layer B- C ,  the covariance function is a Gaussian C(T ,T ’ )  = 
e-(r-r’)2/2C, and the  synaptic density function is another Gaussian A ( T )  = e- ra /2AI  
where C and A denote the characteristic sizes of the covariance function and synaptic 
density (arbor) function respectively. Linsker used various values for the ratio CIA. 
Our analytic results leave this ratio as a free parameter; in the figures we have used 
CIA = 2/3,  the value frequently used for layer Z? - C in [3]. 

We now investigate the eigenfunctions of the integral operator above for Linsker’s 
layer B --t C. We will continue to  refer to this integral operator as the matrix Q + k , J ;  
we will use the  terms eigenfunction and eigenvector interchangeably. Appendix A 
briefly discusses the numerical calculation of eigenvectors. 

/ \  / \  / \  
Figure 4. Separability of eigenfunctions in a circularly symmetric system. The 
eigenfunctions of an operator invariant under rotation are separable into the product 
of a radial function and one of the angular functions COSIO,  sinIO, I = 0,1,2,. . . 
This figure illustrates our notation for the eigenfunctions. The family of ‘s-modes’ 
ls, 2s, 3s,. . . are circularly symmetric, the ‘p-modes’ 2p, 3p,. . . have one angular node, 
the ‘d-modes’ have two angular nodes, etc. The eigenfunctions of Linsker’s and 
similar systems are found to be ordered in eigenvalue by the number of radial and 
angular nodes as shown: a line between two eigenfunctions means that the upper 
eigenfunction has larger eigenvalue. 
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3.3. Propertaes of czrcularly symmetrac systems 

If Q has a translation invariance or other symmetry property, then the eigenfunctions 
will have related symmetry properties. If in a two-dimensional system the covariance 
function between two inputs depends only on their separation, ana  if the synaptic den- 
sity function has circular symmetry, then in the continuum limit the operator Q + k,J 
is unchanged under rotation of the system. So the eigenfunctions of Q + k,J can 
be written as simultaneous eigenfunct,ions of the rotation operator, and are therefore 
separable into the product of a radial function and one of the angular functions cos EO, 
sin IO, 1 = 0 , 1 , 2 , .  . . To describe these eigenfunctions we borrow from quantum me- 
chanics the  notation n = 1 , 2 , 3 , .  . , and 1 = s, p,  d ,  . , . to denote the function’s total 
number of nodes = 0 , 1 , 2 , .  . . and number of angular nodes = 0 , 1 , 2 , .  . . respectively. 
For example, ‘2s’ has one radial node and no angular nodes, aLd ‘2p’ has one angular 
node and no radial nodes. This notation is illustrated i n  figure 4 .  

The  eigenfunctions of Linsker’s monotonic non-negative covariance operator and 
similar covariance operators are found to be ordered in eigenvalue by their numbers of 
radial and angular nodes in the tree structure shown in figure 4. A line between two 
eigenfunctions means tha t  the upper eigenfunction has larger eigenvalue. Addition of 
a radial or angular node to any eigenfunction results in lowering of the  eigenvalue. 
For example, A,, > A,, > (A3,,A3,) and A,, > A,, > (A3d,A3,) ,  but no relationship 
is asserted between A,, and either A,, or A3d. We do not know how general this 
ordering property is. In one-dimensional systems, counterexamples have been found 
to  the conjecture tha t  all monotonic non-negative covariance operators have their 
eigenvectors ordered in eigenvalue by their number of nodes. 

Table 1. Analytic solutions for first six eigenfunctions of the operator Q ( r , r ’ ) .  

The int,egral operator Q ( r , r ’ )  = e-(f-f ) /2Ce-r’2/2A, where C and A denote the 
characteristic sizes of the covariance function and synaptic density (arbor) function 
respectively. The eigenvalues X are normalized by N = 2nA, the effective number of 
synapses. 

I 2  

Number of nodes 
Name Expression Eigenvalue 

Radial Angular Total XIN 

1s 0 0 0 e-r2/2R LCIA 
2P.Z 0 1 1 rcosBe-r2/2R L~ cl A 

0 1 1 r sin B e-T2/2R L ~ C I A  
2s 0 1 (1 - r2/r8)e-r2/2R L3CIA 
3d1 0 2 2 T~ c o s 2 ~ ! ? e - ‘ ~ ~ ~ ~  L3 C l  A 
3dz 0 2 2 r2 sin20 e-r2/2R L3 C/ A 

2py 1 

Constant Value 

R $(1+  d / c )  
L R - C  

R 
- ( O <  L < 1 )  
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3.4. Analytic calculations for k, = 0 

We have solved analytically for the first six eigenfunctions and eigenvalues of the 
covariance matrix for layer B -+ C of Linsker’s network, in the continuum limit (table 1; 
appendix D). The  relative sizes of the eigenvalues a.nd the shapes of the eigenfunctions 
depend on a single free parameter, the ratio CIA of the size of the Gaussian covariance 
function t o  the size of the Gaussian synaptic density function. For all CIA,  Is, the 
function with no changes of sign, is the principal eigenfunction of Q, as predicted 
by the Perron-Frobenius theorem; 2p, the bi-lobed oriented function, is the second 
eigenfunction; and 2s, the centre-surround eigenfunction, is third (2s is degenerate 
with 3d). Figure 5(a) shows the principal eigenfunctions for CIA = 2/3. Tang [IG] 
has independently derived these analytic results, and also developed a.pproximations 
for the eigenfunctions for non-zero k , .  

3.5. Summary for kl = 0, k ,  = 0 

For k ,  = 0,  k ,  = 0, the dynamics are dominated by the principa,l eigenfunction, Is, in  
which all synapses have the same sign. The centre-surround eigenfunction 2s is third 
in line behind 2p, the bi-lobed function. 

4. The effects of the parameters k, and 12, 

Varying k, changes the eigenvectors and eigenvalues of the matrix Q + k , J .  Varying kl 
moves the fixed point of the dynamics with respect to  the origin. We now analyse these 
two changes, and their effects on the dynamics. We will use the following definition. 

Definition. Let 6 be the unit vector in the direction of the DC vector n.  We refer to  
(U, - 6) as the DC component of U,. The DC component is proportional to the sum of 
the synaptic strengths in a weight vector. For example, 2p has zero DC component, 
as do all the other eigenfunctions with angular antisymmetry. On the other hand, all 
the s-modes typically have a non-zero DC component. 

4.1. General theorem: the effect of k 2  

The analysis of the previous section primarily referred to  Linsker’s layer B + C, in 
which the covariance function is Gaussian. We now characterize the effect of adding 
k,J t o  any covariance matrix Q .  

Theorem 2. For any covariance matrix Q, th,e spectrum of eigen.vectors a n d  eigen- 
values of Q + k,J obeys the following. 

1. Eigenvectors o f  Q with no DC component, and their eigenvalues, are unaffected b y  

2. The other eigenvectors, with non-zero DC component, vary with k , .  Their eigen- 
values increase continuously and monotonically with k, between asymptotic limits 
such that the upper limit of one eigenvalue is the lower limit of the eigenvalue 
above. 
There is at most one negative eigenvalue. 
All but one of the eigenvalues remain finite. In  the limits k ,  + &cc the eigenvector 
with eigenvalue of largest magnitude is the DC vector 6, and it has eigenvalue + 

k , N ,  where N is the dimensionality of the matrix Q (i.e. the number of synapses). 

k2 .  

3. 
4. 
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Figure 6. General spectrum of eigenvalues of Q + k2J as a function of k2. A: Eigen- 
vectors with non-zero D C  component (solid lines) vary with k2, and have eigenvalues 
that increase monotonically wit,h k2. B: Eigenvectors with zero D C  component (thick 
dotted lines) are independent of k 2 .  C: Adjacent DC eigenvalues share a common 
asymptote (thin dotted lines). D: There is only one negative eigenvalue. The leading 
eigenvector a t  k2 = 03 and the negative eigenvector at kz = -a are both equal 
to the DC vector, 6. The annotations in parentheses identify the eigenvectors of 
Linsker’s system at layer 13 -+ C.  From [6]. 

The properties stated in theorem 2,  which a.re proved in appendix B, are summa- 
rized pictorially by the spectral structure shown in figure 6. These simple properties 
arise because J has only ra.nk 1. 

4.2. Implications 

For circularly symmetric systems such as Linsker’s, all the eigenfunctions with angular 
nodes have zero DC component and are thus independent of k,. The eigenfunctions 
that vary with k, are the s-modes. Specifically, a t  Linsker’s layer B --+ C ,  the leading 
s-modes a t  k, = 0 are Is, 2s; as k, is decreased to  --CO, these modes transform 
continuously into 2s, 3s, respectively, as shown by the annotations in figure 6. So 2s 
becomes the s-mode with largest eigenvalue. (The 2s eigenfunctions at  k, = 0 and 
k, = -cc both have one radial node, but t,hey a.re not identical functions. Figure 6 
shows that the 2s mode at  k, = -cc must have larger eigenvalue than the 2s mode at  
k, = 0.) 

As k, + -CO, theorem 2 states that  one eigenvector approaches the DC vector 
li. Because the eigenvectors are orthogonal, the other eigenvectors must have DC 
components that  tend to  zero. This means that the principal eigenvectors for k, -+ 

-cm approach synaptic structures composed of equal sums of positive and negative 
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synapses. These principal eigenvectors are therefore dramatically different in character 
from the  principal eigenvector for k, = 0. 

As discussed in section 2, an  eigenvector e(C)  with negative eigenvalue enforces a 
constraint on the final synaptic structure, w e(') = wFp. In the limit of large negative 
k, the constraint enforced by the eigenvector 7 i  determines the final average synaptic 
strength: w = wFP n / N .  Linsker showed [3] that all or all but one of the synapses 
in a stable final configuration have synaptic strength k~u ' , , ,~~ ,  so this constraint on the 
average synaptic strength effectively fixes the final percentages of positive synapses 
and of negative synapses. 

