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Abstract

We study two families of error-correcting codes defined in terms of very sparse matrices.
‘MN’ (MacKay-Neal) codes are recently invented, and ‘Gallager codes’ were first investigated
in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The
decoding of both codes can be tackled with a practical sum—product algorithm.

We prove that these codes are ‘very good’, in that sequences of codes exist which, when
optimally decoded, achieve information rates up to the Shannon limit. This result holds not
only for the binary symmetric channel but also for any channel with symmetric stationary
ergodic noise.

We give experimental results for binary symmetric channels and Gaussian channels demon-
strating that practical performance substantially better than that of standard convolutional and
concatenated codes can be achieved; indeed the performance of Gallager codes is almost as close
to the Shannon limit as that of Turbo codes.
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1 Introduction

For a glossary of symbols used in this paper, please see appendix A.

1.1 Background

In 1948, Shannon [58] proved that for any channel there exist families of block codes that achieve
arbitrarily small probability of error at any communication rate up to the capacity of the channel.
We will refer to such code families as ‘very good’ codes. By ‘good’ codes we mean code families that
achieve arbitrarily small probability of error at non-zero communication rates up to some maximum
rate that may be less than the capacity of the given channel. By ‘bad’ codes we mean code families
that can only achieve arbitrarily small probability of error by decreasing the information rate to
zero. (Bad codes are not necessarily useless for practical purposes.) By ‘practical’ codes we mean
code families which can be encoded and decoded in time and space polynomial in the block length.

Shannon’s proof was non-constructive and employed random codes for which there is no practical
encoding or decoding algorithm. Since 1948, it has been proved that there exist very good cyclic
codes (non-constructively) [45], and that very good codes with a short description in terms of
permutations can be produced [1]; and an explicit algebraic construction of very good codes for



certain channels was given in 1982 [19]. But no practical decoding algorithm is known for any of
these codes, and it is known that the general linear decoding problem (find the maximum likelihood
source vector s in the equation G"'s+n = rmod 2, where G is a generator matrix, n is a noise vector,
and r is the received vector) is NP—complete [10]. Convolutional codes (which can be viewed as block
codes with memory) can approach the Shannon limit as their constraint length increases but the
complexity of their best known decoding algorithms grows exponentially with the constraint length.
For a long time a generally held view was that for practical purposes a channel’s effective capacity
was a rate ‘Ry’ which is smaller than the Shannon capacity, if convolutional codes were used;
and many believed this conjecture applied to all codes, speculating that practical communication
beyond Ry was impossible. Forney proved that there do exist very good ‘concatenated’ codes that
are practical [23]; but the proof was also non-constructive [45].

When it comes to practical, constructive codes, constructions have been demonstrated of codes
based on concatenation that are good, though not very good, but most known practical codes
are asymptotically bad [45]. Goppa’s algebraic geometry codes, reviewed in [66], appear to be
both practical and good (with practical decoding proven possible up to the Gilbert bound), but
we believe that the literature has not established whether they are very good. The best practical
decoding algorithm that is known for these codes [22] appears to be prohibitively costly (N?3) to
implement, and algebraic geometry codes do not appear to be destined for practical use.

Thus the conventional view is that there are few known constructive codes that are good, fewer
still that are practical, and none at all that are both practical and very good. It seems to be
widely believed that while almost any random linear code is good, codes with structure that allows
practical coding are likely to be bad [45], [15]. Battail expresses an alternative view, however, that
‘we can think of good codes, and we can decode them’ [6]. This statement is supported by the
results of the present paper.

In this paper we study the theoretical and practical properties of two code families. Gallager’s
low-density parity-check codes are defined in terms of a very sparse random parity check matrix
[26, 27, 41]. ‘MN codes’ are also defined in terms of very sparse random matrices, and were first pre-
sented in [40]. (MN stands for MacKay—Neal; MacKay and Neal generalized MN codes to Gallager
codes, then realised that they had rediscovered Gallager’s work.) MN codes are unconventional in
that redundancy can be incorporated in the transmitted codewords not only by using a K X N
generator matrix with transmitted block length N greater than the source block length K, but also
by using a source that is itself redundant.

These code families both have two important properties. First, because the codes are con-
structed from sparse matrices, they have simple and practical decoding algorithms which work,
empirically, at good communication rates. Second, we prove that in spite of their simple construc-
tion these codes are very good — that is, sequences of codes exist which, when optimally decoded,
achieve information rates up to the Shannon limit of the binary symmetric channel. We further
prove that the same codes are in fact good for any ergodic symmetric channel. Our proof may be
viewed as a semi—constructive proof of Shannon’s noisy channel coding theorem (semi—constructive
in the sense that, while the proof still relies on an average over a set of codes, the set of codes in
question is unusually small). It is indeed easy to think of good codes.

1.2 Definitions

A binary variable will be termed a bit. The unit of information content of a random bit with
po = p1 = 0.5 will be termed the shannon. The input and output alphabets of the binary symmetric
channel (BSC) will be denoted {0,1}. We will denote the error probability of the binary symmetric
channel by f,, where f, < 0.5.

Definition 1 The binary entropy functions Ha(f) and H5(f) are
Hy(f) = [flogy(1/f) + (1 — f)logy(1/(1 = f)) (1)



Hy(f) = [loge(1/f) + (1 — f)log.(1/(1 = f)). (2)

We will write natural logarithms as log(z) = log, ().

Definition 2 The weight of a binary vector or matriz is the number of 1s in it. The overlap
between two wvectors is the number of 1s in common between them. The density of a source of
random bits is the expected fraction of 1 bits. A source is sparse if its density is less than 0.5.
A wvector v is very sparse if its density vanishes as its length increases, for example, if a constant
number t of its bits are 1s.

Definition 3 A code with blocklength N and rate R satisfies the Gilbert—Varshamov minimum
distance bound if the minimum distance d between its codewords satisfies

R =1— Hy(d/N). (3)

Definition 4 The capacity C(fn) of a binary symmetric channel with noise density fy is, in shan-
nons per channel use,

C(fn) = 1= Ha(fn)- (4)
The computational cutoff rate Ry(fy) is

Ro(fa) = 1~ log, [1 PN fn>] . (5)

This is the rate beyond which the expected computational cost of decoding a convolutional code with
vanishing error probability using sequential decoding becomes infinite.
The Gilbert bound GV (fy) is

vty ={ LR fasilt )

This is the mazimum rate at which one can communicate with a code which satisfies the Gilbert—
Varshamov minimum distance bound, assuming bounded distance decoding [43].

Definition 5 A model that defines a probability distribution over strings x of any length N,
P(x|N), has mean entropy Hy if for any € > 0 and > 0 there exists an N* such that for all
N > N*,
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For example, a memoryless binary symmetric channel’s noise has mean entropy H, = H(fn),
where f; is the density of the noise; the proof of this statement, by the law of large numbers, is
well known [16]. We will prove that the codes presented in this paper are good codes not only for
the binary symmetric channel but also for a wide class of channels with memory.

Definition 6 A binary channel with symmetric stationary ergodic noise is a binary—input, binary—
output channel whose output in response to a transmitted binary vector t is given by r = t+nmod?2,
where n, the noise vector, has a probability distribution that is (a) independent of t and (b) sta-
tionary and ergodic.

For example, burst noise might be modelled by a stationary and ergodic Markov process. Such
a process has a mean entropy, though the evaluation of this quantity may be challenging. The
standard Gaussian channel with binary inputs is also equivalent to a binary channel with stationary
ergodic noise.

We will concentrate on the case of a binary channel with symmetric noise (see definition 6) in
the body of this paper. Channels like the Gaussian channel whose inputs are binary and whose
outputs are in some more general alphabet are addressed in appendix B.



1.2.1 Linear codes

A linear error correcting code can be represented by an N by K binary matrix G" (the generator
matrix), such that a K-bit binary message s is encoded as the N-bit vector t = G'smod 2. (Note
that we have chosen to use column vectors so the generator matrices act to the right rather than
the left.) The generator matrix is in systematic form if it can be written as

T Ix
a-| %] ®

where I is the K X K identity matrix, and P is a binary matrix. The channel adds noise n to the
vector t with the resulting received signal r being given by:

r = (G's +n)mod 2. 9)

The decoder’s task is to infer s given the received message r, and the assumed noise properties of
the channel. The optimal decoder returns the message s that maximizes the posterior probability

P(r]s, G)P(s)

P(s|r,G) = P|G)

(10)
It is often not practical to implement the optimal decoder; indeed the general decoding problem is
known to be NP—complete [10].

If the prior probability of s is assumed uniform, and the probability of n is assumed to be
independent of s (c.f. definition 6), then it is convenient to introduce the (N — K) x N parity
check matrix, H, which in systematic form is [P|Iy_x]. The parity check matrix has the property
HG™ = 0mod 2, so that, applying H to equation (9),

Hn = Hrmod 2. (11)

Any other (N — K) x N matrix A whose rows span the same space as H is a valid parity check
matrix.

The decoding problem thus reduces, given the above assumptions, to the task of finding the
most probable noise vector n such that

Hnmod?2 = z, (12)

where the syndrome vector z = Hr mod 2.

1.3 Description of the two code families

We define two code families. We explain the more conventional Gallager codes first.

1.3.1 Construction of Gallager codes

A Gallager code is a code which has a very sparse random parity check matrix. (Very sparse,
but not systematic.) The parity check matrix A can be constructed as follows. We will describe
variations on this construction later.

A transmitted block length N and a source block length K are selected. We define M = N — K
to be the number of parity checks. We select a column weight t, which will initially be an integer
greater than or equal to 3. We create a rectangular M x N matrix [M rows and N columns] A
at random with exactly weight ¢ per column and a weight per row as uniform as possible. If N/M
is chosen to be an appropriate ratio of integers then the number per row can be constrained to be



exactly tN/M; in this case we call the resulting code a regular Gallager code because the bipartite
graph defined by the parity check matrix is regular.

