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Abstract. In this paper, we develop a method for closely estimating noise thresh-
old values for ensembles of binary linear codes on the binary symmetric channel. Our
method, based on the “typical pairs” decoding algorithm pioneered by Shannon, com-
pletely decouples the channel from the code ensemble. In this, it resembles the classical
union bound, but unlike the union bound, our method is powerful enough to prove
Shannon’s theorem for the ensemble of random linear codes. We apply our method
to find numerical thresholds for the ensembles of low-density parity-check codes, and
“repeat-accumulate” codes.

1. Introduction. In this paper, we consider the performance of en-
sembles of codes on the binary symmetric channel. Our particular focus is
on the question as to whether or not a given ensemble is “good,” in the
sense of MacKay [7]. In short, an ensemble of codes is said to be good,
if there is a p > 0 such that the ensemble word error probability (with
maximum-likelihood decoding) on a BSC with crossover probability p ap-
proaches zero as the block length approaches infinity. The largest such p
for a given ensemble is called the (noise) threshold for the ensemble. Our
main result (Theorem 4.1) is a technique for finding a lower bound on the
ensemble threshold, which is based on the ensemble’s weight enumerator.

Of course the classical union bound provides one way of using weight
enumerators to estimate ensemble thresholds, but the estimates are poor.
Gallager [4, Chapter 3] gave a variational method for upper bounding the
probability of maximum-likelihood decoding error for an arbitrary binary
code, or ensemble of codes (given an expression for the average weight-
enumerator function) on a general class of binary-input channels. Gal-
lager’s technique, however, is quite complex, and even in the special case of
the BSC it is difficult to apply to the problem of finding ensemble thresh-
olds.!

In this paper we abandon the full maximum-likelihood decoder, and
instead focus on a slightly weaker decoding algorithm, which is much easier
to analyze, the typical pairs decoder. This technique was pioneered by
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1We have been able to show that the thresholds obtained by our method are the
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Shannon [11, Theorem 11], but as far as we can tell was not used to analyze
ensembles other than the ensemble of all codes (which we call the Shannon
ensemble in Section 5, below) until the 1999 paper of MacKay [7], in which
it was used to analyze certain ensembles of low-density-parity check codes.
In brief, when presented with a received word y, the typical pairs decoder
seeks a codeword x such that the pair (x,y) belongs to the set T of “typical
pairs.” (We give a precise definition of T in section 2, which follows.) In
Section 3, we develop an upper bound on the typical-pairs decoder’s error
probability (Theorem 3.1) which, like the classical union bound, decouples
the code’s weight enumerator from the channel, but unlike the union bound,
when combined with the law of large numbers, gives good estimates for code
thresholds (Theorem 4.1).

We then apply Theorem 4.1 to three families of binary code ensembles:
(1) The Shannon ensemble, consisting of all linear codes of rate R; (2) the
Gallager ensemble, consisting of (7, k) low-density parity-check codes; and
(3) the ensemble of Repeat-Accumulate codes introduced by Divsalar, Jin
and McEliece [2]. In the case of the Shannon ensembles, we show that our
method yields thresholds identical to those implied by Shannon’s theorem.
Thus the typical sequence method, despite its suboptimality, loses nothing
(in terms of coding thresholds) for the Shannon ensemble.

Finally, we compare our thresholds to the iterative thresholds for the
Gallager and RA ensembles recently obtained by Richardson and Urbanke
[10], in order to estimate the price paid in coding threshold for the benefits
of iterative decoding. In most cases, this loss is quite small, and in the case
of j = 2 LDPC codes, there appears to be no penalty at all.

The method described in this paper can be readily extended to many
other channel models, including channels with memory (cf. [7, Section II]).
This extension will be developed in a forthcoming paper, where the empha-
sis will be on the binary erasure channel and the additive Gaussian noise
channel.