4.3. What constatutes large k, ? 

We say tha t  k, is large and negative wlien the eigenfunctions of Q + k,J are well 
described by the k, -+ --03 limit. This is the case if the largest eigenvalue of -k,J, 
- k , N ,  is much larger than any eigenvalue of Q (appendix C). Using the eigenvalue of 
Is in table 1, this yields the requirement 1k,1 >> (CIA) + (C2/2A2)(1 - Jm). 

In [3], Linsker used values of Cl.4 for layer B + C ranging between $ and i ,  for 
which the above requirement ranges from b,  << -0.22 to L, << -0.44. Linsker used 
k, = -3 throughout that  reference, so all his simulations used large negative k,. 

4.4. Numeracal compvtataoiis f o r  Lziisker's system 

The computed eigenvectors at  layer B + C are shown i n  figure 5 ( b )  for k, = -3 .  
Properties of these eigenvectors can also be estimated from the analytic solutions for 
k, = 0 via perturbation theory as shown i n  appendix C. As predicted, there is now a 
single eigenvector with large negative eigenvalue, Is. The  principal eigenvector is 2p. 
The  centre-surround eigenvector, 2s, is not the principal eigenvector of Q + k,J for 
this system either a t  k, = 0 or at large negative k , t .  For large negative k2, 2s is the 
principal symmetrzc eigenvector, but it still has smaller eigenvalue than 2p. So the  
regime IC, -+ -ca, k, = 0 will be dominated by oriented bi-lobed weight structures, 
and the  circular symmetry is broken. 

4.5. Eflect of I C l  

Varying k, changes tlie location of tlie fixed point of equation ( 5 ) .  As stated in 
equation ( 6 ) ,  the component of the fixed point in the direction of an eigenvector e(') 
is proportional to k,e(") - 11. So the fixed point is displaced from the origin only in 
the direction of eigenvectors tha t  have a non-zero DC component, that  is, only in the 
direction of the s-modes. This has two important effects, as discussed in section 2.  

1. The  s-modes are given a head start  in growth rate when k, is increased. In 
particular, the  principal s-mode, the centre-surround vector, may grow faster than 
the principal eigenvector 2p. 
The  constraint surface must pass through the fixed point, so its location is moved 
when k, is changed. For large negative k,, the sum of synaptic strengths in the 
final weight vector is fixed on tlie constraint surface. To leading order in l /k , ,  
Linsker showed tha t  the constraint is: 

2. 

t Tang [16] showed that there is an intermediate regime of small negative kz in which the principal 
eigenfunction has centre-surround structure. But this is not the regime in which Linsker's centre- 
surround cells emerged. 
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To next order, this expression becomes 
average covariance (averaged over i and j ;  appendix C)t. 

wj = k,/JIC, + ql, where 4 = (Qij), the 

4.6. Summary  of the effects of k ,  and k, in  Linsker’s system 

We can now anticipate the explanation for the emergence of centre-surround cells: for 
k, = 0,  k, = 0,  the dynamics are dominated by 1s. The centre-surround eigenfunction 
2s is third in line behind 2p, the bi-lobed function. Making IC, large and negative 
removes 1s from the lead. As k ,  i CO, 1s takes on large negative eigenvalue and 
tends to  the DC vector n,  so it enforces a constraint on the final number of positive 
and negative synapses. 2p becomes the principal eigenfunction and dominates the 
dynamics for k, = 0. Finally, increasing k1/lk21 gives a head start  t o  the principal 
s-mode, the centre-surround function 2s. 

Increasing kl/lk,l also increases the final average synaptic strength, so large kl / lk , l  
not only gives 2s a large head start ,  it also produces a large DC bias. Centre-surround 
structures emerge when kl/lIC21 is large enough that 2s dominates over 2p, and small 
enough that the DC bias does not obscure the centre-surround structure. Therefore 
an on-centre centre-surround regime lies sandwiched between a 2p-dominated regime 
and an all-excitatory regime, and an off-centre centre-surround regime lies between 
the 2p-dominated regime and an all-inhibitory regime (see figure 10). In section 6 
we will estimate the boundaries of these parameter regime in which centre-surround 
structures emerge. 

5 .  Analysis in terms of constrained dynamics 

A complementary conceptual fra.mework for understanding the emergence of centre- 
surround structures can be obtained by considering the dynamics on the constraint 
surface. 

For large negative I C , ,  the constraint surface is the hyperplane C w i  = k l / \ k21 .  On 
the constraint surface, we can divide the weight vector into w( t )  = wAC(t) + tuDC,  
where wDc = ( k , / k , N ) n  is the constant DC part of w and wAC(t) is a time-varying 
AC vector, that  is, a vector with zero DC component. In appendix E we show that  the 
dynamics on the constraint surface in the limit of large negative k ,  are described by 

where P is the orthogonal projection operator onto the surface wj = 0.  P subtracts 
out the DC part of a vector, leaving the AC partS. Apart from the DC eigenvector, the 
eigenvectors and eigenvalues of the matrix PQP are identical to those of the matrix 
Q + k,J in the limit k2 i -W. 

t The additional term largely resolves the discrepancy between Linsker’s g and k l / k 2  in (31. In 
the continuum limit, 4 = 1/(1 + 2 A / C ) ,  using the notation of table 1. In the example on p 7511 
of [3], A / C  = 1.5, = 0.45, k2 = -3. Hence kl / lkzl  = 0.15 and kl/lk2 + i j l  = 0.164, while the 
observed value of g was 0.166 f 0.002. In the example on p 8391, A / C  = 2.5, kl = 0.35, k2 = -3, 
k l / lk2 l  = 0.117, ! q / l k z  + i j I  = 0.124, and the observed value of g was 0.126 f 0.001. 
$ It should be noted that this projection operator maintains the constraint subtractively.  Very different 
dynamics would result if the constraint were enforced multiplicatively. This subject will be developed 
in a future publication. 
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The  two terms in equation (8) represent the growth of two sorts of AC pattern. 
The first term represents the contribution of the time-varying, AC part of w to  &. 
In terms of the eigenvectors of Q + k,J, the component in the direction of 2p grows 
faster than that  of 2s under this term due to its larger eigenvalue. The second term, 
PQn, represents the contribution of the time-invariant DC part of w to w. This term 
corresponds to  the head start in growth rate. Because n is circularly symmetric, PQn 
is circularly symmetric. Therefore, it is a superposition of s-modes, dominated by the 
centre-surround mode 2s. This centre-surround structure is continually ‘spewed out’ 
a t  a rate proportional to  the DC bias k l / ~ k , ~ N .  The first term amplifies this centre- 
surround structure, and also other AC structures present in the initial fluctuations. 
In order for a symmetric centre-surround structure to  emerge, the static second term 
in equation (8) must compensate for the advantage in eigenvalue of asymmetric over 
symmetric structures in the first term. 

This alternative representation of the dynamics is useful for speeding up numerical 
simulations of equation (3) for large negative k,. The matrix Q+k,J has one very large 
negative eigenvalue ci k , N ,  so very small steps have to  made in iterations of equation 
(3) to avoid unstable oscillations. In equation (8), on the other hand, the matrix PQP 
has no extreme or negative eigenvalues, since the DC constraint is enforced separately. 

6. Criteria for the emergence of centre-surround cells 

We now wish to  estimate the boundaries of the parameter regime in which the head 
start  is sufficient for centre-surround cells to emerge. We use two approaches to 
determine the DC bias a t  which 2s and 2p are equally favoured. This gives an estimate 
for the boundary between the regimes dominated by 2s and 2p. If 2s dominates for DC 
bias sufficiently small that  the surround has a significant size, then centre-surround 
structures will emerge in the corresponding parameter regime. 

1. Energy criderzon. We first est,imate the level of DC bias a t  which the weight vector 
composed of (2s plus DC bias) and the weight vector composed of (2p plus DC 
bias) are energetically equally favoured. This gives an estimate of the level of DC 
bias above which 2s will dominate under simulated annealing, which explores the 
entire space of possible weight configurations. 
Time development criterzon. Second, we estimate the level of DC bias above which 
2s will dominate over 2p under simulations of time development of equation (3).  
We estimate the relationship between the parameters such that,  starting from a 
typical random distribution of initial weights, the 2s mode reaches the saturating 
hypercube a t  the same time as the 2p mode. 

These two criteria are illustrated schematically in figure 7. 
We shall consider two eigenvectors, e(’)  and e( , ) ,  with eigenvalues A, > A,. e( ’ )  

corresponds to  2p, and e( , )  corresponds to 2s. Let the fixed point have component 
wFp in the direction of e( , ) .  e(l) is an AC vector, so wr’ = 0. Both criteria for e(’) 
to  dominate over e(’)  will depend on an estimate of the effect of the weight limits 
- w,,, 5 wi 1. w,,,. (Without this hypercube of saturation constraints, e( ’ )  will 
always dominate the dynamics of equation (3) after a sufficiently long time.) For the 
growth of a typical eigenvector, the hypercube represents a complex constraint, as it is 
possible for further growth in the direction of the vector to  take place after the largest 
components of w reach saturation. This makes it difficult to assess the exact effect 

2. 
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Figure 7. Schematic diagram illustrating the criteria for e(2) to dominate. The 
polygon of size h(g )  represent,s the hypercube. Energy criterion: the points marked 
E1 and E2 show the locations at which the energy estimates are made. Time devel- 
opment criterion: the grey cloud surrounding the origin represents the dist.ribut,ion 
of initial weight vectors. If “1  (0) is sufficiently small compaRd with wZFp, and if 
the hypercube is sufficiently close, then the weight vector hits the hypercube in the 
direction of e ( * )  before ”1 has grown appreciably. 

of the hypercube on the dynamics. To estimate this effect, we make the following 
assumptions additional to assumption 1: 

Assumption 2. 
been ‘reached’ b y  a typical vector w when w,,, = w,,,. 