We then use Gaussian elimination and reordering of columns to derive an equivalent parity check
matrix in systematic form H = [P|I5s]. There is a possibility that the rows of the original matrix
A are not independent (though for odd ¢, this has small probability); in this case, A is a parity
check matrix for a code with the same N and with smaller M, that is, a code with greater rate
than assumed in the following sections. Redefining A to be the original matrix with its columns
reordered as in the Gaussian elimination, we have the following situation.

The matrix A = [C;1|Cq] is composed of two very sparse matrices C; and Cs as follows.

The matrix C, is a square M x M matrix that is very sparse and invertible. The inverse C5 !
of this matrix in modulo 2 arithmetic has been computed during the Gaussian elimination which
produced the matrix P = C,'Cy. [The expression P = C, 'C; is the product (modulo 2) of the
two matrices C; L'and C;.] The inversion takes order M2N time and is performed once only.

The matrix C; is a rectangular M x K matrix that is very sparse.

Encoding. We define the generator matrix of the Gallager code to be

o[-t

where I is the K x K identity matrix.

1.3.2 Variations

1. When generating the matrix A, one can constrain all pairs of columns in the matrix to have
an overlap < 1. This is expected to improve the properties of the ensemble of codes, for
reasons that will become apparent in section 2.3.

2. One can further constrain the matrix A so that the topology of the corresponding bipartite
graph does not contain short cycles. This is discussed further in section 4.3.

1.3.3 The decoding problem for Gallager codes

A source vector s of length K is encoded into a transmitted vector t defined by: t = G's mod 2.
If a systematic generator matrix has been computed explicitly (which takes M2N time) then the
transmitted vector can be computed by explicit multiplication in M K time. However, encoding
might be possible in less time using sparse matrix methods.

The received vector is r = t + nmod 2, where the noise is n. In the case of a binary symmetric
channel, n is assumed to be a sparse random vector with independent, identically—distributed bits
of density f,. We will discuss more general channels later.

By construction, A is a parity check matrix for G — that is, AG" = 0mod 2 — so the decoding
problem is to recover t by finding the most probable n that satisfies the equation:

An =zmod?2, (14)

where z is the syndrome vector: z = Armod 2, computation of which takes time of order Nt, if
the sparseness of A is exploited.

The optimal decoder, in the case of a binary symmetric channel, is an algorithm that finds the
sparsest vector n that satisfies A = zmod2. From fi we obtain our guess for the transmitted
signal t = r + imod 2, the first K bits of which are the optimal guess § for the original message.



Both the matrix A and the unknown vector n are sparse. One might therefore hope that it is
practical to solve this decoding problem (though perhaps not right up to the theoretical limits of
the optimal decoder). We will demonstrate a practical decoder later.

1.3.4 Construction of MN codes

Having created the matrices C5 L 'and C1, we can define the generator matrix G of an MN code by
the non-systematic matrix G' = C, LC;. The novel idea behind MN codes is that we can constrain
the source vectors to be sparse and exploit this unconventional form of redundancy in the decoder
[40]. We will discuss properties and possible applications of MN codes in section 6. As explained in
that section, the decoding of these codes involves a problem similar to the Gallager codes’ decoding
problem (14).

1.3.5 Overview

The theoretical effectiveness of Gallager and MN codes as error correcting codes depends on the
properties of very sparse matrices A in relation to the solvability of the decoding problem (14).
We address the question, ‘how well would these codes work if we had the best possible algorithm
for solving the decoding problem?’

The practical effectiveness of Gallager and MN codes depends on our finding a practical al-
gorithm for solving equation (14) that is close enough to the optimal decoder that the desirable
theoretical properties are not lost.

We show theoretically in section 2 that there exist Gallager and MN codes for which the optimal
decoder would achieve information rates arbitrarily close to the Shannon limit for a wide variety of
channels. In section 3 we present a ‘sum—product’ decoding algorithm for Gallager codes and MN
codes, first used by Gallager [26]. We give an analysis of the decoding algorithm in section 3.3.
These results lead us to conjecture that there exist Gallager and MN codes which are not only good
but which also achieve error rates approaching zero at a non-zero information rate when decoded
using a practical algorithm. In section 4 we describe empirical results of computer experiments
using the sum—product algorithm to decode Gallager codes. Our experiments show that practical
performance significantly superior to that of textbook codes can be achieved by these codes on both
binary symmetric channels and Gaussian channels. In section 5 we give a pictorial demonstration
of the iterative decoding algorithm for a couple of Gallager codes. In section 6 we present MN
codes and give theoretical and experimental results for them.

2 Limits of Optimal Decoding

We prove properties of Gallager and MN codes by studying properties of the decoding problem
Ax = zmod 2 where the unknown vector x is sparse and A is very sparse. We make use of two
standard tools: we prove properties of the optimal decoder by proving properties of a slightly sub-
optimal ‘typical set decoder’ which is easier to analyse; and we average the performance of this
decoder over an ensemble of very sparse matrices A. A ‘good’ average performance proves that
there exist ‘good’ matrices A — indeed that any random matrix A from the ensemble is likely to
be ‘good’. As in all proofs of goodness of coding systems, we employ a block length that can be
increased to a sufficiently large value that an error probability smaller than a desired e is achieved.
To prove that Gallager and MN codes are very good we will also increase the weight per column,
t, of the matrix A, but only in such a way as to keep the matrix very sparse, i.e., t/M — 0.
Previous work on low density parity check codes has already established some good properties
of Gallager codes. Gallager [26, 27] proved that his codes have good distance properties. Zyablov
and Pinsker [73] proved that Gallager codes are good and gave a practical decoder, but only for
communication rates substantially below the Gilbert bound. Our approach in terms of an ideal



decoder allows us to prove that the codes are good not only for the binary symmetric channel but
also for arbitrary ergodic symmetric channel models; we also prove that Gallager codes are very
good, a result not explicitly proven in [26, 27, 73].

2.1 Ensembles of very sparse matrices

The properties that we prove depend on the ensemble of matrices A that is averaged over. We
find it easiest to prove the desired properties by weakening the ensemble of matrices from that
described in section 1.3. We introduce the following ensembles which we believe are ordered such
that the later ensembles define Gallager and MN codes that have smaller average probability of
error, though we do not have a proof of this statement.

1. Matrix A generated by starting from an all-zero matrix and randomly flipping ¢ not necessarily
distinct bits in each column.

2. Matrix A generated by randomly creating weight ¢ columns.

3. Matrix A generated with weight ¢ per column and (as near as possible) uniform weight per
row.

4. Matrix A generated with weight ¢ per column and uniform weight per row, and no two
columns having overlap greater than 1.

5. Matrix A further constrained so that its bipartite graph has large girth.

6. Matrix A = [C;|Cgq] further constrained or slightly modified so that Cs is an invertible
matrix.

Our proofs use the first ensemble. Our demonstrations use matrices from ensembles 4, 5 and 6.

The properties of the decoding problem Ax = zmod 2 also depend on the assumed noise model.
We will give theoretical results for three cases. First, we give a general theorem for a broad class of
symmetric noise models with memory (definition 6). Second, we discuss a popular special case, the
memoryless binary symmetric channel, corresponding, in the case of Gallager codes, to a vector x
of uniform density f. Third, the generalization to channels with continuous outputs is discussed in
appendix B.

2.2 Decodability for arbitrary P(x)

To avoid confusion between Gallager and MN codes when discussing their common decoding prob-
lem Ax = zmod2, we refer to the number of columns in A as L and the number of rows as M.
[For a glossary of all symbols used in this paper, see appendix A.] In the case of Gallager codes, x
is a sample from the noise model, x = n. In the case of MN codes, x is the concatenation of the
vectors s and n, and the probability of x is separable into P(x) = Ps(s)FP,(n).

Let the ratio of the length of x to the length of z be A = L/M. The decoding problem is
equivalent to playing a game in which a vector x is drawn from a probability distribution P(x),
and the vector z = Ax mod 2 is revealed; the player’s task is then to identify the original vector x,
given the ‘encoding’ z, the matrix A, and the known distribution P. The optimal decoder is an
algorithm that identifies the vector x that maximizes P(x) subject to the constraint z = Ax mod 2.

There is a Shannon limit for this game beyond which we cannot hope to recover x from z reliably.
The maximum information content of z is clearly M shannons. We assume that the probability
distribution of the noise is stationary and ergodic so that a mean entropy H, can be defined for
the distribution P(x). Then the Shannon limit says reliable recovery of x from z is only possible
if LH, < M, i.e.:

AH, < 1. (15)



If there are matrices A for which we can play the decoding game well at a value of AH,, close to
this limit, then there exist Gallager codes which can communicate correspondingly close to the
Shannon limit of a noisy channel whose noise distribution is given by P(x).

For brevity we introduce the following definition.

Definition 7 A satisfactory (M, \,t,€) matrix A for the distribution P(x) is a matriz A having
M rows and L > AM columns with weight t or less per column, with the following property: if x
is generated from P(x), the optimal decoder from z = Axmod2 back to X achieves a probability of
block error less than e.

The following theorems will be proved.

Theorem 1 — Good codes. Given an integer t > 3 and a ratio A > 1, there exists an entropy
H,(\,t) > 0 such that, for any P(x) of mean entropy H, < Hz(\t), and any desired block
error probability € > 0, there exists an integer M and a satisfactory (M, \,t,€) matriz A for the
distribution P(x).

Theorem 2 — Very good codes. Given a distribution P(x) of mean entropy H, < 1 and
a desired A < 1/H,, there ezxists an integer t(H,,A) > 3 such that for any desired block error
probability € > 0, there is an integer My, such that for any M > My, there is a satisfactory
(M, X\, t(Hy, \),€) matriz A for the distribution P(x).