2. Typical pairs. Let T be a set of binary vectors of length n which
is closed under coordinate permutations, and let Z = (71, Z»,...,Z,) be
the BSC noise vector, i.e., the Z;’s are i.i.d. random variables with common
density

Pr{Z=0}=1-p, Pr{Z =1} =p.

If we define the set T to be a set of “typical” noise vectors, then T repre-
sents the typical channel outputs if the zero-word is transmitted, and the
T + x represents the set of typical channel outputs if the codeword x is
transmitted. In the typical-pairs decoder (to be defined shortly), decoder
errors can result if the channel output is in the typical set of more than one
codeword. We are therefore interested in the quantity Pr{Z € TN (T +x)}.

If T is invariant under coordinate permutations, the probability
Pr{Z € TN (T +x)} depends only on the weight of x. Thus we define, for
h=0,1,...,n,
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(2.1) Py(T) =Pr{Z € TN (T + %)},

where x is any vector of weight h. The quantity P} (T) is then the proba-
bility of error in a typical-set decoder in the case of a code having only two
codewords separated by a Hamming distance h.

For example,

(2.2) Py(T) = Pr{Z € T}.

Since any set 7" which is invariant under coordinate permutations must
consist of all vectors of weight k € K, where K is a subset of {0,1,...,n},
the probabilities Py (T") depend only on the set K. A short combinatorial
calculation gives

ks h n—nh
(23) PT) =2 P (1-p)" Z((h+kl—k2)/2>((kl—h+kz)/2>'

ki1€K k2 €K

This is because a vector of weight k; has probability p** (1 — p)»~*1, and
there are exactly ((h +k1fi k) /2) ((kl_r;;r’}gz) /2) vectors of weight k;, which
have the property that when the first A components are complemented,
h n—h
—N—
i.e., the vector x = (11---100---0) is added, the resulting vector has

weight k2. Applying (2.3) to the case h = 0, we obtain

Py(T)=>_ pF(1—p* (Z)

keEK

in agreement with (2.2).

In our main application (Theorem 4.1) the set T' will be the “typical
sequences” of length n and so will be denoted by T,,. The definition of T},
is

(2.4 7, {a: \Wt(z) —p\ <a).

n

where ¢, is a sequence of real numbers approaching zero more slowly than
n~1/2, i.e., €ny/n — 0o. Then by a straightforward extension of the weak
law of large numbers,

(2.5) lim Pr{Z € T,,} = 1.
n— o0

Furthermore, by defining K, = {k: n(p —e,) < k < n(p+e€,)}, and using
the formula (2.3), it is relatively easy to prove that for any ¢ in the range
0 <4 < 2p, we have

1

n—oo
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where K (4, p) is given by the equivalent formulas

(2.7) K(é,p) = H(p) —blog2— (1-6)H (p1_—5</s2>

(28) —10) -t (35) -0 -9 (57 )

where H(z) is the entropy function, i.e., H(z) = —zlogz—(1—z) log(1—xz).
(These formulas are true only for § < 2p; for 6 > 2p, K(d,p) is infinite,
since P, (T,) = 0 for h > 2n(p + €,).) In Figure 1, we have plotted the
function K (6,p) for several values of p.?

1 L
0.8
0.6
0.4
p=0.15
0.2 p =0.07 p=0.10
0.05 0.1 0.15 0.2 0.25 0.3

F1G. 1. The Function K(8,p) for p = 0.07,0.10.,0.15.
In fact, a closer examination of the limit in (2.6) shows that for a

fixed value of p, the limit is uniform. That is, for a fixed p, there exists a
sequence of positive numbers 3, — 0, such that

1
(2.9) - log Ps,(Ty) — K(6,p)| < B, for all 0 < § < 2p.

Alternatively, we can write (2.9) as
(2.10) Py (T,) = e~ (K (0.p)+o(1))

where 6 = h/n.