This means that the hypercube is ‘reached’ when the component of U? in  the 
direction of a typical normalized vector is h = flw,,,. 

We introduce g = k 1 / ( ( k 2 ( N w , , , )  as a measure of the average synaptic strength 
induced by the DC constraint C w i  = kl/(k21, as a fraction of w,,,. Thus g = 1 
corresponds to  all synapses saturated at  +tumax, and g = 0 corresponds to equal 
numbers of positive and negative synapsest. Now as the DC level g is increased, the 
amount of growth possible before the hypercube is reached decreases. We estimate 
the amount of growth possible in the direction of a typical AC vector as a function of 
the DC bias g .  When g = 1, all synapses are saturated, and no growth in any direction 
is possible. We interpolate linearly between h = flw,,, at g = 0 (assumption 2)  
and h = 0 at g = 1, assuming: 

Assumption 3. 

In  the abscence of constraints, we estimate that the hypercube has 

When the DC level is constrained t o  be g ,  the component h ( g )  in the 
direction of a typical unit A C  vector at which the hypercube constraint is ‘reached’ is  
h ( g )  = f i W m a z ( 1  - 9). 

Assumptions 1-3 may not adequately characterize the effects of the hypercube on 
the dynamics, so the numerical estimates of the precise locations of the boundaries 
between the regions may be in error. However, the qualitative picture of the division 
of parameter regimes that they present is informative. 

t This is equal to twice Linsker’s g, since he did not include normalization by wmax, and he used 
wmax = 0.5. 
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6.1. Energy crzierzon 

Linsker [3,4] suggested analysis of equation (3) i n  terms of the energy function on 
which the  dynamics perform constrained gradient descent: 

E = -;wT(Q + t,J)w - k,w * ? z .  

Neglecting the initial conditions, we can examine the result of minimizing this energy 
subject to the hard limit constraints on tu,. Expressing the weight vector in terms of 
the eigenvectors of Q + t , J ,  the energy of a configuration w = C w,e(') is: 

E = - $ Aa,to; - J N k ,  wana 
a U 

where n, is the DC component of eigenvector e (a) .  \frithout loss of generality we 
assume tha t  n, > 0. 

We consider two configurations, one with w1 equal to its maximum value h(g)  
and w, = 0, and  one with w, = h ( g )  and w1 = 0. The  DC component w . j i  is 
the same in both cases. All the other components are assumed to be small and to 
contribute no bias in energy between the two configurations. The  energies E, and E, 
of these configurations will be our estimates of the energies of saturated configurations 
obtained by saturating e(,) and e(') respectively, subject to the constraint on w. 7:. 

We will compare these two energies and find the DC level g = gE at which E, and E, 
are equal. This g will be a coarse estimate of the boundary between the regimes in 
which simulated annealing gives cent re-surround and symmetry-breaking structures 

Neglecting additive constants 

E, = -- ; A 1 11 (9 j 
and 

E, = -$A2h(gj2 - f i t , h ( g ) n , .  

It is the  last term - f i k , h ( g ) n L ,  that  gives an energy advantage to e( , )  as g is 
increased. 

To find an estimate of the critical value of g for simulated annealing we set E, = E,. 
Substituting h ( g )  = f i (1  -g)w,,, and t, = glk,lNwmax and rearranging, we obtain 
as our estimate for the boundary between the e(')-dominated regime and the e(')- 
dominated regimet : 

We can take the  analytic results for k ,  = 0 (subsection 3.4)  and use perturbation 
theory as outlined in appendix C to estimate the parameters n2k2, X,/N and A,/N 
for large I C , .  Using these estimates, we plot a graph of gE against the one remaining 
degree of freedom, the  ratio CIA of the spatial sizes of the covariance function and 
the synaptic density function (figure 8). This is the value of g at which we estimate 
tha t  2s and 2p are energetically equally favoured. I t  must be emphasized tha t  this 
estimate depends on a substantial number of assumptions and approximations, so it 
is not at all exact. For Linslter's choice of CIA = 2/3, gE is 0.16. 

t X/N is written as a single entity because X 0: N. 
(appendix C). 

Also n2k2 tends to a constant as kZ -t 03 
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Figure 8 .  Energy criterion: gE versus CIA.  Above the line g E ( C / A ) ,  centre- 
surround struct,m.es are estimated to be energetically favoured; below the line, bi- 
lobed structures are favoured. The perturbation theory used to estimate gE becomes 
invalid for C I A  <- 0.2 .  Linsker used C I A  = 2/3 or 2 /5  for layer t3 - C. 

6.2. Tame development craterton 

The energy criterion does not take into account the initial conditions from which 
equation (3) starts. We now derive a second criterion that attempts to  do this. 

If the initial random component in the direction of 2p, wzp(0),  is sufficiently small 
compared to  the head start  that  2s has, w;:, then may never start  growing 
appreciably before the growth of 2 ~ 1 ~ ~  saturates (figure 8). The initial component wzp(0) 
is a random quantity whose typical magnitude can be estimated statistically from the 
weight initialization parameters. The head start  for wZs,  w::, can be evaluated in 
terms of the parameters A,, and the DC component of 2s. These two quantities, ~ ~ ~ ( 0 )  
and w::, scale differently with the number of synapses N .  wzp(0)  is a zero-mean 
quantity related to  N random variables; w:: is related to N non-random variables. 
As suggested by the law of large numbers, the typical magnitude of w,,(O) scales 
as 1/f i  relative to  w;:. Hence the initial relative magnitude of wzp can be made 
arbitrarily small by increasing N ,  and the emergence of centre-surround structures may 
be achieved a t  any g by using an N sufficiently large to  suppress the initial symmetry 
breaking fluctuations. We estimate the boundary between the regimes dominated by 
2s and 2p by finding the relationship between N and g such that w l ( t )  and w2(t)  hit 
the hypercube a t  the same time. 

Before saturation occurs, the components wa( t )  in the eigenvector basis can be 
written in terms of the initial components w , ( O ) :  

We estimate statistically the typical starting component wl(0)  once w has been pro- 
jected into the constraint surface of fixed werage w i ;  when the initial weights are 
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Figure 9. Boundaries estimated by the two criteria for CIA = 2/3. To the left of 
the line labelled g E ,  the energy criterion predicts that 2p is favoured; to the right, 
2s is favoured. Above and below the line N * ( g ) ,  the time development criterion 
estimates that 2s and 2p respectively will dominate equation (3).  The regions A,  
B, C, D denote the four regions of parameter space separated by these two criteria. 
The regions X,  Y ,  mark the regimes studied by Linsker. X: N = 300 - 600, g = 
0.3 - 0.6: the region in which Linsker reported robust cent,re-surround structures; 
Y: N = 300 - 600, g <N 0.2: asymmetric centre-surround structures and (near 
g = 0) bi-lobed struct,ures. The esbimates of g E  and N * ( g )  are both obtained from 
the analytic results using perturbation theory (appendices C, D) (from [SI). 

randomly generated between -w,,, and w,,,, we obtain 

wl(O)rms = a( g)wmax (9) 

where u(g)  is a dimensionless standard deviation derived in appendix F and d is the 
degeneracy of e(1). We evaluate the size of the component w1 at  the time t ,  at  which 
w2 reaches the hypercube. Without loss of generality we assume w r P  < 0 so tha.t w 2  
increases with timet. Then by assumption 3,  w,(t,) = h(g) = f i w m a x ( 1  - g) ,  so 

Now letting wl(t,) = h(g)  we obta.in an implicit equation for N’, the number of 
synapses above which w, dominates, in terms of g: 

Substituting I W ; ~ I  = n,f lk , /A2 = n 2 f l g ~ k 2 ~ w m a X / ( X 2 / N ) ,  and wl(0) = 
o(g)wmaX&, we obtain the following expression for N * :  

To make a detailed estimate of N’, we would need to  consider other sources of 
symmetry-breaking fluctuations such as asymmetries in the synaptic locations. 

t We set w z ( 0 )  = 0, neglecting its fluctuations, which for large g o  (i.e. g f l >  (o(g)Xz/N)/ lazkz  I) 
are negligible compared with w r p .  
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6.9. Discussion of the two criteria 

For Linsker’s system, figure 9 shows N’ as a function of g,  the boundary estimated 
by the time development criterion, and gE, the boundary estimated by the energy 
criterion. Figure 9 also shows the regions in the parameter space a t  which Linsker 
made the simulations he reported. The two criteria give different boundaries. In 
regime A, 2p is estimated to  both be energetically favoured, and t o  emerge under 
equation (3). Similarly, in regime C, 2s is estimated to be energetically favoured, and 
to  dominate equation (3) .  In regime D the initial fluctuations are so big that  although 
2s is energetically favoured, symmetry breaking structures can dominate equation (3) .  
(Note that large fluctuations always help the growth of 2p but hinder the growth of 
2s half of the time: half of the time the initial component of 2s will be towards the 
fixed point, so that  the 2s component must first shrink to  zero before i t  can grow in 
the favoured direction.) Lastly, in regime B, although 2p is energetically favoured, 2s 
will reach saturation first because N is sufficiently large that the symmetry breaking 
fluctuations are suppressed. Whether this saturated 2s structure will be stable, or 
whether it might gradually destabilize into a 2p-like structure, is not predicted by our 
analysist. 

The possible difference between simulated annealing and the evolution of equation 
(3) makes i t  clear that  if initial conditions are important (regimes B and D), the use 
of simulated annealing on the energy function as a quick way of finding the outcome 
of equation (3) may give erroneous resultst. 