Implications of theorems 1 and 2 for Gallager codes. The first theorem effectively states
that Gallager codes with any value of ¢t > 3 are good, i.e., for any channel with appropriate entropy,
there are Gallager codes which can achieve virtually error-free transmission at rates up to some
non-zero rate 1 — 1/), if the block length L is made sufficiently large.

The second theorem effectively states that Gallager codes are very good — if we are allowed to
choose t, then we can get arbitrarily close to capacity, still using very sparse matrices with ¢/M
arbitrarily small.

In section 2.3 we prove these theorems, that is, we derive expressions for a function H,(A,t) > 0
satisfying theorem 1, and a function ¢(Hj, \) satisfying theorem 2. We also give numerical results
relating to these theorems. Let the largest function for which the first theorem is true be HI***(, t).
In section 2.4 we evaluate a tighter numerical lower bound for H"*(\,t). These are worst case
results, true for any source of mean entropy H,. In section 2.5 we give numerical results for the
case of the binary symmetric channel, where considerably more optimistic bounds can be derived.

We also prove the following minimum distance theorem for Gallager codes which uses the
function Hy(A,t) of theorem 1. [This result was proved by Gallager [27] using a different, stronger
ensemble of codes.]

Theorem 3 — Good distance properties. Given an integer t > 3, a fraction § < 0.5, and
a X\ such that Ho(8) < Hg(\,t), there exist integers M and L > AM and a matriz A having M
rows and L columns with weight t or less per column, such that the Gallager code with parity check
matriz A has minimum distance at least 0L.

We can also prove that the Gilbert minimum distance bound can be attained as ¢ — oo, still
with A very sparse. [This result was first proved by Gallager [27].]

Theorem 4 — Gilbert minimum distance bound attainable. Given a fraction 6 < 0.5, and
a X such that Hy(8) < 1/, there exists a t and an Mpyin such that for any M > Mpyin there is
a matrix A having M rows and L > XM columns with weight t or less per column, such that the
Gallager code with parity check matriz A has minimum distance at least §L.



Implication of theorem 3 contrasted with theorem 1. If one only aims to decode noise
patterns of weight up to half of the minimum distance d = §L (as is conventional in much of coding
theory), then one can only handle noise levels up to (d/L)/2. But in fact the optimal decoder can
decode (with vanishing probability of error) at noise levels up to (d/L). Thus Gallager codes can
serve as good codes at noise levels twice as great as the maximum noise level that is attainable
if one restricts attention to bounded distance decoding. The intuition for this result is that in a
very high dimensional binary space, while two spheres of radius » whose centres are a distance d
apart have a non-zero volume of intersection for any r greater than d/2, the fractional volume of
intersection is vanishingly small as long as r is less than d.

Gallager codes, as Gallager showed [26] and we will show later, can in practice be decoded
beyond their minimum distance.

2.3 Proof of theorem 1

Consider the problem, given A and z, of inferring x, where Ax = zmod 2, and x has probability
distribution P(x) with mean entropy H,. We consider the probability of error of a typical set
decoder [16], averaging it over all very sparse random matrices A. We establish the existence of a
function H,(A,t) > 0 such that the probability of error can be bounded by a sum of terms which
decrease as inverse powers of L, if H, < Hy(\,t).

Typical set decoder. We consider the typical set:

1 1
L.
T=Ty, = {X €{0,1}" : ‘zlogQ m —Hy| < 77} (16)

where 7) is a small constant to be fixed later. Since Y, 7 P(x) < 1, the number of elements in this
typical set, |T'|, satisfies
T| < 2L(Hetm), (17)

We now consider decoding z = Axmod 2 by the following procedure:
if there is a unique %X € T such that z = Axmod 2 then produce X as the decoding of
:’].se report decoding failure.
There are two failure modes for this decoder, with probabilities P; and P;;(A) such that
P(Block error|A) = Py + Pri(A). (18)

I: Original vector not typical. This failure occurs with probability P = P(x ¢ T). Because x is
assumed to have a mean entropy H,, this probability vanishes as L — oo (see definition 5,
section 1.2).

II: x is typical but at least one other typical vector x’ has the same encoding z. We now concen-
trate on the probability of a decoding error arising this way, and denote the average of Pr 1(A)
over A drawn from ensemble 1 (section 2.1) by Pjy.

We define the indicator function §(S) to have the value 1 if the proposition S is true and 0
otherwise. We can bound P;;(A) by

Pr(A) <> P(x) Y 6[A(x—x') = 0mod 2] (19)
xeT x'eT
x'#£x



In equation (19) the second sum is the number of typical vectors x’ that have the same encoding
as x. We now average over codes A.

P < ) P(x) {ZP(A)& [A(x —x') = 0]} (20)
A

x,x'eT

x'#£x

The term in brackets only depends on the weight w of the difference (x — x’). The probability that
A(x —x') = 0 is the probability that w columns of the very sparse matrix A sum to zero. Because
A is constructed by flipping ¢ bits per column at random with replacement, this is the probability
that wt steps of the random walk on the M dimensional hypercube, starting from the origin, bring
us back to origin. We denote this probability p(()zgt) and define h(w|x) to be the number of typical
vectors x’ such that the difference x — x’ has weight w, for the given x. Then we have

P < Z Z P(x)h(w|x) p00 wt), (21)

w=1x€eT

(r)

In appendix F we give an expression for the function py’; this function is zero for all odd r, and
(r)

is a decreasing function of even r. It will be convenient to introduce an upper bound on py;

(r)

which is equal to it for even 7 and which is a decreasing function. We define this function, g, , in

(r) (r)

equation (87). In appendix F we also derive various upper bounds on py; and gy, from which we

will use the following two:

2
(1) < g0 < o (35)" forr </ =M, where =
Poo = <qy = 3 N\"'/2 (22)
(17’) forr > 1’ ;
log q(()g) < log qér) = M(e= 7™ —log2) + log 2. (23)

These bounds are tightest for r < M and r > M respectively. Both these bounds are decreasing
functions of r.
We now have

Py < Z Z P(x)h(w|x) q(()gjt). (24)

w=1xeT

We pause to dissect the product [}, P(x)h(w|x)] [q(()g’t)] The first factor is typically a rapidly

increasing function of w up to some peak (which in the case of a binary symmetric channel of

density f is located at w ~ 2f(1 — f)L). The second factor q((;(;’t) is largest for w = 1 and falls
initially as a power law 1/M%? (equation (22)) decreasing to an equilibrium value of 2 x 2~M
(equation (23)), corresponding to an equilibrium distribution uniform over (half of) the states of
the hypercube. We want the product of these two factors to be vanishingly small (in increasing L)
for all w.

Intuitively, if the product were large at small w, then type II errors would arise because there
would be a small subset of columns in A that sum to zero such that it is possible to confuse vectors
x and x’ that differ in only a few bits (and which could therefore both be typical). If the product is
large at large w, then type II errors would arise because there are two completely different vectors
x,x’ which have the same encoding. Gallager codes and MN codes are good because we can indeed
make the product vanishingly small for all w.

10
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Figure 1: Plot of a numerical upper bound % logge ’ on the function ﬁ log g5y, for large M
and for various values of ¢; and the function AH§(w/L), as a function of w/L, for A = 2. For
convenience the function —AH§(w/L) is also shown.

(

The intersection point of the two curves —AH§(w/L) and ; log qewt) defines a value of w* which
gives a lower bound on the achievable information rate for Gallager and MN codes.

This graph gives an informal proof of theorems 1 and 2 for the case A = 2. The content of theorem
1 is that for any ¢ the solid line —\H$(w/L) lies above the dotted line 7 log q((gm) for all w/L up
to some non-zero value. The content of theorem 2 is that as ¢ — oo, the first point of intersection

of the two curves approaches the point at which AHS(w/L) = log 2.

2.3.1 Worst case analysis

Up to this point we have not mentioned any form for P(x), which determines the function h(w|x)
in equation (24). We now proceed with a worst case assumption for the function h(w|x).

We know that 3°Z_ | h(w|x) < |T| < 2E(Hz4 " Also h(w|x) is bounded above by the maximum

number of distinct vectors of weight w, (i) Finally q(()g]t) is a decreasing function of w. So we can

replace the function h(w|x) in (24) by the worst case function A*(w) which has the maximum value
at small w,

L *
sy — ) () w<w
) { o wEuT (25)
where w* is chosen to satisfy Y%, h*(w) > 2L(H=4 | If we write
Hy(w*/L) = Hy + 7' (26)
where 7' is a small quantity satisfying ' > n and ' <1 — H,, then
z L L LHy(w*/L L(H
Z h*(w) > > = olHx(w/L) » oL(Hy+n) (27)
o w* L+1

as long as 7 is sufficiently small and L is sufficiently large that n+ % logo(L+1) < n'. [Here we have
used equation (73) from appendix E.] Notice that the only dependence that the function h*(w) has
on the source distribution P(x) is the cutoff value w*, which is controlled by H,. Thus,

Pr < Y P@Y (i)qé‘a’” (28)
w=1

xeT
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We now seek conditions under which P;; can be made arbitrarily small by increasing M. Here first
is a sketch of our proof. Consider the logarithm of the term inside the summation in equation (29)
as a function of w. Using equation (73) again,

L\ (w
log l (w) ‘J(()o g

We want to show that for all w less than some w™®* that grows linearly with M, w™® = BM, the
above term becomes increasingly large and negative as M increases. We need all the terms in the
sum in equation (29) to go to zero, and we need almost all of them to do so faster than 1/M, so

(wt) (

1 w
< o1 (AH3(w/L) + 1 10gq(5") (30)

that the sum itself goes to zero. To aid the intuition, the two terms AH§(w/L) and 7 logge”” (a

(w

tight numerical upper bound on log g, )) are plotted in figure 1 as a function of w/L for a variety
of values of ¢, for A = 2. The function AHS§(w/L) is an increasing function of w (if w < L/2)
reaching a maximum value of Alog2 at w = L/2; the function % log q((féjt) is a decreasing function
of w reaching a minimum value of —log2 asymptotically. For w/L = 1/2, the right hand side
of equation (30) is certainly positive since A > 1. For small w/L on the other hand (starting at
w = 1), the sum is negative, if ¢ > 2, as we now prove. There therefore exists a § > 0 such that,
for all w < BM, the sum is negative. This defines the critical value of w* which, via equation (26),
proves the existence of the function H;(A,t) that we seek.

