
Local Minima, Symmetry-breaking, and Model Pruning in

Variational Free Energy Minimization

David J.C. MacKay

University of Cambridge

Cavendish Laboratory

Madingley Road

Cambridge CB3 0HE

mackay@mrao.cam.ac.uk

June 27, 2001

Abstract

Approximate inference by variational free energy minimization (also known as variational
Bayes, or ensemble learning) has maximum likelihood and maximum a posteriori methods
as special cases, so we might hope that it can only work better than these standard meth-
ods. However, cases have been found in which degrees of freedom are ‘pruned’, perhaps
inappropriately. This paper investigates this phenomenon in a toy example.

Approximate inference by variational free energy minimization (also known as variational
Bayes, or ensemble learning, or learning with noisy weights – see (MacKay 1995) for a review)
has maximum likelihood and maximum a posteriori methods as special cases, so we might hope
that it can only work better than these standard methods. However, cases have been found in
which degrees of freedom are ‘pruned’, perhaps inappropriately. This paper investigates this
phenomenon in a toy example.
Motivations for VFE: want to incorporate uncertainty about parameters into the model-

fitting process. Also worried about the electric monastry – location in parameter space where
the likelihood diverges.
Uncertainty is greatest (and singularities in the likelihood more prominent) when there is

little data, so VFE is of most interest for small N .
Problem observed by Zoubin Ghahramani (studying ensemble learning for HMMs (MacKay

1997)): extra degrees of freedom are not used. The model self-prunes. Annoying because we
don’t want the pruned model, we want the model we believe in – with lots of parameters, and
big error bars on them! Parameter pruning is bad news because we would like predictions to
take into accoutn uncertainty.
Comment on spontaneous pruning: is sometimes viewed as a convenient automatic Occam’s

razor, but does it behave correctly? Occam effect should be very weak for small N .

1 Example

Consider fitting a mixture of K Gaussians to a one-dimensional data set D = {x(n)}N
n=1. The

standard parameters of the model are the means {µk}
K
k=1, the standard deviations {σk}

K
k=1, and

the mixing coefficients {πk}
K
k=1; the latent variables are the class labels {cn}

N
n=1.
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For such a model, if we assume a separable approximating distributionQ({µ})Q({σ})Q(π)Q({c})
an ensemble learning algorithm equivalent to the E–M algorithm (soft K-means clustering) is
easily derived. For each mean, for example, the variational approximation Q(µk) is a normal
distribution with mean mk and variance s

2
k. The two steps of the iterative algorithm are

Update Q({c}) – an assignment step in which the ‘responsibilities’ q
(n)
k of clusters k for points

n are computed;

Update Q({µ}), Q({σ}), and Q(π) – an update step in which, for example, Q(µk) is updated
to match the posterior distribution of µk given the data weighted by the responsibilities

q
(n)
k .

The differences of this algorithm from the maximum likelihood algorithm are few in number.
Are the differences healthy?
For simplicity, let’s assume

1. all the standard deviations are fixed to σ = 1,

2. all the mixing coefficients are fixed to 1/K, and

3. the number of components K is 2.

The prior on the means µk is zero mean and has standard deviation σ0. We’ll further assume that
the data points have empirical mean zero and are sufficiently closely clumped that the update
algorithm has no incentive to move the pseudo-posterior’s means m1 and m2 from m1 = 0,
m2 = 0.

1.1 One point

Simplest example of all: one data point only at x = 0. Bear in mind that symmetry breaking
and pruning are the same thing.
What is the evidence? In the case of a single data point, the predictive distributions are

identical, so P (D|H2) = P (D|H1), and we do not expect any evidence in favour of either model.
Indeed the evidence difference must be nil. But what do we find? Figure 1 shows the free energy
as a function of the parameter q (top) and the intersections of the function q

q =
1

1 + exp
(

1
2(s

2
1 − s2

2)
) , where

1

s2
1

=
1

σ2
0

+
Nq

σ2
and

1

s2
2

=
1

σ2
0

+
N(1− q)

σ2
(1)

which characterize extrema.
Why the symmetry-breaking? I think in this example an interpretation of it is that it

represents a good guess that the fluctuations might lead all the points to actually come from
one class only. For small N this is quite probable! For larger N it is improbable and we are
obliged to accept the sensible conclusion that both means are zero.

2 More general picture

Let N data points be distributed in the ratio 1:3 between two points xa = −1 and xb = 3. The
responsibilities of the two clusters for these all data points at xa are ra, (1 − ra); similarly, the
responsibilities of the two clusters for these all data points at xa are rb, (1− rb); we can plot the
free energy as a function of ra and rb, assuming all the other disttributions Q are optimized.
See figure 7.
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Figure 1: 1 data point only; Prior sd = 10; true posterior and 3 approximating distributions.
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Figure 2: 10,5,3,2,1 Prior sd = 10
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Figure 3: 10,5,3,2,1 Prior sd = 100
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Figure 4: This shows that the scaling of the evidence difference is not one bit emulated by the
behaviour of the variational free energy difference between the symmetric and symmetry-broken
states.
Upper line shows the correct asymptotic scaling of log P (D|H1)

P (D|H2) with N ; the advantage of H1 over

H2 grows as logN (the correct value at N = 1 is zero). The evidence favours the simpler model
more as N increases. The lower line shows the variational free energy difference. It starts above
zero and decreases with N , becoming negative (i.e., favouring the more complex, unpruned,
model) when N is bigger.
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Figure 5: two data points - true posterior and 3 approximating distributions.
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Figure 6: Strictly speaking, the minima at q = ±1 are not exactly at 0 and 1, they are at very
slightly non-extreme locations. The broader the prior sd, the closer to the extremes. These
pictures show (in the right hand blowups) the xrange from 0 to 1e-5. 10,3,1 Prior sd = 5
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Figure 7: Multiple data points at two different locations. N = 4 and N = 16, and σ0 = 10.
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