2In Figure 1, and all the other figures in the paper, computations using logarithms
use natural logarithms.
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3. The typical pairs decoding method. Suppose C is an (n, k) bi-
nary linear code, with weight enumerator (4o, 41, ..., 4,), i.e., C contains
exactly A; words of Hamming weight h, for h = 1,...,n. We suppose that
at the transmitter, a codeword x € C is selected at random, transmitted
over a BSC with crossover probability p, and received at the destination
as y. The T-decoder tries to infer x based on knowledge of the code C,
the noisy codeword y, and the channel noise parameter p. The T-decoder
works as follows.

For every codeword x;, the ith “pseudonoise” z; = y — x; is computed.
If there are no indices i for which z; € T, the decoder fails. Otherwise,
among those indices such that z; € T, the decoder choose one for which
the Hamming weight w(z;) is smallest. In short, the decoder chooses the
most likely codeword for which z; is typical. In what follows we do not
distinguish between decoder error and failure, and denote the probability
of decoder error (or failure) by Pg.

THEOREM 3.1. If Pg denotes the probability that the T-decoder does
not correctly identify the transmitted codeword, then

(3.1) Pg < (1-Py(T)) + > Anmin(8", P,(T)),
h=1
where 3 = 24/p(1 — p) is the channel Bhattacharyya parameter.?
Proof. Let (xg,X1,...,Xpm—1) be an ordering of the code with xy being
the all-zeros word, and suppose xgq is transmitted. For i =0,1,...,M — 1,
define the following events:

T, ={z;€T} (z; is typical)
Vi ={w(z;) <w(z)} (z; is more likely than zg)
S; =T;NV; (z; is typical and is more likely than zg)

Then the T-decoder will fail only if at least one of the events Tj, S1,. ..,
Sa—1 occurs. Thus if £ denotes the event “T-decoder fails, given that xg
was transmitted,” we have (here T} denotes the complement of Tp)

¢ =mu (UM s)
(3.2) =i (TonUM? sz-)
=Tyu (U (TN 85)) -

Therefore the probability of T-decoder error, given that xo was trans-
mitted, can be upper bounded as follows:

M-1
(3.3) Pr{€|xo} < Pr{Tylxo} + > Pr{ToN Silxo}.
i=1

3The term 8" in (3.1) is present for technical reasons, e.g., the proof of Theorem 4.1.
Normally, it will be smaller than the term P (T') only for very small values of h.
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But Pr{Tj|x0} = 1 — Pr{Ty|x0}, and Pr{Ty|xo} = Pr{Z € T} = Py(T),
from (2.2). Thus

(3.4) Pr{Tj|xo} = 1 — Po(T).
Also, since S; = T; N V;, it follows that
Pr{To N Si|xo} < min(Pr{Vi|xo}, Pr{To N T;|x0}).
By the familiar union bound argument [8, Theorem 7.5], we have
Pr{Vi|xo} < 8",

where h; is the Hamming weight of x;.

Also note that by definition z; = y — x;, and so we have, for i =
1,...,M —1, z; = zg + (x0 — x;) = 79 — X;, since Xq is the all-zeros word.
Thus T; = {ZO eT+ XZ'}, and so

Pr{ToNTixo} =Pr{ZeTN(T+x:)}
= Phi (T)

where h; is the Hamming weight of x;. Hence

M-1 M—-1
Z PI'{T() N Si|x0} S Z min(IBh”',P’“ (T))a
(3.5) i=1 =t
= Z Ah min(ﬁha Ph(T))7
h=1

since there are exactly A; words of Hamming weight A in C. Combining
(3.3) with (3.4) and (3.5), gives (3.1). O

4. Code ensembles. By an ensemble of linear codes we mean a se-
quence Cp,,Cp,, ... of sets of linear codes of a common rate R, where C,,
is a set of (n;, k;) codes with k;/n; = R. We assume that the sequence
N1, N2, ... approaches infinity. If C' is an (n, k) code in the ensemble, we
denote the weight enumerator of C by the list A¢(C), A1(C), ..., Ap(C).
The average weight enumerator for the set C,, is defined as the list