7. Parameter regimes for general Q and for Linsker’s system 

For a general Q in equation (3) ,  we predict up to four main parameter regimes for 
varying IC, and k,$. These regimes, shown in figure lO(a), are dominated by the 
following weight structures: 

Regime 1 IC, = 0, ikl = 0 The principal eigenvector of Q. 

Regime 2 IC, = large positive 
and/or IC, = large 

The flat DC weight vector. 

Regime 3 IC, = large negative, The principal eigenvector of Q + IC,J for 
IC, N 0 IC, + -CO. 

Regime 4 IC, = large negative, 
IC, = intermediate 

The principal eigenvector with non-zero DC 
component of Q + k,J for I C ,  .--) -W. This 
vector is given a head start  in growth rate. 
This regime may not exist if the head start  
is too small. 

t In the one-dimensional model system of appendix G we have found that such energetically 
unfavourable saturated weight vectors may be stable or unstable, depending sensitively on the 
parameters. 
$ As noted by Linsker, simulated annealing may of coume be a more appropriate strategy if equation 
(3) is viewed as being subjected to random noise. 
5 Not counting the symmetric regimes (kl,k2) U (-kl,k2) in which all the weight structures are 
inverted in sign. 
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Figure 10. Four principal parameter regimes. (a)  The four regimes for a general 
covariance matrix 0 .  ( b )  The regimes for Linsker’s layer t3 + C connections. See text 
for explanation of the regimes. When kz is large and negative, the D C  constraint is 
approximately constant along the radial lines of constant k l / ( k z  f i j) ,  so each of the 
parameter regimes with large negative kz is wedge shaped. From (61. 

For non-negative Q ,  i.e. no anti-correlations in the inputs, the principal component 
of Q has no zero-crossings and hence regime 1 produces saturated structures similar or 
identical to the DC weight structure. This leaves regimes 3 and 4 as the only parameter 
regimes in which alternative weight structures might arise. 

For Linsker’s f3 + C connections (figure 10(b)),  the principal eigenvector of Q + 
IC,J as I C ,  -+ -eo is the  symmetry-breaking oriented function, 2p. This eigenvector 
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dominates regime 3. 2s, tthe centre-surround structure, dominates in regime 4. In 
principle there could be systems with non-negative Q in which 2s is the principal 
eigenvector at I C ,  = --CO: then in both regimes 3 and 4,  2s would dominate. This 
never occurs for any choice of parameters in Linsker’s network, a t  least not in the 
range of parameters where our perturbation theory is valid (appendix D.3).  

8.  Further applications of the analysis 

8.1. Hagher layers an Lznsker’s network 

The analysis in terms of the eigenvectorsaf4 + k,J should apply to  the higher layers. 
Four principal regimes are expected as described in section 7, with the proviso that 
it is possible that  there may be some near degeneracy of eigenvectors, so that  some 
regimes may be dominated by a combination of several eigenvectors. We have not 
studied these higher layers in detail; we offer the following brief comments. 

The covariance function for the higher layers is no longer non-negative, but instead 
oscillates with distance. The  leading eigenvectors are expected to have the same 
characteristic spatial frequency as the covariance function. If the spatial period is 
comparable to  the diameter of the synaptic density function, as in Linsker’s layers 
C --+ 2) through E -+ 3, the leading eigenvectors of Q + L,J for L, E (0, --CO) are 2p 
and 2s. Either 2p or 2s dominates in regimes 1 and 3, depending on the parameters; 
the 2s eigenvector dominates the dynamics i n  regime 4 by the same mechanism as in 
layer B -t C. Regime 4 was  the one studied by Linsker in these layers. 

At layer F + 6, Linsker used larger input arbors, so that several oscillations of the 
covariance function were contained in one cell’s arbor. This means that the leading 
eigenvectors are expected also to have several oscillations. Linsker then reported 
a ‘bubble’ in the (g,A,/A,) parameter space in which tri- or multi-lobed oriented 
cells aroset. The  formation of these cells may be partially understood in terms of 
the mixing of the principal eigenvectors of Q + k,J. In computations using several 
covariance functions similar to  that used by Linsker, we have found that  the three 
principal eigenvectors are, i n  order, an s, p, and d vector. The leading s-mode has 
negligible DC component a t  k 2  = 0 for the range of arbor widths used a t  layer F - g !  
so that  the principal eigenvectors and eigenvalues are virtually unaltered as b2 varies 
from 0 to  --CO. The number of radial nodes in these vectors increases as the arbors 
broaden, that  is, as the parameter A,/A, increases. The principal eigenvectors range 
from 2s, 3p, 3d for the narrowest arbors used by Linsker a t  layer F + 6,  to  4s, 4p, 5d 
for the broadest arbors. As the arbor diameter increases, the eigenvalues of the three 
vectors become more nearly degenerate. 

The mixed vector [Ns + (N+l)d] gives tri- or multi-lobed oriented arrangements 
of synapses. However, this does not explain why oriented, grating-like structures 
should occur. Other combinations of the principal eigenvectors that  lack grating-like 
regularity would be equally likely to  emerge on the basis of linear dynamics. Such other 
combinations appear to  account for the various structures Linsker found as he varied 
g for each value of As/A,. Variation of g should not significantly alter the linear 
dynamics, because the leading modes have negligible DC component. Since the multi- 
lobed outcome occurs only for a narrow range of g, this suggests that  the multi-lobed 

t Linsker termed cells with a central excitatory stripe and two inhibitory flanking stripes ‘bi-lobed 
cells’: we call them ‘tri-lobed’ and reserve ‘bi-lobed’ for 2p-like functions. 
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outcome is determined in the nonlinear regime. Indeed, within the parameter-space 
‘bubble’ in which Linsker obtained oriented cells, the only published example of time 
development [5 ]  shows that  a 3s structure develops initially. Only in the nonlinear 
regime, when many synapses were saturated, does this 3s struct,ure convert to a tri- 
lobed, oriented structure. Thus, what appears to  be robust in the linear dynamics is 
that  a receptive field should emerge with the same characteristic spatial frequency of 
oscillation between positive and negative inputs as is seen in the leading eigenvectors. 
This frequency is determined by the frequency of oscillation of the covariance function 
within an arbor, i.e. by AG/A, .  The precise form of the receptive field depends on the 
choice of the parameter g, and appears to  depend upon the nonlinearities that  limit 
synaptic growth. 

8.2. A one-dimensional model sys tem 

In appendices G and H,  analytic solutions are presented for a model one-dimensional 
network analogous to  Linsker’s two-dimensional network. This model system shares all 
the properties of Linsker’s layers A through C, except that a cent,re-surround structure 
is never the global minimum of the energy function. Rather, asymmetric structures 
(the analogue of 2p-dominated structures) are always the energy-minimizing configu- 
rations, that  is gE = 1. This exact result enables us to examine the performance of 
the estimate of gE given by the energy criterion (subsection 6.1). In this extreme case 
of high gE,  the estimate is low by nearly a factor of two. 

In simulations of time development under equation (3), centre-surround structures 
initially dominate the dynamics for large N ,  when symmetry-breaking fluctuations 
are suppressed. However the energetically unfavourable saturated centre-surround 
structures that  result may be unst,able under equation (3), transforming synapse by 
synapse into an asymmetric struct>ure, or they may be stable. This depends very 
sensitively on the parameter values. 

9. Discussion 

We have analysed Linsker’s equation (3) by examining the eigenvectors of the matrix 
that drives the dynamics. Our analysis depends on assumption 1 that the princi- 
pal features of the dynamics are determined before the saturating limits on synaptic 
strength become important. Justification for this assumption at  layer G --, C is pro- 
vided by Linsker’s account of the simulated development of centre-surround cells, in 
which centre-surround structures emerge before any saturation occurs [3, p 75121. I n  
certain parameter regimes (regions B and D of figure 9),  the initial conditions may 
give preference to  energetically unfavoured weight configurations. In these regimes, 
assumption 1 may be violated, because the nonlinear dynamics do not always preserve 
saturated structures that are energetically unfavourable. This is demonstrated in the 
the model system of appendix G. The development of Linsker’s oriented cells a t  layer 
F -+ 6 also may violate assumption 1. This development appears to  depend on the 
details of the non-linear dynamics when synapses are saturated, as discussed in sub- 
section 8.1. Nonetheless, analysis of the dynamics in the linear regime gives insight 
into the results a t  layer F + G ,  by identifying t,he principal weight structures that 
appear t o  contribute to the final outcome. 

For the layer B + C  connections, where covariances are purely positive, all 
synapses reinforce one another if kl = k2 = 0,  leading to a synaptic structure in 
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which all synapses have the same sign. However, for large negative IC,, the param- 
eters k, and k, enforce a constraint fixing the average synaptic strength, so t1ia.t 
growth of some synapses requires others to  become negative. Then three different 
weight structures dominate the dynamics. The fastest-growing weight structure is a 
bi-lobed oriented eigenvector that  breaks the circular symmetry of the covariance and 
synaptic density functions. This structure dominates the dynamics for small k l / l k 2 1 .  
A centre-surround structure is the fastest-growing circularly symmetric eigenvector. 
This structure dominates the dynamics for intermediate values of kl/lk21 due to  its 
‘head start’ in growth rate. The  fla,t DC eigenvector has large negative eigenvalue, 
enforcing the constraint on the average synaptic strength. 

We conjecture that the qualitative properties of these leading eigenvectors a t  layer 
B + C are robust, and would be unchanged if the Gaussian covariance and synap- 
tic density function were replaced by any other monotonic non-negative covariance 
and synaptic density functions. Linsker suggested that the emergence of centre- 
surround structures may depend on the peaked synaptic density function that  he 
used [3, p 75121. However, with a flat ‘pill-box’ density function, we have calculated 
that the eigenfunctions are qualitat,ively unchanged. Therefore we conjecture that  
centre-surround structures should emerge by the same ‘head start’  mechanism with a 
pill-box density function, but in a na.rrower panmeter  regime. 