We continue from equation (29), using equation (22) and inequality (85) and assuming w*t <
=M.

Lw 3 wi wt/2
o (a71) 3

S
A
M=
TN
g ™
N————
QX
5
(VAN

AW 3w\ w2
(+37)

w%e Ve

wt

ﬂ) 2 e (%t) e (33)

c%)‘“” (34)

AN

IA
3

<

t/2 l/a
where a = (5 — 1) satisfies a > 0 if ¢ > 2, and ¢ = |eX [ . Now as a function of w,
h (L —1) satisfi 0if t > 2, and [A(?;f) ] N function of

log (c M)aw is a decreasing function for w < Me, as is easily conﬁrmed by differentiation, so if we
constrain w* by w* S , we can bound the last (w* — 2) terms by times the third term:

Py < Z ( ) (wt) (ﬁ)(%_l) n (%)2(%_1) + % (%)3(%_1). (35)

Thus the average probability of error for this ensemble of codes vanishes with increasing M as

M~'/2 if t = 3 and faster if t > 3. There therefore exists a 3 given by 8 = min( 3‘;, ce) > 0 such
that if w* < SM, or equivalently, if H, + n' < Hy(3/)), then
PH<Z<>W)—>0 as M — co. (36)
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This establishes the existence of the function H,(\,t), since if we define
Hw(Aat) = HZ(IB/)\)’ (37)

then for any H, < Hy(),t), we can set 7/,  and L such that / > 1+ +logy(L + 1) and 7' <
Hy(\t) — Hy.

This completes the proof of theorem 1. We note that the value of Hy(\,t) given above is not
the largest such function H**(\,t) that satisfies the theorem. By using tighter bounds on p((fgt)
we can prove the theorem for larger values of H;(),t). We use a numerical bound to obtain graphs

of lower bounds on HJ**(\,t) in section 2.4.

Comment. It is instructive to study the terms which dominate the sum over w. The terms with
small w decrease as inverse powers of M as long as (w — wt/2) < 0 for all w > 1, i.e., as long
as t > 2. The w = 1 term, the largest, decreases as M1 %2, We can get a stronger decrease of
Py with M if we assume that each column has exactly ¢ ones in it. Then we can omit the w =1
term, which corresponds to the probability of there being a zero column in A. By the further
step of ensuring that no two columns of the matrix A are identical, we can rule out the w = 2
term from the sum. By adding further constraints when generating the code, that the girth of the
corresponding bipartite graph must be large, we can make the probability of this sort of ‘small w’
error even smaller. This is the motivation for the code constructions 1B and 2B that we introduce
later on.

2.3.2 Proof of theorem 3

A code with parity check matrix H has minimum distance d if and only if any (d —1) columns of H
are linearly independent, and there exist d linearly dependent columns. We can prove the existence
of a matrix A with §L linearly independent columns easily starting from equation (36). Here §L
is the desired minimum distance. We set w* = §L and note that the assumption of the theorem,
Hy () < Hy(\,t) implies that the quantity Y %_, (5)})816”5) vanishes with increasing L.

The quantity >%_, (%) P is the expected number of linear dependences of up to w* columns
in a randomly generated matrix A. Since this expected number is less than 1 (indeed, it goes to
zero), there must be at least one A in the ensemble such that the number of linear dependences is
zero (indeed, nearly all A in the ensemble must satisfy this).

2.3.3 Proof of theorem 2

We now show that if we are free to choose ¢ then Gallager and MN codes can get arbitrarily close
to the Shannon limit. We prove that for a desired A and any source with mean entropy H, such
that AH; < 1, and any € > 0, there exists a ¢t and an My, such that for any M > My, the
corresponding decoding problem Ax = zmod 2 can be solved with probability of failure less than
€, averaged over the first ensemble of matrices A.

We start from equation (29), which bounds the type II probability of error thus:

_ NS AN
Pr<y ( )qé‘é’ ), (38)
w
w=1
where w* is given by
Hy(w* /L) = Hy + 17, (39)
and 7' > 1+ + logy(L + 1). From equation (30),

*

_ w 1 w
Prr< Y exp [M (AHf(w/L) + - log aj t’)] (40)

w=1
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If we can set ¢ and 7’ such that the term in parentheses is negative for all w < w* then Pj; goes to
zero as M increases. For large ¢ it is evident (c.f. figure 1) that, if it is positive for any w < w*, the

term ()\Hf(w /L) + ﬁ log q((fé)t)) attains its largest value at w = w*. So, substituting upper bound
(23) for log q(()g), our condition for vanishing Pj; is
MHS(w* /L) + (e~ 22 ™M _10g2) + O(1/M) < 0. (41)
Substituting in equation (39) we require:
e~ 2Hy (Hatn )N | O(1/M) < log 2 — M(H, + 1) log 2, (42)

so that if we set 7' such that A\(H; +7') < 1 and ¢ such that exp[—2H, ' (H, + ') M] < log2[1 —
A(H; + 7')] then Py vanishes with increasing M, so an My, can be found such that the average
error probability of the ensemble of matrices A is below any desired error probability e.

2.3.4 Proof of theorem 4

This theorem follows from theorem 2 as theorem 3 followed from theorem 1. Briefly, since we can
find a ¢ such that %", (£)pSe”) vanishes with increasing L for any w* /L satisfying Hy(w*/L) <
1/, this implies that, for sufficiently large L, we can find a matrix with at least dL linearly
independent columns for any ¢ satisfying Ha(d) < 1/

2.4 Numerical bounds on H"™*(\,t): worst case

Theorem 1 proved the existence, for a given ratio A, of an entropy H(A,t) such that there exist
good Gallager and MN codes with rates defined by A for any channel with symmetric stationary
ergodic noise (definition 6) with mean entropy up to Hz(A,t). We define H'®*()\,t) to be the
largest function for which the theorem holds. In figure 2(a) we show a numerically obtained bound
on this function. The graph shows a lower bound on AH}'®*(),t) as a function of A; the Shannon
limit provides the upper bound AH#*(\,¢) < 1. This graph was obtained as follows. Using the

expansion of pgg,) in equation (86), the condition for Pr; to vanish is that for all w < w* and all j

the quantit
! ’ L\ . (M 25\ v
G = log w 2 j (1 — M) (43)

should be negative. We use the inequality (I]g) < oNH>(K/N) and maximize G as a function of

¢ =w/L and k = j/M. We repeat this procedure iteratively to locate the critical value of w*/L
such that G is zero. This gives the bound.

2.5 Numerical upper and lower bounds: uniform noise model

We now assume that the channel under discussion is the binary symmetric channel and obtain
numerical upper and lower bounds on the achievable rate of Gallager codes, assuming the optimal
decoder. The method here is as in the previous section, with the worst case function h*(w) = (5} )
replaced by the h(w) appropriate to the uniform noise case, as detailed in appendix G. The resulting

lower bounds on HI'*(\,t) are shown in figure 2(b).

2.5.1 Achievable rate for Gallager codes over binary symmetric channel.

From the lower bound on the noise entropy plotted in figure 2(b) we can compute a lower bound on
the achievable communication rate using Gallager codes (given an optimal decoder), as a function
of the noise level of the binary symmetric channel. This rate is shown in shannons in figure 3 for
t =3, 4, 5, 6 and compared with the capacity. As the weight per column % increases the bounds
rise towards the capacity.
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Figure 2: Lower bounds on AH'®*(\,t) (a) for arbitrary source P(x) and (b) assuming P(x)
corresponding to binary symmetric channel, for matrices A with ¢ from 3 to 6.
As the weight per column £ increases, the achievable rates rise towards the Shannon limit AH, = 1.
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Figure 3: Lower bounds on achievable information rate (in shannons) versus binary symmetric
channel’s noise level f for Gallager codes (ensemble 1) with ¢ from 3 to 6. The solid line shows the
channel capacity.
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Figure 4: Upper bound on the achievable information rate in shannons versus binary symmetric
channel’s noise level, for Gallager codes, compared with the channel capacity.

(a) This bound was obtained assuming that matrices A were drawn from the ensemble having
uniform weight per row as well as per column (ensemble 3).

(b) This bound was obtained assuming that matrices A were drawn from the ensemble having
uniform weight per column only (ensemble 2).

The graphs differ significantly at high noise levels.
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2.5.2 Upper bounds on the communication rate over a binary symmetric channel

Figures 4a and b address the question ‘what information rate is definitely not achievable for a given
t and noise level f7’ This is a relatively easy question to answer, and it gives insight into what
is lost in the above proof by switching from the constrained ensemble of random matrices A with
weight ¢ per column and ¢, = At per row to the unconstrained ensemble of matrices. It also gives
insight into why Gallager codes with fixed ¢ are only good codes and not very good codes.

Consider the decoding problem Ax = zmod 2, where x has density f and length AM, and =z
has length M. It is clearly impossible to solve the problem of deducing x reliably from z if the
information content of x, AM Hs(f) shannons, is more than the information content of z. We get
the Shannon bound by noting that H(z), in shannons, is less than or equal to its length M. But
we can get upper bounds lower than this by tightening the bound on H(z).