—(n) —(n) —(n)
AO (C)’ Al (C)a Tt An (C)’

where
(4.1) A a Ci An(C)  forh=0,1,...,n.
[Cn] CeCn
We define, for each n in the sequence n1,ns,- .., the function
(4.2) ro(8) 2 %logz(@d for0<d <1,
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Also, we define the ensemble spectral shape :

(4.3) r(6) £ lim rn(6) for0< 6 <1,

n—oo

assuming that the limit exists. In this case, we may write
(4.4) A — en(r@)+o1))

where § = h/n.
Now we apply Theorem 3.1, using the set T),, defined in (2.4), to a
code C € C,:

(4.5) P <1+ Y An(C)Pu(Ty),
h=1
where 9, = Pr{T!} — 0 by (2.5). If we average (4.5) over all codes in the

ensemble C,,, we obtain the following upper bound on ?g), the ensemble
decoder error probability:

(4.6) Py <nu+ S AVP(T,).
h=1

Replacing ZEI") with the right side of (4.4), and Py (T,) with the right side
of (2.10), (4.6) becomes

n
(4.7) P <ny+ 3 e nKGD)-rGow),
h=1

It now appears that if p is chosen so that the function K(§,p) — r(4) is
positive for all 0 < § < 1, so that the exponent in the sum in (4.7) is

always negative, the ensemble word error probability ng) will approach
zero, as n — 0o. This is in fact true, provided we make the following two

technical assumptions about the behavior of ZEL"), for h = o(n).
o Assumption 1. There exist a sequence of integers d,, such that d,, —
oo and

dn
. —(n) _
(4.8) nlgrolo hg_l A, =0.

(This assumption says, roughly, that the minimum distance of the ensemble
is at least d,.)

o Assumption 2. There exist a sequence of real numbers 6,, > 0 such
that
(4.9) rn(6) <7r(6) +6,, where lim — =0.

n—oo n
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We now state our main result:

THEOREM 4.1. Suppose the code ensemble has spectral shape r(5), and
also that it satisfies Assumptions 1 and 2. Then if the crossover probability
p < 1/2 of the channel satisfies

K (6,p) > r(9) for 0< 6 < 2p,

then ng) — 0 as n — 0.

There is a slightly weaker version of Assumption 1 that guarantees
that the ensemble bit error probability approaches zero:

e Assumption 1'. There exist a sequence of integers d, such that
d, — oo and

d
. N h—(n)
(4.10) lim > —A, =0
h=1
The corresponding modification of Theorem 4.1 follows.
THEOREM 4.2. Suppose the code ensemble has spectral shape r(5), and
also that it satisfies Assumptions 1' and 2. Then if the crossover probability

p < 1/2 of the channel satisfies
K (4,p) > r(6) for 0 < 6 < 2p,

then F},")
probability.

(A proof of Theorem 4.1 will be found in the Appendix. The proof of
Theorem 4.2 is similar and is omitted.)

In the following three sections, we will apply Theorem 4.1 to three
different ensembles of binary linear codes: (1) The Shannon ensemble, con-
sisting of all linear codes of rate R; (2) the Gallager ensemble, consisting
of (j,k) low-density parity-check codes; and (3) the ensemble of Repeat-
Accumulate codes introduced by Divsalar, Jin and McEliece [2].

— 0 as n — oo, where P, denotes the T-decoder’s bit error

5. The Shannon ensemble. For the set of random linear codes of
rate R, we have

(5.1) = (”)2—"(1—R),

h
from which it follows via a routine calculation that
(5.2) r(6) = H(5) — (1 — R)log2.

This function is shown for R = 1/3 in Figure 2.

To apply Theorem 4.1 to the Shannon ensemble,? for a given rate R
we must find the largest p such that K (6,p) > H(6) — (1 — R) log2 for all
0<4d<2p.

4 Assumptions 1 and 2 are satisfied with d, = Kn for a suitable positive constant
K = K(R), and 6,, = 0.
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F1G. 2. The function r(d) for the ensemble of R = 1/3 linear codes.