Weight structures that  include both positive and negative synapses can be obtained 
even in the absence of the constraints enforced by k, and k2 if covariances oscillate 
in sign significantly within t,he arbor, as in Linsker’s higher layers. The positive and 
negative regions of the receptive field then oscillate with a spatial frequency roughly 
determined by the frequency of oscillation of the covariance function. 

We have shown that simuhted annealing, used by Linsker to speed up simulations 
of equation (3) in higher layers, may give different parameter regime boundaries from 
simulations of the time development of equation (3) .  If the initial symmetry breaking 
fluctuations are sufficiently small, the centre-surround function may dominate the 
dynamics for arbitrarily small non-zero ICl.  The details of this difference will depend 
on whether or not energetically unfavourable saturated weight structures are stabilized 
by the saturation constraints. 

I t  should be noted that because of the terms k, and k,, the outcome ofequation (3) 
under either time development or simulated annealing is different from the outcomes 
of both principal components analysis (PCA) and information maximization. When 
applied t o  a single output cell, both PCA and information maximization maximize 
the quadratic form wTQw subject to the constraint w’ = constant. Equation (3) 
also maximizes wTQw, but does so subject to the very different constraints C w i  = 
constant and lwil 5 w,,,~. 

9.1. Biological discussion 

The development of centre-surround synaptic structures in Linsker’s system depends 
on two features that are biologically problematic: the use of synaptic strengths that  
may take either positive or negative values; a.nd the constraints, enforced by the terms 
k, and k,, that  fix the final percentage of positive and of negative synapses onto 
each postsynaptic cell. In the absence of either of these features, only all-excitatory 
or all-inhibitory synaptic structures would develop. We discuss these features briefly 
here. A thorough discussion of correlation-driven learning rules as models of biological 
systems can be found in [lo]. 
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In biology, all the synapses from a single neuron are either exclusively positive 
or exclusively negative. Synaptic strengths that may take either positive or negative 
values can be used to  describe the summed strength of two separate populations, one 
of exclusively positive synapses and one of exclusively negative synapses [3]. However, 
for such a sum to be described by a simple equation like equation (3), the following 
conditions must hold [ll]: the rules of cortical activation and of Hebbian plasticity 
must be linear; the two populations must be statistically indistinguishable in their 
connectivities and patterns of activity, so that a single covariance function describes 
both the covariance within each population and the covariance between the popu- 
lations; and the positive and negative synapses must obey identical Hebbian learn- 
ing rules. However, many feedforward projections, such as the retinogeniculate and 
geniculocortical projections in the mammalian visual system, are exclusively excita- 
tory. Furthermore, where excitatory and inhibitory projections do coexist, they are 
not likely t o  be equivalent (discussed in [ll]): excitatory and inhibitory populations 
often have distinct patterns of connectivity and of activation; and there is currently 
no evidence that  inhibitory synapses are modified by Hebbian rules. 

One can derive a linear Hebb rule like Linsker’s without the use of negative 
synapses by studying the daffereiice between the innervation strengths of two equiva- 
lent excitatory projections [ll]. Biological examples include ON-centre and OFF-centre 
inputs [9] and left-eye and right-eye inputs [12] in the mammalian visual system. In 
this case, however, the constants I C ,  and I C 2  disappear from the equation for the devel- 
opment of the difference of synaptic strengths because these constants take on equal 
values for each of the two equivalent populations. Therefore, such a biologically moti- 
vated linear Hebb model has IC1 = I C 2  = 0,  and lacks the constraints on which many of 
Linsker’s results depend. Such a model can nonetheless develop orientation-selective 
receptive field structures if oscillations exist in the covariance functions of the input 
layer and if lateral interactions are introduced in the output layer [9]. In this case, 
orientation-selective receptive fields develop in the early, linear regime of development. 
Linsker’s constraints, applied to  a model with ON- and OFF-centre inputs, would fix 
the final percentages of ON and of OFF inputs in the receptive field. This in turn may 
determine the spatial phase of the resulting receptive field: for example, if a major- 
ity of synapses are ON, the central lobe of a tri-lobed cell must be composed of ON 
synapses. In the absence of these constraints, receptive fields may vary their spatial 
phase. This leads t o  very different predictions for the organization of orientation se- 
lectivity across the cortex from those made by Linsker in [3] (see [SI). This will be 
discussed in more detail in a future publication. 

Appendix A. How to treat the synaptic density and covariance functions 
explicitly 

For the purposes ofsimulating equation (3) or computing the eigenvectors of the matrix 
Q + k,J, it can be convenient to  use an alternative representation of the synaptic 
strengths. Instead of having a label for every individual synapse wi (so that the 
synaptic density function is implicit), a set of equally spaced representative synapses 
vj is used, with positions T ~ .  The number of synapses represented by vj is given by 
the local synaptic density Aj = A ( T ~ ) ,  where A ( T )  is the synaptic density function. v j  
represents the average value of these synapses. Then the activity of the postsynaptic 
cell, for example, is cj vjAjxj, where xj are the representative pre-synaptic activities. 
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e When equation (3) is transformed t80 the v representation we obtain 

6 = (C + IC,J")Av + kln subject to  -wmax 5 v. 3 -  < wmax. 

Here A = diag{Aj}, and J" is the appropriate size matrix of all 1's. C is the 
matrix constructed from the covariance function: Cjk = C(T, ,  T ~ ) .  

For each eigenvector e" in the I >  representation, there is an equivalent eigenvector 
ew in the w representation with approximately identical eigenvalue. As long as 
the function C ( T ~  , Tk) varies slowly on the scale of the spacing between the repre- 
sentative synapses, the additional eigenvectors of Q + IC,J will have approximately 
zero eigenvalue$. Thus,  the principal eigenvectors of Q + IC,J can be found by 
computing the eigenvectors of (C + IC,J")A. 

0 Eigenvectors of (C + IC,J")A can be found using the transformation t j  = Aj"vj 
which symmetrizes the matrix. In the continuum limit, we can represent the 
matrix (C + IC,J")A by the integral operator with kernel (C(T,  T I )  + k,)A(+).  
Let n be the DC vector in the 'U) representation. Then the DC component of Gw 
is given in terms of e" by: 

e In this representation the constraint w, = I C l / ~ k z ~  becomes vj Aj  = I C l / / I C z l .  
e 

e 

Appendix B. P r o o f  of theorem 2 

To prove theorem 2 we will construct t,he eigenvalue spectrum of (Q+IC,J) for a general 
covariance matrix Q .  

Lemma 1. A t  k, = 0 all  the eigenvalues are positive, for any covariance matrix Q .  

Proof. The  quadratic form wTQw is always positive for Q a covariance: 

wTQw = toT((. - Z)(zT - ZT))w = ((wT(z - z) )~) .  

Therefore the eigenvalues of Q must all be positive. 0 

Lemma 2. 
eigenvector of (Q + k,J) for all IC,, and its eigenvalue is independent of IC,. 

If Q has an eigenvector eAC that has no DC component then eAC is an 

t If for d rJ and F k ,  d covariances between synapses represented at rJ and Tk were exactly equal 
to C(T, - f k ) ,  then the eigenvalue of an eigenvector in the U representation would exactly equal the 
eigenvalue of the equivalent eigenvector in the w representation, and the additional eigenvectors of 
Q + k2J would have eigenvalue exactly zero. 
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Proof. Let QeAC = XACeAC, where eAC. n = 0. J = nnT, so 

T AC (Q + k,J)eAC = XAceAC + k,n(n e ) = XAceAC 0 

So we can divide the eigenvectors into a set that are independent of k, (possibly 
empty), and a set that  vary with k,. The first set have no DC component so will be 
referred t o  as the AC set. The others will be called the DC-mixed set. The dependence 
of the DC-mixed eigenvalues on k ,  is addressed by the remainder of this theorem. 

Lemma 9. In  the limit k 2  --+ km, only one eigenvalue diverges to &:CO, Its eigenvec- 
tor is the DC vector. 

Lemma 4. 
Lemma 5. 
except for the DC eigenvector’s eigenvalues (lemma 3). 

The two sets o f  eigenveciors , in the two limits k ,  ---$ km, are identical. 

The two sets of eigenualues, in the two limits k ,  --$ kco, are identical, 

Proof. In the limit k ,  --+ &eo, Q represents a negligible contribution to  (Q+k.,J) and 
can be treated as a first-order perturbation to k,J (see appendix C). To first order, 
the eigenvectors of (Q+k2J )  i n  each non-degenerate subspace of J are the eigenvectors 
of k,J. J has only one eigenvector with non-zero eigenvalue, namely the DC vector ii, 
which has eigenvalue N, the dimension of the matrices Q and J .  Thus to first order, 
the DC vector is an eigenvector of (Q+k,J) with eigenvalue k , N + ( ~ i l Q l i i )  = N ( k , + q ) ,  
where f = ( Q i J ) ,  the average covariance (averaged over pairs of synapses i, j ) .  To zero 
order, the other eigenvectors ê  of Q + k,J are the eigenvectors of Q in the subspace 
orthogonal to  nt. The corresponding eigenvalues are (.^IQ/.^), which is always finite. 
The degenerate subspace is identical for the two matrices k,J, k ,  = &:CO, so the sets of 
eigenvectors and eigenvalues in the degenerate subspace are identical in the two cases. 

0 

Note that lemma 3 means that in the limit 6 ,  --+ kco, since the eigenvectors are 
orthogonal, all the other eigenvectors must have DC component of order kT1 or smaller. 