Probability distribution of the random variable z,. We refer to the elements z,, corre-
sponding to each row m = 1... M of A as checks and to the elements of x as bits. Let z, be
the sum of 7 bits of density f. We define p,(7) to be the probability that z,, = 1. Starting from
p2(0) = 0, we can use the recurrence relation:

pe(7+1) = p()(1 — ) + (1 - p:()f (44)
to obtain [26]:
palr) = 3 = 5(1-2f)" (15)

We use this result to obtain tighter bounds on the achievable communication rate.

Bound for constrained matrices A. Consider the ensemble of random matrices A with weight
t per column and as near as possible ¢, per row (ensemble 3 in section 2.1). In the general case
where £, = At is not an integer, the information content per check of z is bounded above by the
average of the marginal information content of one check, averaged over the ensemble, that is,

(tr — [t ) Ha(pz(ltr) + 1)) + (1 — & + [t ]) Ha(p2 ([ ]))- (46)

This gives the bound shown in figure 4(a), which was created as follows. For a selected value of ¢
and f, a search was made over ) for a value such that the upper bound on the information content
per check of z is just above AHz(f), using equation (46). The graph is then a plot of (1 — 1/))
versus f.

Bound for unconstrained matrices A. Now what if we remove the constraint At per row,
reverting to ensemble 2 of section 2.17 Intuitively we can see that H(z) will decrease. Some checks
will be sums of more than [¢,] + 1 bits of x, and some will be sums of fewer than |¢,|. The former
checks will have a value of p, slightly closer to 0.5, whereas the latter will have values of p, further
from 0.5. Some checks may be the sum of no bits at all (with probability exp(—t,)), so that they
convey no information. The convexity of the relevant functions produces a net decrease in the
information content of z. To work out a bound for the unconstrained ensemble, we sum over all
possible weights of a row, 7, evaluate Hy(p,(7)), and weight by the probability of 7, which is a
Poisson distribution with mean ¢,. The resulting upper bound is shown in figure 4(b). We see that
the bound is lower than that for the constrained matrices, and looks similar to the lower bound
in figure 3. It thus seems plausible that, were we to change from ensemble 2 to ensemble 3 in the
main proof of the paper, we would be able to prove the achievability of somewhat larger rates for
any given t.

This concludes our discussion of what would be achievable given an optimal decoder. We now
move on to practical decoding algorithms.
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Figure 5: The vectors x and z viewed as nodes in a belief network. White circles denote bits x;.
Black dots denote checks z,,. We illustrate the case ¢t =4,t, = 8.

(a) This figure emphasizes with bold lines the 4 connections from one bit and the 8 connections to
one check. Every bit z; is the parent of 4 checks z,,, and each check z,, is the child of 8 bits.
(b-e) Certain topological structures are undesirable in the network defined by the matrix A: in (b)
there is a cycle of length 4 in the network; we can forbid this topology by saying that the overlap
between two columns of A must not exceed 1; in (c, d, e) more complex topologies are illustrated.
Many of our experiments have used matrices A in which these topologies are also forbidden — we
eliminate bits that are involved in structures like the ‘doublet’ (e), of which (c) and (d) are special
cases. This means that every bit’s ‘coparents’ (other bits that are parents of its children) consist
of ¢t non-overlapping sets of bits as shown in (f).

(g) A fragment of an infinite belief network with ¢ = 4 and ¢, = 8 and no cycles. In section 3.3.2
we analyse the flow of information up this network.

3 Practical Decoding by the Sum—product Algorithm

We have developed a ‘sum-product decoder’, also known as a ‘belief propagation decoder’ [51, 33]
for the decoding problem Ax = zmod 2. In this work, we have rediscovered a method of Gallager
[27]. See [68, 24, 46] for further discussion of the sum-product algorithm.

We refer to the elements z,, corresponding to each row m = 1... M of A as checks. We think of
the set of bits x and checks z as making up a ‘belief network’, also known as a ‘Bayesian network’,
‘causal network’, or ‘influence diagram’ [51], in which every bit z; is the parent of ¢ checks z,,, and
each check z,, is the child of ¢, bits (figure 5). The network of checks and bits form a bipartite
graph: bits only connect to checks, and vice versa.

We aim, given the observed checks, to compute the marginal posterior probabilities P(z; =
1|z, A) for each [. Algorithms for the computation of such marginal probabilities in belief networks
are found in [51]. These computations are expected to be intractable for the belief network cor-
responding to our problem Ax = zmod2 because its topology contains many cycles. However,
it is interesting to implement the decoding algorithm that would be appropriate if there were no
cycles, on the assumption that the errors introduced might be relatively small. This approach of
ignoring cycles has been used in the artificial intelligence literature [4] but is now frowned upon
because it produces inaccurate probabilities (D. Spiegelhalter, personal communication). However,
for our problem the end-product is a decoding; the marginal probabilities are not required if the
decoding is correct. Also, the posterior probability, in the case of a good code communicating at
an achievable rate, is expected typically to be hugely concentrated on the most probable decoding.
And as the size M x L of the code’s matrix A is increased, it becomes increasingly easy to produce
matrices in which there are no cycles of any given length, so we expect that, asymptotically, this
algorithm will be a good algorithm. We have obtained excellent results with M equal to 1000 and
10000. The algorithm often gives useful results after a number of iterations much greater than the
number at which it could be affected by the presence of cycles.
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3.1 The algorithm

We have implemented the following algorithm (for background reading see [51]). The algorithm
is appropriate for a binary channel model in which the noise bits are independent — for example,
the memoryless binary symmetric channel, or the Gaussian channel with binary inputs and real
outputs (the connection to real-output channels is explained in appendix B).

We denote the set of bits [ that participate in check m by L£(m) = {l : A,y = 1}. Similarly
we define the set of checks in which bit [ participates, M(l) = {m : A, = 1}. We denote a set
L(m) with bit [ excluded by £(m)\l. The algorithm has two alternating parts, in which quantities
qmi and 7, associated with each non-zero element in the A matrix are iteratively updated. The
quantity g, ; is meant to be the probability that bit I of x has the value z, given the information
obtained via checks other than check m. The quantity 2, is meant to be the probability of check m
being satisfied if bit [ of x is considered fixed at  and the other bits have a separable distribution
given by the probabilities {gr : I' € L(m)\l}. The algorithm would produce the exact posterior
probabilities of all the bits after a fixed number of iterations if the bipartite graph defined by the
matrix A contained no cycles [51].

Initialization. Let p) = P(z; = 0) (the prior probability that bit z; is 0), and let p} = P(z; =
1)=1- p?. In the case of a Gallager code and a binary symmetric channel, pl1 will equal f,. In the
case of an MN code, p} will be either fs or fn, depending on whether bit [ is part of the message
or the noise. If the noise level varies in a known way (for example if the channel is a binary input
Gaussian channel with a real output) then pll is initialized to the appropriate normalized likelihood.
For every (I,m) such that A,,; = 1 the variables ¢, and g, are initialized to the values p{ and p}
respectively.

Horizontal step. In the horizontal step of the algorithm, we run through the checks m and
compute for each | € L(m) two probabilities: first, r?nl, the probability of the observed value of z,,
arising when z; = 0, given that the other bits {zy : I' # [} have a separable distribution given by
the probabilities {¢® ¢} 1}, defined by:

= >, Plamlz=0,{zy - ' e Lom)\1}) [ an (47)
{zp :VelL(m)\l} lelL(m)\l

1
ml>»

the probability of the observed value of z,, arising when x; = 1, defined by:

e = Z P(zm |z =1, {zy : I' € L(M)\I}) H a4l (48)
{zp :VelL(m)\l} l'eL(m)\l

and second, r

The conditional probabilities in these summations are either zero or one, depending on whether
the observed z,, matches the hypothesized values for z; and the {zy}.

These probabilities can be computed in various obvious ways based on equation (47) and (48).
The computations may be done most efficiently (if |£(m)| is large) by regarding z,, + x; as the final
state of a Markov chain with states 0 and 1, this chain being started in state 0, and undergoing
transitions corresponding to additions of the various zy, with transition probabilities given by the
corresponding q?nl, and q}nl,. The probabilities for z,, having its observed value given either x; =0
or z; = 1 can then be found efficiently by use of the forward-backward algorithm [7, 67, 5].

A particularly convenient implementation of this method uses forward and backward passes in
which products of the differences dq,,; = q?nl — q}nl are computed. We obtain dr,,; = rfnl — r}nl from
the identity:

T | (49)
reL(m)\l
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This identity is derived by iterating the following observation: if ( = z, + z, mod2, and z,
and z, have probabilities g5, ¢) and g}, g, of being 0 and 1, then P(¢ = 1) = g} + ¢)g, and
P((=0) = qé’LQBJrqbqi- Thus P((=0)-P(¢=1) = (gy—¢;,)(9)—¢;)- Finally, note that rp,+r,, = 1,
and hence 70, = (1 4 67,)/2 and v, = (1 — Sry) /2.

Vertical step. The vertical step takes the computed values of r?nl and r}nl and updates the values
of the probabilities q?nl and q}nl. For each [ we compute:

G = omp; [[ i (50)
m' eM(l)\m
Gy = ompi  J[ o (51)
m' eM(l)\m
where «;,; is chosen such that q?nl + q,lnl = 1. These products can be efficiently computed in a

downward pass and an upward pass.
We can also compute the ‘pseudoposterior probabilities’ qlo and qll at this iteration, given by:

@ = ap [ rw (52)
meM(l)

q = ap [ (53)
meM(l)

These quantities are used to create a tentative decoding %, the consistency of which is used to
decide whether the decoding algorithm can halt.
At this point, the algorithm repeats from the horizontal step.

Decoding. Ifthe belief network really were a tree without cycles, the values of the pseudoposterior
probabilities ql0 and ql1 at each iteration would correspond exactly to the posterior probabilities of
bit [ given the states of all the checks in a truncated belief network centred on bit [ and extending
out to a radius equal to twice the number of iterations. Our decoding procedure is to set Z; to 1 if
g; > 0.5 and see if the checks A% = zmod 2 are all satisfied, halting when they are, and declaring a
failure if some maximum number of iterations (e.g., 200 or 1000) occurs without successful decoding.
When there is a failure, the partial decoding %X may serve as a useful starting point for another
decoding algorithm [47].