Using (5.2) and (2.8), this inequality becomes

(5.3) pH (2%) +(1-p)H (ﬁ) < (1= R)log?2.

The maximum of the left side of (5.3) in the range 0 < § < 2p occurs at
§ = 2p(1—p), and is H(p). Thus the inequality K (d,p) > H(6)—(1—R) log 2
required by Theorem 4.1 becomes simply H(p) < (1 — R)log2, or Hz(p) <
1 — R, where H»(p) is the binary entropy function. Thus we have proved

THEOREM 5.1. The ensemble of random linear codes of rate R is good
on a BSC with crossover probability p if H2(p) < 1 — R.

The idea of the proof is illustrated in Figure 3, where we see the
function K(4,0.174) just touching the r(8) curve of Figure 2. This shows
that the threshold for the ensemble of R = 1/3 linear codes is p = 0.174,
which reflects the fact that H(0.174) =1 —2/3.

Of course, Theorem 5.1 is just Shannon’s theorem for linear codes
on the BSC. We have included it only to demonstrate that Theorem 4.1 is
powerful enough to reproduce Shannon’s theorem. In the next two sections
we will apply it to more interesting ensembles.

6. The Gallager ensemble. In this section, we discuss the appli-
cation of Theorem 4.1 to the ensemble of (j,%) low-density parity-check
codes defined by Gallager [4].° In brief, every code in Gallager’s (j, k) en-
semble is defined by a parity-check matrix which has j ones in each column

5There are numerous ways to define this ensemble. The definition we follow was
given by Gallager [4, Section 2.2], and differs, e.g. from the ensemble analyzed by
MacKay in [7, Section II].
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F1G. 3. The function r(8) for the ensemble of R = 1/3 linear codes, together with
the function K(8,p) for p=0.174.

and k ones in each row. The rate of each code in the ensemble is at least
Rjr=1-(j/k).

The spectral shape r; () for the (j, k) ensemble was determined by
Gallager. It can be expressed in parametric form, as follows:

10
5iu(s) =2 5(k)

ri(s) =1 (,u(s,k)—sg—l:(s,k)+(k—1)log2) _G-1)H (%%(s,k))

where the parameter s ranges from —oo to 400, and the function u(s, k)
is defined by

>

(1+ef)k + (1 —e)”

(s, k) oF

log

Figure 4 shows the function r; j for (j, k) = (3,6).

Given the spectral shape, it is an easy task to apply Theorem 4.1 to
find the corresponding BSC ensemble thresholds.® A short table of these
thresholds, together with the corresponding Shannon limit, is given below.

8To satisfy Assumptions 1 and 2 for j > 3, we can take d, = Kn for a suitable
constant K = K (j), and 6, = 0. For j = 2, we can prove the existence of a sequence of
dy’s which satisfy Assumptions 1’ and 2 with 8,, = 0, though we do not have an explicit
expression for them.
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I’(5) 0.2}

(4,k) | Rjx | pjk | RU limit | Shannon limit
(3,6) | 1/2 | 0.0915 | 0.084 0.109
3,5 | 2/5 | 0120 | 0.113 0.145
(4,6) | 1/3 | 0.170 | 0.116 0.174
(34) | 1/4 | 0205 | 0.167 0.214
(2,3) | 1/3 | 0.0670 | 0.0670 0.174
(2,4) | 1/2 | 0.0286 | 0.0286 0.109