Lemma 6. If A(t )  is a differentiable Hermitian matrix function with positive semi- 
definite derivative dA/dt  then the eigenvalues X,(t) of A are non-decreasing functions 

For proof see theorem V.2.3 in [l, p 459ffl. 

o f t .  

Now d(Q + k,J)/dk, = J, and J is positive semi-definite, so: 

Lemma 7. 
tinuous functions of k,. 

The Dc-mixed eigenvalues of ( Q  + k,J) are monotonically increasing con- 

Now we are ready to  construct the spectrum, by ‘joining the dots’. Subject to  the 
constraints of monotonicity and continuity, we have to join the three sets of points 
at k, = 0 , k o  (dots in figure 11). There is only one way in which this can be done, 
shown by the lines in figure 11. 

Result 1. There as at most one eigenvector with negative eigenvalue. It tends to a 
f la t  DC function in the lamit of large negative k,. 

t The definition of an eigenvector e of Q in a given subspace is: e lies in the subspace and is an 
eigenvector of PQP where P is the orthogonal projection operator into the subspace. 
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Figure 11. Combining the lemmas. The lemmas uniquely determine the form of 
the spectrum of eigenvalues of the ~c-mixed  eigenvectors as a function of k2. The 
A C  eigenvalues are horizontal lines, not shown in this figure. (a) Lemma 1 establishes 
that all the intersections with the X axis are positive (black dots a t  k2 = 0 ) .  Lemmas 
3, 4 and 5 establish the relationship between the eigenvalues a t  kca (black dots a t  
kz = hx). ( b )  Lemma 7 establishes that these points must be joined continuously 
and monot,onically. The lines show the only way of joining the dots t,o satisfy the 
lemmas. 

Result 2. All eigenvalues but one remain finite f o r  a l l  k , .  

Result 3. The eigenvalues vary monotonically and continuously between asymptotes, 
such that each eigenvalue has a limited ran,ge as a function of k , ,  and these ranges 
touch with out overlapping. 

Appendix C. Perturbation theory 

We derive perturbation theory [8] approximations for some of the eigenvalues A k z  and 
DC components ntz  of the eigenvectors of Q + k,J for large IC,. These are expressed 
in terms in terms of the eigenvalues A, and DC components IZ, of the eigenvectors of 
Q, { eo ,  e , ,  e, ,  eg ,  . . .}. We use odd subscripts to denote the AC eigenvectors and even 
subscripts t o  denote the eigenvectors with non-zero DC component. 

For large IC,, consider Q as a first-order perturbation to  the matrix k,J. This  
is valid iff all the eigenvalues of Q are much smaller than the non-zero eigenvalue 
of k,J, i.e. if A, << k , N .  The  orthonormal eigenvectors of IC,J are the DC vector i i, 
which has eigenvalue N k , ,  and any set of AC eigenvectors orthogonal to i i ,  which have 
eigenvalue zero. The  perturbing matrix Q breaks the degeneracy of the AC subspace. 
So the  eigenvectors of k,J + Q for I C ,  - f co  are, to zero order, ii and the eigenvectors 
of Q in the AC subspace (i.e. the eigenvectors of PQP where P = I - nnT is the 
orthogonal projection operator onto the AC subspace). We denote these eigenvectors 
by { i i , e ~ ,  e T , e F , .  . .} = { ? i , e l ,  e Y S , e 3 , .  . . } .  We use these eigenvectors as the basis 
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in which we perform first-order perturbation theory. In this basis k,J is diagonal, 
and Q is diagonal except for cross terms in the first row and column: 

To first order, the perturbed eigenvalue of t>he principal eigenvector ii is A i 2  = N k ,  + 
(6lQlni) = N ( L ,  + q ) ,  where 

To estimate the eigenvalues and DC components of e?, we need to make a further 
assumption: writing 7% in terms of the eigenvectors of Q, 

= (iilQlii) / N ,  the average covariance. 

where n, is the DC component of e,, we now amiine that eo is close to the DC vector 
6, and that lnOl >> >> In4[ > In,[ Vo > 4. So we are assuming that eo accounts 
for most of 6 in equation (14), and that e ,  accounts for most of the remainder. Then 
we can approximate e? as follows: 

The corrections to  this expression are of order n4. The assumption that eo is close 
to the DC vector 6 can be motivated for non-negat#ive matrices Q by the Frobenius- 
Perron theorem (subsection 3.1). 

So using first-order perturbation theory and equations (13) and (15), we can derive 
the eigenvalue A? and the DC component ni2:  

Note that this shows for k, + --CO that ni3 and n, have opposite signs, and: 

The accuracy of these perturbation theory approximations depends on two factors. 
(1) The second- and higher-order corrections due to  the use of finite IC, are negligible 
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if (A0/N)/lk21 << 1. This condition is satisfied for Linsker's parameters as already 
discussed in section 4.3. (2) Corrections to equation (15) are small if l-(iz;+n;) << I t ;  
this condition is increasingly poorly satisfied as CIA decreases and breaks down for 
CIA <- 0.2. For CIA = 2/3 we have compared the above perturbation theory 
approximations of eigenvalues and DC components with the results of the numerical 
calculations described in the caption of figure 5; the two agree to within 15%. 

Appendix D. Analytic results for Linsker's system 

D.1. Solutzon for  ezgenfui2clzoiis a n d  ezgenvalues 

The covariance operator is Q = e-r2/2C * e-1.2/2Ax, i.e. multiplication by a Gaussian 
of size A = r i  followed by convolution$ with a Gaussian of size C = r:, where r A  
and rC are the characteristic arbor radius and the characteristic covariance radius 
(appendix A). 

Because of the circular symmetry, the eigenfunctions of this operator can be 
written as the product of a radial function f ( i * )  with one of the angular functions 
cos 18, sin 18. 

We can find the radial functions for a given 1 by the use of guesswork and Ith-order 
Hankel transforms, which are the Fourier transforms for cylindrical systems. 

D.l.1. Hankel transforins. The two-dimensional Fourier transform of cos(/Q)f(r)  is 
2ri1 cos(ld)F,(t)  , where 

F l ( k )  = r f ( i , ) J I ( k y )  dy Lm 
is the  lth-order Hankel transform of f(r), and J I ( c )  is a Bessel function 

J I ( z )  = 1 lr cos(l8 - c sin 8 )  do. 
T 

The  inverse transform is symmetric: 

f ( r )  = 1 k F l ( k ) J l ( k r )  dk. 

We use the following Ha.nkel transforms [a, 131: 

t Strictly, corrections are small if nr(Xo - X z ) / ( X P  - A,") <( 1. The condition in the text only 
assures n4 Q: 1. 
$ t denotes twc-dimensional convolution. 
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D.l.2. We guess radial functions with the form of a Gaussian 
e-ra/2R multiplied by a polynomial, then find the parameters that  make the func- 
tions into eigenfunctions by solving the eigenfunction equation Q ( T ,  T ’ )  cos(lO)f(r’) = 
X cos(lO)f(r). The  way to  evaluate Q ( T ,  T ’ )  cos(lO)f(r’) is to  first multiply f ( r ’ )  by 
e-r’2/2A then convolve it with e-ra/2C by going into Fourier space, multiplying by 
the transform e-Ck’/21 and returning from Fourier space. The first six eigenfunctions 
have been given in table 1. We note in addition the expression for the eigenfunc- 
tions with 1 angular nodes and no radial nodes: eigenfunction = rm cos(mf?)e-‘2/2R, 
X/N = L’+’C/A, using the notation of table 1. Note that all the eigenvalues differ by 
a ratio of L = ( R  - C ) / R  raised to  some power. 

Eigenfunctions. 

D.2. Derivations 

Equipped with these expressions for the eigenfunctions and eigenvalues, we can derive 
or estimate several properties of the syskm analytically as a function of the Gaussian 
parameter ratio CIA. We can evaluate exactly the DC components nls and nZs of the 
Is and 2s functions a t  k 2  = 0 using equation (11): 

Adopting the convention that the Is function is positive, and the 2s function has a 
positive centre, this gives 

where U = RA/(R+A) and v = RA/(R+2A).  n l S  and nZs are plotted against CIA in 
figure 12. n2s is always negative, and attains its maximum value at  CIA 21 1/8. 

We can also evaluate f = 1/(1 + 2A/C),  and the effective number of synapses 
N = 2nA. 

0.3. Perturbation theory estimates 

Using the results of appendix C, we can estimate the eigenvalue and DC component 
of 2s as 6, --$ --CO. In the interval of CIA where the perturbation approximations are 
valid, the eigenvalue of 2s a t  L2 = -cm is greater than the eigenvalue of 2s a t  L, = 0,  
but i t  never exceeds the eigenvalue of 2p (figure 12). 

These approximations and the expressions i n  section 6 were used to estimate the 
critical DC level gE (figure 8) and the critical number of synapses N’ (figure 9). 

0.4.  The sign of the centre of the centre-surround structures 

Linsker noted empirically that the centre of the centre-surround structure always has 
the same sign as the DC bias g. Our analysis can explain this. We again adopt the 
convention that  the Is function is positive and the 2s function has a positive centre 
a t  IC, = 0. We have just shown (appendix D.2) that n2,(k2 = 0) is negative for any 
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Figure 12. Eigenvalue ratio and D C  components as a function of CIA:  The ratio 
X z P / X z s ,  and the D C  components nls and nzS are shown exactly for k2 = 0. The 
ratio X2,,/XE is estimated by perturbation theory for IC2 -+ -m (this perturbation 
estimate becomes invalid for C I A  <N 0.2).  Linsker used C I A  = 2/3 or 2/5 for layer 
B -+ c. 

CIA. Thus, the 2s function for k, - --03 defined in equation (15) also has a positive 
centre. Perturbation theory (appendix C) at  k 2  = 0 shows that  n2,(k2 + --CO ) has 
opposite sign to  n, , (k2 = 0), so nzs is positive for the 2s eigenvector as k, -, --CO. 