We note in passing the difference between this decoding procedure and the widespread practice
in the Turbo code community, where the decoding algorithm is run for a fixed number of iterations
(irrespective of whether the decoder finds a consistent state at some earlier time). This practice
is wasteful of computer time. In our procedure, ‘undetected’ errors would occur if the decoder
found an % satisfying AX = zmod 2 which was not equal to the true x. ‘Detected’ errors occur if
the algorithm runs for the maximum number of iterations without finding a valid decoding. The
alternative practice mentioned above blurs this distinction between undetected and detected errors.
Undetected errors are of scientific interest because they reveal distance properties of a code. And
in engineering practice, it would seem preferable for the detected errors to be labelled as erasures
if practically possible.

3.2 Relationship to other algorithms

Meier and Staffelbach [47] implemented an algorithm similar to this sum-product decoder, also
studied by Mihaljevi¢ and Goli¢ [49, 50]. The main difference in their algorithm is that they
did not distinguish between the probabilities q?nl and q}nl for different values of m; rather, they
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computed q? and qll, as given above, and then proceeded with the horizontal step with all q?nl set
to ql0 and all q}nl set to qll.

Another related algorithm is the variational free energy minimization decoder [37]. We describe
the application of this decoder to Gallager and MN codes in appendix D. Its performance is not
as good as the sum—product decoder’s.

3.3 Analysis of decoding algorithms

We analyse a simple decoding algorithm, following Gallager [27] and Meier and Staffelbach [47].
(The same algorithm has been used by Spielman [60].) We also study the sum-product decoder
in the limit of large N using Monte Carlo methods. Although an explicit positive statement of
the sum—product decoder’s capabilities remains elusive, the important message of our analysis that
follows is that the algorithms have ‘correction effects’ which are independent of the block length NV
for large N. These results lead us to the following conjecture.

Conjecture 1 Given a binary symmetric channel with noise density f, there exist practical de-
coders for Gallager and MN codes with rates R close to capacity, that can achieve negligible proba-
bility of error, for sufficiently large N.

3.3.1 Analysis of correction effect in a simple decoder

We introduce a simple decoder to iteratively solve for x such that Ax = zmod 2.

Simple decoder:

Set x = 0.

[x]: Evaluate z = z + Axmod 2. This is the check pattern that remains to be explained.
if z =0, end.

Evaluate the ‘vote’ vector A’z (not mod 2), which counts, for each bit [, the number of
unsatisfied checks to which it belongs. The bits of x that get the most votes are viewed
as the most likely candidates for being wrong. The biggest possible vote that a bit can
receive is t, since each bit participates in t checks.

Flip all bits of %X that have the largest vote.

go to [X].

This decoding algorithm is not guaranteed to reach a stable state, but it is easy to analyse whether
the first iteration of the decoder produces a ‘correction effect’ or not. We say that there is a
correction effect if the Hamming distance between %X and the true vector x decreases. We expect
this decoding algorithm to have similar properties to those of the sum—product algorithm — at
least for the first iteration — because, in the case of a binary symmetric channel, the vote for a bit
is directly related to its pseudoposterior probability.

Expected change in Hamming distance. We will assume that the weight of each row of A
is an integer t,, i.e., that ¢, bits participate in each check. We consider the flipping of a single
bit whose vote is ¢ (the largest possible vote), and evaluate the probability that this reduces the
Hamming distance. If the expected change in Hamming distance is negative, then we might hope
that decoding algorithms of this type would work.

Consider a bit z; that has value 0, and a check m in which it participates (i.e., an m such that
A = 1). The probability that z,, = 1, given that z; is 0, is p,(t,—1), as defined in section 2.5.2.
So the probability that a 0 bit receives vote t is the binomial probability

a = P(vote; = t|lz; = 0) = [p,(t,—1)]*. (54)
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Similarly, the probability that z,, = 1, given that z; is 1, is 1 — p,(¢, —1). So the probability
that a 1 bit receives vote  is:

b= P(vote; = t|lz; = 1) = [1 — p,(t,—1)]". (55)
Now, given that a bit has vote ¢, the probabilities that it is a 0 or a 1 bit are, by Bayes’ theorem:

P(z; =0|vote =t) o« a(l—f)

P(z; = 1l|vote =t) bf. (56)
Thus the expected change in Hamming distance when a bit with vote ¢ is flipped is
1—f)—0b
a(l—f)+bf

If this is negative then there is a correction effect. We assume, rather simplisticly, that if there is
no correction effect on the first iteration then reliable communication is not achievable using the
code; that is, we assume that this analysis predicts a bound on the achievable communication rate.
For any given ¢ and ¢, (and hence \), we can locate numerically the f above which there is no
correction effect. The lower dotted curves in figure 6b show the corresponding information rate
(1—1/X) of a Gallager code as a function of f for a variety of values of ¢ and ¢,, compared with the
capacity. It is interesting that (at least for f > 0.02) as ¢ increases, the bound on the achievable
rate given by this simple analysis decreases. Thus in contrast to the results for the optimal decoder,
where large ¢ is best, we find that codes with small ¢ (¢ = 3) are best for practical decoding.

3.3.2 Analysis of decoding of infinite networks by Monte Carlo methods

The sum—product decoder’s performance can be analysed in terms of the decoding properties of an
infinite network without cycles (of which figure 5g shows a fragment). The larger the matrix A,
the closer its decoding properties should approach those that we now derive.

We consider an infinite belief network with no loops, in which every bit x; connects to ¢ checks
and every check z,, connects to t, bits. We consider the iterative flow of information in this network,
and examine the average entropy of one bit as a function of number of iterations. At each iteration,
a bit has accumulated information from its local network out to a radius equal to the number of
iterations. Successful decoding will only occur if the average entropy of a bit decreases to zero as
the number of iterations increases.

We have simulated the iteration of an infinite belief network by Monte Carlo methods — a
technique first used by Gallager [27]. Imagine a network of radius I (the total number of iterations)
centred on one bit. Our aim is to compute the conditional entropy of the central bit z given the
state z of all checks out to radius I. To evaluate the probability that the central bit is 1 given a
particular observation z involves an I-step propagation from the outside of the network into the
centre. At the ith iteration probabilities r at radius I — ¢ + 1 are transformed into ¢s and then into
rs at radius I — 7 in a way that depends on the states x of the unknown bits at radius I — 4. In the
Monte Carlo method, rather than simulating this network exactly, which would take a time that
grows exponentially with I, we create for each iteration a representative sample (of size 100, say)
of the values of {r,z}. In the case of a regular network with parameters ¢,t,, each new pair {r,z}
in the list at the ¢th iteration is created by drawing the new z from its distribution and drawing at
random with replacement (¢ — 1)(¢, — 1) pairs {r,z} from the list at the (¢ — 1)th iteration; these
are assembled into a tree fragment and the sum—product algorithm is run to find the new r value
associated with the new node.

As an example, the results of runs with ¢ = 4, ¢, = 8 and noise densities f between 0.01 and
0.10, using 10000 samples at each iteration, are shown in figure 6a. It can be seen that runs with
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low enough noise level collapse to zero entropy after a small number of iterations, and those with
high noise level decrease to a stable entropy level corresponding to a failure to decode.

The results of many such runs with various values of ¢ and ¢, are summarised by the points in
figure 6b, where the time to reach virtually zero entropy is indicated by the point style on a graph
of rate versus noise level of the corresponding Gallager code, with x denoting ‘no decoding after
29 iterations’. Regions in the graph where there are points corresponding to 1-29 iterations define
values of the crossover probability f and rate R such that successful communication is possible
with Gallager codes, according to the Monte Carlo analysis.

The two analyses, using the simple decoder and using Monte Carlo methods, appear to give
similar predictions as to the maximum achievable rate R as a function of f.

We note that when the entropy drops to zero the decoding error probability falls to zero with a
terminal convergence that is faster than exponential. The vertical step involves the multiplication of
t—1 probabilities, so we believe the probability of decoding error falls asymptotically as exp(—a(t —
1)T) where T is the number of decoding iterations and a is a constant.

4 Experimental results using the sum—product decoder

Choice of ensemble. In early experiments using matrices from ensemble 4 of section 2.1, we
examined some of the decoding errors made by the free energy minimization decoder to be described
in appendix D and found that they tended to occur when the vector x was such that another slightly
different typical vector x’ had a similar (but not identical) encoding z’. In terms of the random
walk on the hypercube (section 2.3), these errors correspond to walks that after a small number
of steps return close to the starting corner. They were possible because of rare topologies in the
bipartite graph corresponding to the A matrix such as the topology illustrated in figure 5¢c. We
can eliminate the possibility of these errors by modifying the ensemble of matrices A so that the
corresponding graph does not have short cycles in it. We made new A matrices by taking matrices
from ensemble 4 and deleting columns until there were no short loops of the type shown in figure 5e.
These matrices, having fewer columns, correspond to codes with slightly lower rates. They also
have non-uniform weight per row.

We report results for codes with a variety of rates whose low density parity check matrices are
created in the following ways.
Construction 1A. An M by N matrix (M rows, N columns) is created at random with weight
per column ¢ (e.g., t = 3), and weight per row as uniform as possible, and overlap between any two
columns no greater than 1. Figure 7(a) shows the construction schematically for a rate 1/2 code
with ¢ = 3.
Construction 2A. Up to M/2 of the columns are designated weight 2 columns, and these are
constructed such that there is zero overlap between any pair of columns. The remaining columns
are made at random with weight 3, with the weight per row as uniform as possible, and overlap
between any two columns of the entire matrix no greater than 1. Figure 7(b) shows the construc-
tion schematically for a rate 1/3 code. [This irregular construction using weight 2 columns was
introduced because we guessed that it might give better practical performance; we used M/2 such
columns because this was the maximum number of weight 2 columns for which it was easy to make
‘good’ matrices; if more than M/2 columns of weight 2 are introduced at random then there is a
risk that the corresponding code will have low weight codewords.]
Constructions 1B and 2B. A small number of columns are deleted from a matrix produced by
constructions 1A and 2A, respectively, so that the bipartite graph corresponding to the matrix has
no short cycles of length less than some length [, here [ = 6.