For example, consider the “(3,5)” line in the table. The corresponding
Gallager ensemble consists of codes which have parity-check matrices with
3 ones per column and 5 ones per row. The rate of all codes in this ensemble
at least R3 5 = 1—(3/5) = 2/5. Using Theorem 4.1, it is calculated that for
any BSC with crossover probability p < 0.129, the (3,5) ensemble is good,
i.e., the average word error probability of the T-decoder approaches 0, as
n — 00. This should be compared to the Shannon limit for the ensemble
of all linear codes of rate 2/5 (cf. Theorem 5.1), which is p = 0.145, which
indicates the price which is paid for having the (3,5) structure. Finally,
we note that the Richardson-Urbanke limit [10] for the (3,5) ensemble
is p = 0.113, i.e., with belief propagation—style iterative decoding, the
ensemble decoder error probability approaches 0 if and only if p < 0.113.
(The values p; for (j,k) = (3,6), (3,5), (4,6), and (3,4) given in
the above table appear to agree with the values given by Gallager [4] in
his Figure 3.5, although he gave no numerical values. However, as we
mentioned above, we have been able to show that the thresholds obtained
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from our Theorem 4.1 are the same as the best obtainable using Gallager’s
methodology, so our threshold values are at least as good as Gallager’s.)

We conclude this section with some remarks on the ensemble of (2, k)
LDPC codes. Originally dismissed by Gallager because their minimum
distance is O(logn) [4, Theorem 2.5], they are nevertheless quite interest-
ing, and are variously called “graph-theoretic,” “circuit,” or “cycle” codes
[9, Section 5.8], [6] because of their close connection to finite undirected
graphs. Using Theorem 4.2, we can show that for p < p*(k), the bit error
probability for T-decoding of the (2, k) ensemble approaches zero, where
p*(k) is given by the exact formula

1) p=3 (1 1 o )

(The ensemble word error probability does not approach zero for any p > 0.)

Furthermore, Wiberg [12, Example 5.1] showed that with iterative de-
coding, the ensemble of (2, k) cycle codes has ensemble bit error probabil-
ity approaching zero for p < p*(k). Numerically, the Richardson-Urbanke
method appears to give the same value, so it seems safe to say that (6.1)
gives the exact iterative threshold for the Gallager (2, k) ensemble.”

Finally, it was shown by Decreusefond and Zémor [3] that for an “ex-
purgated” ensemble of (2,%) cycle codes, the eract maximum-likelihood
BSC coding threshold is equal to p*(k). Since as we have seen, the thresh-
old for the unexpurgated ensemble is at least this good, it seems very likely
that p*(k) is the exact ML threshold for the unexpurgated ensemble as
well. These results strongly suggest that that for (2, k) cycle codes, the
iterative and maximume-likelihood thresholds are the same, and are given
by the formula (6.1).

7. The ensemble of repeat-accumulate codes. In brief, for an
integer ¢ > 2, the ensemble of g-repeat accumulate codes consists of those
codes which can be encoded by the serial concatenation of a g-ary repetition
encoder, followed by a pseudorandom permutation, followed by a rate 1
code with (square) generator matrix of generic shape

Q

I
SO OO
OO O = =
SO - ==
O =
—

The basic combinatorial fact about the ensemble of (gk, k) RA codes
is the following formula for the average number of input words of weight w

"For a survey of iterative decoding of cycle codes, see [5].
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which are encoded into output words of weight A [2, Eq. (5.4)]:

(o) Gourz) Gamn )
_ 2 2] -1
(7.1) a0 _ \w) \ow/2)) \[qw/21 -1).
; qk
(0u)
It follows then that if quk) denotes the average number of words of weight
h in the ensemble,

N
(7.2) A =3 A,
w=1

From (7.1) and (7.2), it can be shown that the spectral shape r(d) for
the ensemble of g-RA codes is as follows :

(7.3) r(0) = max {—q;—lH(qw) +(1- 6)H(72(1qf 5)* 6H(%)} :

Figure 5 shows the r(§) curve for the ensemble of ¢ = 3 RA codes.®

0.2¢

0.15¢

0.05+

0.2 0.4 0.6 0.8 1
F1g. 5. The function r(8) for the ensemble of R =1/3 RA codes.

Combining (7.3) with Theorem 4.1, it is a straightforward computation
to obtain the thresholds in the following table.