Now w;: = -nZsIk21~gwm,,/(X,,/N), so w;: has the opposite sign from g. wZs 
starts near the origin and grows in the direction opposite to  the fixed point, so a 
positive bias will cause a centre-surround structure with positive centre to  emerge, 
and a negative bias causes a negative centre. 

Appendix E. Derivation of constrained dynamics 

Let P be the orthogonal projection operator onto the surface 
where I is the identity matrix. We start  from equation (5): 

wj = 0, P = ( I - & i T ) ,  

w = ( Q  + k,J)w + kin. 
Writing w = Pw + $ ( w - n ) n  we examine the evolution of the DC component and 
the AC part of w: 

d 
- ( ~ * n )  = n * ( Q  + k,J)w + k,n * n  
dt 

= n . ( Q  + k,J) Pw + ,(w.n)n) 1 ( + N k ,  

k, 1 
N = nQPw + - (w*n)nQn+ g(~*n)nJn+  N k ,  

= nQPw + ('U] - n ) ( q N  + k , N )  + N k ,  
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where 
two terms and we have 

= (Qij) ,  the average covariance. For large k ,  and k ,  we can neglect the first 

d 
dt -(w e n )  = N ( ( w  n)k, + kl). 

So if %, is negative, ( w a n )  decays towards an equilibrium value of kl/lkz1. 
Now the evolution of the AC component is derived: 

(Pw) = P(Q + k,J)w + %,Pn 
1 = PQ(Bw + y ( w - n ) n )  

since PJ = 0 and P n  = 0. So once w lies in the constraint surface 

Appendix F. Derivation of ~ ~ ( 0 ) ~ ~ ~  (subsection 6.2) 

We estimate the typical magnitude of wl(0) with the root mean square value of 
e, - w(0): 

Because e ,  is normalized, xi(ei( ' ))2 = 1, so 

var (e l .  w(0)) = var(wi(0)). 

When g = 0,  if the  wi(0)  are uniformly distributed on [-wmax,wma,], var(wi(0)) = 

into the hyperplane G(0) = gw,,,. The  initial fluctuations in wi(0) are then dimin- 
ished because a certain fraction of the weights get squashed against the upper hard 
limit and are no longer random variables. After this projection, the distribution of 
weights has a delta function of size u / 2  a t  w(0) = wmax and is uniform on the interval 
(-(1- u)wmax, w,,,), where U = 2(1- m). This distribution has W(0)  = gw,,,, 

and d- = o(g)wmaX where ~ ( g )  = J i ( 2  - 3u2 + 2u3 - $U'). Thus, 

zwmax.  1 2  Thus  ~ ~ ( 0 ) ~ ~ ~  = - h w m a x .  When g > 0,  the weight vector is initially projected 

If the  principal eigenfunction has a degeneracy d (for example 2p has d = 2 ) ,  then the 
effective fluctuations are larger by a factor of &, so: 
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Figure 13. ( a )  The network is made up of o n e  
dimensional layers of neurons. Each neuron receives synapses with uniform density 
from a row of TI neurons directly below. ( b )  The number of inputs common to two 
layer L3 neurons with overlapping arbors is n- Ij - kl, where j and k label the neurons 
sequentially. (c) Covariance function in layer 8 as a function of separation: assuming 
no correlations in layer A,  the covariance is proportional to the overlap. 

The model system studied. 

Appendix G.  Solution for a model system 

A complete solution has been obtained for equation (3) for a model one-dimensional 
system. It  was hoped that the emergence of centre-surround receptive fields in two- 
dimensional systems should be replicable in a network with one-dimensional layers 
(figure 13(a)) ,  and would be easier t o  understand there. This model system does 
share all the properties of Linsker’s system, except for a subtle twist in the robustness 
of the  centre-surround structures. 

Let each neuron receive connections from a finite arbor of width n with uniform 
synaptic density. By analogy with Linsker’s network, the first layer of weights are all 
set t o  the positive hard-limit. This generates correlations between the activities of the  
units in the  second layer B. These correlations will drive the production of non-trivial 
connections to  layer C.  

If the  noise in the first layer is uncorrelated, the covariance between two units in 
layer B is just  proportional to the amount of overlap in their inputs (figure 1 3 ( b ) ,  (c) ) t :  

where j and IC label the  neurons in layer f? sequentially. So the covariance matrix for 

t Here we use Q: = 6 j k  and tumQx = 1. 
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a layer C neuron with a row of n inputs is: 
n n - 1  n - 2  . . .  1 

Q”= n - 2  n - 1  ; n ; l  ;:: 
n . . .  

Let us go to  the continuum limit and consider a single neuron in layer C that  
receives a continuum of inputs from the interval -n/2 5 z 5 n/2. The synaptic 
strengths are now represented by a weight function on the interval (-n/2,  n/2)  rather 
than an N-dimensional vector W .  The covariance function is (figure 1 3 ( b ) ) :  

Q(zl Y) = - Iz - YI 1x1, I Y I  5 4 2  
where z and y label the distances of input cells from the centre of the arbor. Now we 
want to  know: 
0 

0 

0 

What are the eigenfunctions and eigenvalues of the operator (Q  + k,J)? 
How can the fixed point of the dynamics be characterized? 
Can centre-surround weight functions dominate the dynamics of this system? 

h 

-C€ 

3 -W. 

Figure 14. Eigenfunctions and eigenvalues as a function of kz. This schematic 
diagram shows the largest eigenvalues as a function of k2. The horizontal lines are 
the eigenvalues of the antisymmetric functions, which are independent of kz. The 
lines with positive gradient are the eigenvalues of the symmetric eigenfunctions. The 
little boxes show schematically the structure of the eigenfunction associated with 
each eigenvalue. 

G,l .  Eigenfunctions 
The function &(x, y) + k, is symmetric under interchange of x and y and also under 
the transformation (z, y) + (-z, -y). (In terms of matrices, the matrix Q + k,J is 
symmetric about both diagonals.) This means that not only are the eigenfunctions 
real and orthogonal, but they must also be eigenstates of the transformation x -+ -x, 
i.e.: 
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Property 1. 
antisymmetric functions. 

The  symmetric eigenfunctions are the  analogue of the s-modes in Linsker's two- 
dimensional system. Now since J = nnT, J - wA = 0 for all antisymmetric wA (and 
for any w with no DC component). So: 

Property 2. 

The eigenfunctions can be divided into a set of symmetric and a set of 

The antisymmetric eigenfunctions and eigenvalues are independent o f  
IC,. 

The  eigenfunctions are defined by: 

Such eigenfunction equations cannot generally be solved analytically. This one can be 
solved, however, because the integral operator is a function of (z - y) (i.e. is Toeplitz), 
and has a simple piecewise linear form. As shown in appendix H . l :  

Property 3. The antisymmetric eigenfunctions are sin functions and the symmetric 
eigenfunctions are cos functions with frequency w related to X b y  w 2  = 2/X. For 
sufjiciently negative k ,  there is also a cosh solution with negative eigenvalue. 

T h e  possible frequencies are discretized and depend on IC,. The  discretization 
The  eigenfunctions and their eigenvalues are condition is derived in Appendix H.2. 

shown schematically as a function of I C ,  in figure 14. 

G.2. Discussion of eigenfunctions 

As we vary IC,, the  properties of the eigenfunctions distinguish two regimes: 

0 I C ,  > -n/2. Here, the eigenfunctions are strictly ordered in eigenvalue by the num- 
ber of changes of sign in each eigenfunction, arid there are no eigenfunctions with 
negative eigenvalue. The  eigenfunct,ioni w(O)(z) with no zero crossings dominates 
the dynamics, since it has the largest eigenvalue. 

Property 4. When I C ,  > -n/2,  the principal eigenfunction is symmetric and has 
no changes of sign. 

T h e  centre-surround eigenfunction with two zero crossings, d 2 ) ( z ) ,  is the eigen- 
function with third largest eigenvalue, so i t  has smaller typical growth rate. 

0 I C z  < -7112. Here, the principal eigenfunction is the antisymmetric function 

Property 5. When k ,  < -n/2,  the principal eigenfunction is antasymmetric and 
has one node. 

d 0 ) ( z )  changes from a cos wave with no zero crossings to  a cosh solution with 
negative eigenvalue. d o ) ( z )  is now associated with a constraint surface since i t  
has a negative eigenvalue. In the limit IC, + --CO, w(O)(z) tends to  the  flat DC 
function, with eigenvalue X -+ ( I C ,  + 2n/3)n$. 

w(1) (z). 

t The eigenfunctions will be labelled with a superscript denoting their number of zero-crossings. 
$ See appendix H.3. 
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Property 6. When k ,  < - . /a ,  there as a DC eagenfunctaon wath large negatave 
ezgenvalue. 

The dynamics attract the trajectory to a plane perpendicular to this direction, so: 

Property '7. When k ,  < -./a, the weaght vector zs constrazned to have a certazn 
total DC component 

Equivalently, the average synaptic strength is constrained to  be a constant g ,  given 
in terms of the parameters byl: 

Within this constraint hyperplane, if I C ,  = 0 (so that the fixed point is a t  the 
origin), the antisymmetric eigenfunct,ion d 1 ) ( x )  with one zero crossing dominates 
the dynamics, since it is now t,he principal eigenfunction. 

So for kl  = 0, there are two parameter regimes, k ,  > - n / 2  and k ,  < -n/2, in which 
w(')(x) and w(l)(x) dominate respectively. 

Property 8. 
It is  the principal symmetric eigenfunction for k ,  < -n/2. 

The ceiitre-s,urround eigenfuiiction is never the principal eigenfunction. 