Another way of constructing regular Gallager codes is to build the matrix A from non—overlapping
random permutation matrices as shown in figure 7(c,d). Figure 7(c) shows the construction used by
Gallager [26]. For practical purposes, codes constructed in these ways appear to have very similar
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Figure 6: Analysis of practical decoding algorithms.

(a) Time-course of the decoding process in an infinite belief network with ¢ =4,¢, = 8. Graph
shows average entropy of a bit as a function of number of iterations, as estimated by a Monte Carlo
algorithm using 10000 samples per iteration. Density f increases by steps of 0.005 from bottom
graph (f =0.010) to top graph (f =0.100). There is evidently a transition at about f = 0.075,
above which the algorithm cannot determine x.

(b) Rates achievable by Gallager codes according to two analyses, for ¢ = 3,4,5,6 as a function of
noise level.

Dotted lines show estimates of decodability based on the first iteration of the simple decoder.
Below the dotted line there is a correction effect; above the line, this decoder gives no correction
effect.

Points show theoretical success of decoding in infinite belief networks with various values of ¢ =
3,4,5,6, computed by Monte Carlo simulations of up to 29 iterations, as in part (a). Point styles
diamond, square, triangle and plus represent values of (f, R) at which complete decoding occurred
after a number of iterations less than 29. Point style x denotes no decoding after 29 iterations.
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Figure 7: Schematic illustration of (a) construction 1A for a Gallager code with ¢ = 3, ¢, = 6 and
R =1/2; (b) construction 2A for a Gallager code with rate 1/3; (c,d) two constructions similar to
construction 1A. Notation: an integer represents a number of permutation matrices superposed on
the surrounding square. A diagonal line represents an identity matrix. A rotating ellipse imposed
on a block within the matrix represents random permutation of all the columns in that block.
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Figure 8: Performance of Gallager codes applied to binary symmetric channel and decoded by
sum-product decoder. Comparison of empirical decoding results with calculated performance of
Reed-Muller codes (diamonds) and BCH codes (squares), and the Shannon limit. BSCs with (a)
fo = 0.076 (b) fn = 0.16 are assumed. Arrows show the values of Ry(f,) and GV (fy,) for the
channels.

(a) Horizontal axis: information rate R. Vertical axis: block error probability. Curve: Shannon
limit on achievable (rate, bit error probability) values. Results shown are for a code of construction
1B whose parity matrix has M = 10000 rows and N = 19839 columns. The weight per column was
t=3.

(b) A BSC with f, = 0.160 is assumed. Horizontal axis: information rate R. Vertical axis: bit error
probability. Results shown are for a code of construction 1A whose parity matrix has M = 10000
rows and 13336 columns, and for three codes derived from this code by shortening, i.e., deleting
columns from the parity matrix. These codes have N = 13298,13119,12955. The weight per
column is ¢t = 3.

properties to codes made with construction 1A, as long as cycles of length 4 are forbidden.

4.1 Rate of codes defined by these matrices

The above constructions do not ensure that all the rows of the matrix are linearly independent, so
the M x N matrix created is the parity check matrix of a linear code with rate at least R = K/N,
where K = N — M. We report results on the assumption that the rate is R. The generator matrix
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N K f R C ers/trials  itns. pur o

19839 9839 .077 .496 .609 6/20603 19.5 .000291  .000659
076 496  .612 3/114711 17.6 2.62e-05 8.3e-05

13298 3296 .155 .248 .378 3/2685 21.8 .00112 .00354
154 .248  .380 6/64543  20.7 9.3e-05  .00021
153 .248  .383 7/107635 19.3 6.5e-05  .000138
152 248 385 0/100809 18.1 0 1.98e-05
150 .248  .390 0/97058 164 O 2.06e-05

Table 1: Results of sum—product decoding experiments for two Gallager codes, construction 1B,
t = 3, on binary symmetric channels. ‘trials’ = number of blocks decoded; ‘ers’ = number of block
errors. pyr, = maximum likelihood estimate of block error probability. py is upper error bar for
block error probability (appendix C).

of the code can be created by Gaussian elimination.

4.2 Empirical results for Gallager codes: binary symmetric channel

In the following experiments we performed up to 1000 iterations of the algorithm when decoding
each z, halting earlier if a consistent decoding was found. Most of the successful decodings took 20
iterations or fewer to be completed, which, for a code with block length 10,000, corresponds to a
few seconds on a sparc I workstation. We found that the results were best for ¢ = 3 and became
steadily worse as t increased.

We compare Gallager codes with ¢ = 3 with BCH codes, which are described in [52] as “the
best known constructive codes” for memoryless noisy channels, and with Reed-Muller (RM) codes.
These are multiple random error correcting codes that can be characterized by three parameters
(n, k,t). The block length is n, of which k bits are data bits and the remainder are parity bits. Up
to t errors can be corrected in one block.

Figure 8 compares two Gallager codes with BCH and RM codes on two binary symmetric
channels. To compute the probability of error for BCH codes we evaluated the probability of more
than ¢ errors in n bits. Similarly, for RM codes of minimum distance d, performance was computed
assuming that more than |d/2| errors cannot be corrected. (See appendix C for discussion of how
the presented results were computed.)

The mean number of iterations of the algorithm to obtain a successful decoding is displayed for
a selection of codes and different densities f in table 1. In rare cases as many as 800 iterations took
place before a successful decoding emerged.

4.3 Gallager codes for the Gaussian channel

We originally conceived MN codes as codes for the memoryless binary symmetric channel. It turns
out, however, that Gallager and MN codes have a much broader applicability. As we proved in
section 2, Gallager codes are very good for any symmetric stationary ergodic noise model (including
arbitrary correlations and memory — definition 6) as long as a mean entropy can be defined for
it. Here we report investigations of non-uniform noise corresponding to communication over a
Gaussian channel with binary inputs.

Figure 9 compares the performance of Gallager codes with rates between 1/4 and 2/3 with
textbook codes and with state of the art codes. As before, the best results are obtained by making
the weight per column ¢ as small as possible (constructions 2A & 2B). Unsurprisingly, codes with
large block length are better.
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Figure 9: Gallager codes’ performance over Gaussian channel (solid curves) compared with that of
standard textbook codes and state—of-the—art codes (dotted curves). Vertical axis shows empirical
bit error probability. It should be emphasised that all the block errors in the experiments with
Gallager codes were detected errors: the decoding algorithm reported the fact that it had failed.
Panel (a) shows codes with rates between about 1/2 and 2/3; panel (b) shows codes with rates be-
tween 1/4 and 1/3. Textbook codes: The curve labelled (7,1/2) shows the performance of a rate
1/2 convolutional code with constraint length 7, known as the de facto standard for satellite com-
munications [29]. The curve (7,1/2)C shows the performance of the concatenated code composed
of the same convolutional code and a Reed-Solomon code. State of the art: The curve (15,1/4)C
shows the performance of an extremely expensive and computer intensive concatenated code de-
veloped at JPL based on a constraint length 15, rate 1/4 convolutional code (data courtesy of R.J.
McEliece.) The curves labelled Turbo show the performance of the rate 1/2 Turbo code described
in [12, 11] and the rate 1/4 code reported in [21]. Gallager codes: From left to right the codes had
the following parameters (N,K,R). Panel (a): (65389, 32621,0.499) (1B); (19839, 9839, 0.496) (1B);
(29331, 19331,0.659) (1B). Panel (b): (40000,10000,0.25) (construction 2A); (29507,9507,0.322)
(2B); (14971,4971,0.332) (2B); (15000, 5000, 0.333) (2A); (13298, 3296, 0.248) (1B).
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Figure 10: (a) Median number of iterations of sum-product algorithm taken to obtain a successful
decoding. Bars show 5th, 25th, 75th and 95th percentiles. (b) Corresponding bit error probability.

1e-01

. — uncoded
1e-02 |-

7.172)

1e-03

1e-04 |

(7,1/2)C

. . L .
1 15 2 25 3
Eb/No (dB)

Figure 11: Short block length Gallager codes’ performance over Gaussian channel (solid curves)
compared with that of standard textbook codes (dotted curves). Vertical axis shows empirical
bit error probability. It should be emphasised that all the block errors in the experiments with
Gallager codes were detected errors: the decoding algorithm reported the fact that it had failed.
Textbook codes: as in figure 9.

Gallager codes: From left to right the codes had the following parameters (N,K,R): (1008, 504, 0.5)
(construction 1A); (504,252,0.5) (1A).

In some cases we modified the matrices so as to eliminate short cycles. The original matrices, by
construction, had no cycles of length 4, a constraint which was found to be beneficial. We deleted
columns so as to remove cycles of length 6, 8, ..., expecting that this would further improve
performance. However, we found that these modifications made little difference.

For the codes with blocklengths and 40000 and 13298 in figure 9 the median number of iterations
taken to complete a successful decoding is shown in figure 10(a) as a function of E,/Ny. The line
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parity bits

Figure 12: Demonstration of encoding with a rate 1/2 Gallager code. The encoder is derived from
a very sparse 10000x20000 parity check matrix with three 1s per column. (a) The code creates
transmitted vectors consisting of 10000 source bits and 10000 parity check bits. (b) Here, the source
sequence has been altered by changing the first bit. Notice that many of the parity check bits are
changed. Each parity bit depends on about half of the source bits. (c) The transmission for the
case s = (1,0,0,...0). This vector is the difference (modulo 2) between transmissions (a) and (b).
[Dilbert image Copyright(©)1997 United Feature Syndicate, Inc., used with permission.]

shows the median number of iterations and the bars show the 5th, 25th, 75th and 95th percentiles.
Figure 10(b) shows the corresponding bit error probabilities, reproduced from figure 9.