8To satisfy Assumptions 1 and 2 for ¢ > 3, we can take d, = logZn and 6, =
(K log n)/n for suitable constants K = K(q). For ¢ = 2, we can only show the existence
of a sequence d,, satisfying Assumptions 1’ and 2 by taking d,, = 2 and 6, = (K logn)/n.
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qg| Ry | pg RU limit | Shannon limit
2| 1/2]0.029% | - 0.109
3|1/3]0.132 | 0.142 0.174
4|1/4]0.191 | 0.188 0.215
5|1/5]0.228 | 0.216 0.243
6 |1/6 | 0.254 | 0.235 0.264
7| 1/7|0.274 | 0.250 0.281

For example, consider the ¢ = 3 line of the table. It indicates that the
common rate for all ¢ = 3 RA codes is R = 1/3, and that this ensemble
is good on any BSC with crossover probability p < 0.132. By way of
comparison, the Shannon threshold for the ensemble of all rate 1/3 linear
codes is seen to be p < 0.174. Finally, the Richardson-Urbanke iterative
decoding threshold [Richardson and Urbanke, private commmunication] is
p < 0.142. Since we can show that the T-decoding algorithm always gives
the same ensemble threshold as does maximum-likelihood decoding, which
must be at least as good as the iterative threshold, this apparently shows
either that the thresholds given in Theorem 4.1 are not always the best
possible for T-decoding, or that the R-U theorem is not correct for this
ensemble. A resolution of this paradox would be very welcome.

Finally we note that for the ensemble of ¢ = 2 RA codes, the word
error probability for T-decoding does not approach zero for any p > 0,
but, again by using Theorem 4.2, we can show that the ensemble bit error
probability approaches zero for p < 0.029.

APPENDIX

A. Proof of Theorem 4.1. We first define the ensemble threshold
as follows:

(A1) po = sup{p: K(d,p) >r(6),0 < J < 2p}.

LEMMA A.1. If p < po, then there exist real numbers ag > 0 and
Yo > 0, and a positive integer Ny, such that for n > Ny,

aon

Z Zgn)ﬂh — O(e—dn'yo)’

h=d,

where B = 2+/p(1 — p).
Proof. Using the definition (2.7), It is straightforward to show that

. K(6,po) OK(0,po) _
m—%— =73 — lh
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where By = 24/po(1 — po). Hence for p < pgy, we have

lim sup;_,¢ T((s_é) < lims_so K_(%,p_o)

= —logBo = 24/po(1 — po)
< —logB = 2/p(1 - p).

This, together with Assumption 2, implies that there exists ag > 0, yo > 0,
and a positive integer Ny such that for n > Ny, we have

™(6) _ nbn r(6)

sup <—=—+4 sup —= < —logfB — 0.
dn/n<é<ao O dn  0<b6<ao O

Hence we have, for n > N,

Q

on

Q
3

0 aon

Zgln)ﬁh — e*h(logﬁfrn(é)/é) < Z e hro
h=d,, h=d,, h=d,,
oo
< Z e~h1 = O(e=dn ),
h=dn
which completes the proof. a

Now we can give the proof of Theorem 4.1. With the notation being
as established above, we have, by Theorem 3.1, for p < po,

dn apn n
A2) Pe<Y A"+ S A+ S AV PUT) + ofn).
h=1 h=d, h=aon

The first sum in (A.2) approaches zero by Assumption 1, the second sum
approaches zero by Lemma A.1 together with the fact that d,, — oo. The
third sum is

Z Zgn)Ph(T) _ Z e—n(K(é,p)—r(é)—i—o(l))

(A3) h=aopn h:ﬁzon
< Z e—n(K(é’P)—K(é,Po)-FO(l))’

h=agn

where the first line follows from (2.10) and Assumption 2, and the second
line follows from the definition (A.1) of po.
Finally, let € be such that

K(6,p) —K(6,po) > €  fora, <e<2p.

Then for n sufficiently large, the exponent in (A.3) will be > €/2, and so
the sum will be upper bounded by n-e~"¢/2, which goes to zero as n — oo.
O
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