G.3. Fixed point 

Substituting into equation (6), t,he component of the fixed point in the direction of 
an eigenfunction is kle(") - n / X , ,  i.e. it, is proportional to the DC component of the 
eigenfunction. So: 

Property 9. 
eigenfunction. 

The fixed po in t  has no component in the direction of any antisymmetric 

In the limit of 1a.rge k , ,  t,he component,s of the fixed point in the direction of each 
eigenvector can be found analytically. As shown in appendix H.4, the components in 
the direction of the symmetric eigenfunctions are all of equal order. Thus: 

Property 10. 
eigenfunctions. 

The fixed point gives a velocity advantage to the growth of symmetric 

G.4. Discussion o f  a fixed point 

The only chance for centre-surround weight functions to be obtained with high proba- 
bility is if i t  is possible for the fixed point to  give a 'head start '  to  the centre-surround 
function w(')(z). The fixed point only has non-zero components in the direction of 
symmetric eigenfunctions. So having chosen k, << - n / 2  to kill the dominant eigen- 
function w(')(z), it seems possible that k ,  might be chosen to give the second-in-line 
d 2 ) ( z )  a sufficient advantage in growth rate for it to dominate over the leading anti- 
symmetric eigenfunction d l ) ( x ) .  However increasing k ,  has two effects. The distance 
of the fixed point from the origin is proportional to k , ,  so: 

t See appendix H.4. 
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Property 11. Increasing 6 , :  

1. 
2. 

gives a velocity advantage to the growth of symmetric eigenfunctions; 
increases the size of DC component that the weight function is  constrained to have. 

We can now refer to  the criteria of section 6 to  estimate whether centre-surround 
structures will dominate the dynamics. 

G.4.l. Energy criterion. For this simple system it is possible to evaluate the energies 
of the appropriate fully saturated structures exactly, and we are able to  see how badly 
our approximate estimates perform. The energies of a saturated symmetric centre- 
surround structure and a saturated asymmetric structure are ( to  within an additive 
const ant)  : 

So Esymm = Easymm implies g = 1, and a saturated centre-surround structure is never 
the energy-minimizing configuration for this system. This exact result gE = 1 can be 
compared with the estimate of gE (using A, = 2n2/7r2, A, = n2/27r2, n,b, = f iA , /n ) ,  
gE = 1/(1+2fi/3) = 0.51. We can see that for the extreme case gE = 1 our estimator 
performs rather poorly. 

So in this model system, there are only two energetically robust parameter regimes, 
dominated by do) and tu('); this is a difference from Linsker's system, in which the 
centre-surround structure becomes energetically favoured before the DC level swamps 
the visibility of AC structures. 

Property 12. Centre-surround structures are never the energy-manamizing structures. 

G.4.2. Time development criterion. N *  can be evaluated also: 

and with a sufficient number of synapses, centre-surround structures do indeed dom- 
inate the initial dynamics; but the subtle twist is that (in contradiction to  assump- 
tion 1) the resulting saturated centre-surround structures are not necessarily stable un- 
der equation (3): saturated centre-surround structures can collapse synapse by synapse 
into the more energetically favourable asymmetric state. Whether this collapse occurs 
depends sensitively on the parameters. For a neuron with N equally spaced inputs it 
can be shown that  there are N / 2  + 1 regions in which saturated centre-surround is 
stable and N/2 regions in which it is not (for N even; similar results hold for N odd). 
We state without proof the boundaries between these regions: for large negative k, 
there is a transition between a stable and unstable centre-surround region a t  every 
g = Lt(2I+ l) /N, where I is an integer E [0, N / 2  - 13. A set of ( N  + 1) zebra stripes 
in parameter space result. Thus the final twist in this model system is that  although 
centre-surround structures can dominate the initial dynamics if symmetry breaking 
fluctuations are suppressed, their final stability is not robust to  small variations in the 
parameters. 

Property 13. Centre-surround structures d o  not necessarily occur robustly. 
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It is not known whether this inst!ability that is so sensitive to  the parameters is a 
special property of this system. Perhaps the extremely ordered form of the network 
may be responsible for the strange behaviour, and a randomized form of the same 
network would behave differently. Anot,her possibility is that the stability of domain 
boundaries to  distortions in one- and two-dimensional systems might be different. 

G.5. Summary 

The important features that  we wanted to know to characterize the dynamics were the 
principal components of Q + k , J ,  its negative eigenfunctions, and a characterization 
of the fixed point. 

I. . 

2. 

There are two regimes. 

When k 2  E 0, the principal component is a cos function with no changes of sign. 
There are no negative eigenvalues. 
When k ,  << 0: 

The principal component is an antisymmetric sin function with one change of 
sign. 
The principal symmetric eigenfunction is the centre-surround eigenfunction. 
There is a single negative eigenvalue corresponding to  a flat eigenfunction, 
which enforces a constraint on the total synaptic sum. 
The location of the fixed point fixes the level of the constraint, and it 
favours the growth of symmetric eigenfunctions. By energy considerations, 
centre-surround structures are never favoured over asymmetric structures 
If symmetry-breaking fluctuations are suppressed, centre-surround structures 
may dominate the initial dynamics, but their stability on the hypercube de- 
pends crazily on t(lie precise values of the parameters. 

So this model system has properties analogous to  all the properties of Linsker’s system, 
with the exception that there is no regime in which centre-surround structures are 
robustly favoured. 

Appendix H. Derivatioiis for model system 

H.1. Eigenfunctions 

Starting from equation (18), the eigenfunctions satisfy: 

m 

L m  ( n  + k2 - 12 - Yl)W(Y) dY = W.) 

where m = n/2. 
We differentiate equation (19) twice with respect to t. Differentiating the tri- 

angular function ( n  + k ,  - 12 - yI) twice gives a delta function a t  IC = y, and we 
obtain: 

m a2 m a 2  

a x 2  X-W(Z) = 1, 612(n + k ,  - / I C  - y l ) ~ ( y )  dy = - 2 6 ( ~  - y)w(y) dy = - 2 4 1 ~ )  

so 
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So the antisymmetric eigenfunctions are sin waves and the symmetric eigenfunctions 
are cos waves with frequency w related to  X by w2 = 2 / X .  There may also be a 
cosh solution with negative eigenvalue. The  possible frequencies are discretized and 
depend on k,. The  discretization condition can be found by explicit integration of the 
eigenfunction equation. 

H.2. Discretization of eigenvalues 

Let w(z) = coswz: 

rx rm 

b b Now using J, coswydy = (l/w)sinwyl! and sa Y C O S W Y  dy = ( l / ~ ) ~ s i n w y I :  + 
( 1 / w 2 )  coswyI; we obtain: 

2 2 2 I = - (m + k z )  sinwm - 7 coswm + 7 coswz 
W W W 

so we have an eigenfunction coswz with X = 2 / w 2  iff the following discretization 
condition holds: 

2 2 
W - ( ~ n + k ~ ) s i n w m - - ~ c o s w n ~  W = O  

i.e. 
1 

wm[(kz/m) + 11' 
t anwm = 

The  solutions to this transcendental discretization condition are displayed graph- 
ically in figure 15. 

l/o(m+k2) for k2>-m 

- o m  
- 

/ 

l/o(m+k2) for k2<-m 

Figure 15. Solutions for frequencies of eigenfunctions. The functions tanwm and 
l / [ u m ( k ~ / m + l ) ]  are shown. At all mw where the curves intersect, there is a solution 
for an eigenfunction coswz. The second curve is shown twice for two different values 
of k 2 ,  one greater and one smaller than -m. At each w m  = (N + 1 / 2 ) ~  there is a 
solution for an eigenfunction sinwz. 
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Similarly for w(x) = sinwx, the discretization condition is found to  be: 

wm = ( N  + 1 / 2 ) ~ .  coswm = 0 

Thus the antisymmetric eigenfunctions and eigenvalues are i:idependent of k,, as 
stated in appendix G . l .  

Notice that  the discretization condition for the cos solutions has a critical point 
a t  I C ,  = -m, a t  which the cos and sin eigenfunctions are pairwise degenerate. Beyond 
the critical point, a single cosh eigenfunction w(z) = coshwz emerges with X = -2/w2 
where: 

1 - tanhwm = 
wm (k,/m + 1) ' 

H.3. Limiting properties 

By considering figure 15, it can be seen that as k, -+ &cc the frequencies of the cos 
solutions all tend to  a multiple of s / m .  If we use the label a to denote the number of 
zero-crossings in the function, then we have w, -+ aa/2m. The limiting eigenvalues 
of the eigenfunctions are A, = 2/w," = 2 1 1 ~ / a ~ ~ ~ ,  except for the case a = 0, for which 
w: = l /mk, to  leading order, giving A,, -+ k,n. 

H.4. Components of a $xed point  

In the limits IC, -+ &:CO, the DC component R, of the ath normalized eigenfunction 
w(")(x) is (to leading order): 

cos w, y m 
for a > 0 a,nd even 

sin mw,. Jz -- - 
mwa 

The argument mw, - m / 2 ,  since 
1 
1 

tanwm = -+ 0. 
wm (k2/m + 1) 

So we can use sinmw, 2: (-1)"/2tanmw, 2: (-1)"/2/w,k, and A, = 2/w: in the 
above expression for n,: 

(- 1)Q/2X, 

f i n - 4  n, = for a > 0 and even. 

We can obtain the components of the fixed point in the eigenvector basis from 
this: 

for a > 0 and even, and I C ,  -+ &CO. 
- kl (-1)"/2 - 

IC, Jm 
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So all these components have equal magnitude, to leading order, in the limit k, -+ &CO. 

w i p  differs by a factor of 4: w i p  = - (k l /k2) ( l /&) .  Carrying the integrals and 
normalization to 0 ( k i 2 ) ,  we obtain: 

w:’ = - k l / & ( k ,  + bm). 

And the location of the constraint surface is, for k, -+ --M: 

i 
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