4.4 Results for small block lengths

To double-check our results against Gallager’s we replicated experiments with codes of block length
504 and 1008. Our random code constructions are not identical to Gallager’s, and we ran the
decoder for more iterations (up to 500), but the results for construction 1A appear much the same
as those in figure 6.7 of his book [27].

5 Pictorial demonstration of Gallager codes

Figures 12-15 illustrate visually the conditions under which Gallager’s low density parity check
codes can give reliable communication over binary symmetric channels and Gaussian channels.
These demonstrations may be viewed as animations on the world wide web [39].

5.1 Encoding

Figure 12 illustrates the encoding operation for the case of a Gallager code whose parity check
matrix is a 10000x20000 matrix with three 1s per column. The high density of the generator
matrix is illustrated in (b) and (c) by showing the change in the transmitted vector when one of
the 10000 source bits is altered. Of course, the source images shown here are highly redundant, and
such images should really be compressed before encoding. Redundant images are chosen in these
demonstrations to make it easier to see the correction process during the iterative decoding. The
decoding algorithm does not take advantage of the redundancy of the source vector, and it would
work in exactly the same way irrespective of the choice of source vector.
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RECEIVED:

1

— DECODED:

Figure 13: Iterative probabilistic decoding of a Gallager code. The sequence of figures shows the
best guess, bit by bit, given by the iterative decoder, after 0, 1, 2, 3, 10, 11, 12, 13 iterations. The
decoder halts after the 13th iteration when the best guess violates no parity checks. This final
decoding is error free. [Dilbert image Copyright(©)1997 United Feature Syndicate, Inc., used with
permission. |

5.2 Tterative decoding

After the transmission is sent over a channel with noise level f = 7.5%, the received vector is
as shown in the upper left of figure 13. The subsequent pictures in figure 13 show the iterative
probabilistic decoding process. The sequence of figures shows the best guess, bit by bit, given by
the iterative decoder, after 0, 1, 2, 3, 10, 11, 12, 13 iterations. The decoder halts after the 13th
iteration when the best guess violates no parity checks. This final decoding is error free.
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Figure 14: Demonstration of a Gallager code for a Gaussian channel. (a) A data transmission
consisting of 10000 source bits and 10000 parity check bits. (bl) The received vector after trans-
mission over a Gaussian channel with /o = 1.185. [E}/Ny = 1.47dB.] The greyscale represents the
value of the normalized likelihood. This transmission can be perfectly decoded by the sum—product
decoder, that is, the decoder’s output is identical to the original data shown in (a). The empirical
probability of decoding failure is about 1075, (b2) The probability distribution of the output y of
the channel with /o = 1.185 for each of the two possible inputs. (c1) The received transmission
over a Gaussian channel with z/0 = 1.0, which corresponds to the Shannon limit. (c2) The proba-
bility distribution of the output y of the channel with /o = 1.0 for each of the two possible inputs.
[Dilbert image Copyright(©)1997 United Feature Syndicate, Inc., used with permission.]

5.3 Gaussian channel

In figure 14 the first picture shows the transmitted vector and the second shows the received vector

after transmission over a Gaussian channel with /o = 1.185. The greyscale represents the value of
P(y|t=1)

? P(yt=1)+P(y[t=0)"

at which this rate 1/2 Gallager code communicates reliably (the probability of error is ~ 10~°). To

show how close we are to the Shannon limit, the third panel shows the received vector when the

signal to noise ratio is reduced to /o = 1.0, which corresponds to the Shannon limit for codes of

rate 1/2.

Figure 15 shows the analogous vectors in the case of a code with rate about 1/4.

the normalized likelihood This signal to noise ratio /o = 1.185 is a noise level
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Figure 15: Demonstration of a rate 1/4 Gallager code for a Gaussian channel. (a) A data trans-
mission consisting of 3296 source bits and 10002 parity check bits. (bl) The received vector after
transmission over a Gaussian channel with z/o = 0.84. [E,/Ny = 1.5dB.] This transmission can
be perfectly decoded by the sum—product decoder, that is, the decoder’s output is identical to
the original data shown in (a). The empirical probability of decoding failure is about 107°. (b2)
The probability distribution of the output y of the channel with /o = 0.84 for each of the two
possible inputs. (cl) The received transmission over a Gaussian channel with /o = 0.64, which
corresponds to the Shannon limit. (b2) The probability distribution of the output y of the channel
with z/o = 0.64 for each of the two possible inputs. The crocodile image is the insignia of the
Cavendish Laboratory.

6 MN codes

6.1 The ideas behind MN codes

It is conventional to define a linear error correcting code to have transmitted block length N > K,
and to use signals s of density fs = 0.5. Conventionally the code is systematic, so the first K
transmitted bits are the K source bits. The (N — K) extra bits are parity check bits, which
produce redundancy in the transmitted vector t. This redundancy is exploited by the decoding
algorithm to infer the noise vector n.

MN codes [40] are based on a different approach. We first assume that the source may itself
be redundant, having fs, the expected density of s, less than 0.5. Consecutive source symbols are
independent and identically distributed. Redundant sources of this type can be produced from
other sources by using a variation on arithmetic coding [70, 57]; one simply reverses the role of
encoder and decoder in a standard arithmetic coder based on a model corresponding to the sparse
messages (see appendix H). Now given that the source is already redundant, we are no longer
constrained to have N > K. In MN codes, N may be less than K, equal to K or greater than
K. We distinguish between the ‘symbol rate’ of the code, p = K/N, and the ‘information rate’ of
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Figure 16: (a) A conventional code. The source vector s, of length K, is dense. The transmitted
vector t is of length N > K. Here N = 2K, so the symbol rate and information rate are both
K/N = 0.5 shannons. (b) Square code for a sparse source, having N = K. The symbol rate p is 1,
but if the density of the source, fg, is 0.1 then the information rate is H2(0.1) ~ 0.5 shannons, the
same as that of the conventional code.

C-1C, +mn=r n

(a) (b) |

Figure 17: Pictorial representation of MN Code with symbol rate p = 1. (a) Encoding, transmission
and reception. The vectors s and n are sparse. The matrices Cg and C, are very sparse. (b)
Decoding. The vector z is given by z = C,rmod 2. We attempt to solve for s and n.

the code, R = Hy(fs)K/N. Error-free communication may be possible if the information rate is
less than the capacity of the channel. For example, consider a binary symmetric channel having
fn = 0.1, and assume that we have a source with density fs = 0.1. Then we might construct a
code with N = K, i.e., a square linear code with symbol rate 1 (figure 16b). The information rate,
0.47, is less than the channel capacity, 0.53, so it is plausible that we might construct a sequence
of codes of this form achieving vanishing probability of error.

The key idea behind MN codes is that we construct the generator matrix in terms of an invertible
matrix, in such a way that the sparse source and the sparse noise can be treated symmetrically
in the decoding problem — in contrast to conventional syndrome decoding where only the noise
vector appears in the problem.

n

Figure 18: The decoding situation for an MN Code with symbol rate p = 1/3.
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6.1.1 Code construction

MN codes make use of the same matrices C; and C, that were constructed in section 1.3.1. These
matrices will now be denoted by C, = Cs (the square invertible matrix) and Cg = C;. We redefine
N and K = pN such that Cg is an N x K matrix and C; is an N x N matrix.

6.1.2 Encoding

A source vector s of length pN is encoded into a transmitted vector t defined by (figure 17a):
t = C;'Cgsmod 2. (58)

This encoding operation takes time of order min [pNt + N2, pN?]. The mapping from source bits
to transmitted bits is a linear mapping, however MN codes are non-linear codes in the sense that
the codewords that have high probability do not form a complete linear subspace of {0, 1} .

6.1.3 The decoding problem

The received vector is
r =t+ nmod2, (59)

where the noise, n, is assumed to be a sparse random vector with independent identically distributed
bits, density fn. (See appendix B for discussion of other channels.)
The first step of the decoding is to compute:

z = Cprmod?2, (60)

which takes time of order Nt.

Because z = Cp(t + n) mod 2 = Cgs + Cynmod 2, the decoding task is then to solve for x = [ﬁ]

the equation:
Ax =zmod?2, (61)

where A is the N by K + N matrix [Cs|Cp]. This decoding problem is shown schematically in
figures 17(b) and 18 for MN codes with symbol rates p = 1 and 1/3.
We emphasize two properties of equation (61):

1. There is a pleasing symmetry between the sparse source vector s and the sparse noise vector
n, especially if fy = fu.

2. Both the matrix A and the unknown vector x are sparse (the bits of x have density f; or fy),
so the decoding problem is identical to the syndrome decoding problem for Gallager codes.
6.2 Theoretical results for MN codes

The theoretical properties of optimal decoding derived in section 2 imply that good MN codes exist.
Figure 19 shows the communication rates proved achievable with MN codes communicating over a
binary symmetric channel with f, = f;. This figure was produced by the same method as figure 3.

6.3 Experimental results: one MN code can be used for channels with a range
of noise levels
6.3.1 Binary symmetric channel

We initially made experiments in which a sparse source communicated over a binary symmetric
channel, with fs = f,. Results for two codes with symbol rates about 1 and about 1/3 are shown
in table 2 and figure 20(a).
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Figure 19: Lower bounds on achievable information rate in shannons versus noise level f for MN
codes with ¢ from 3 to 6. The solid line shows the channel capacity.

The lines are lower bounds on rates achievable by MN codes. This achievable region was obtained
using the first ensemble of matrices A. As the weight per column ¢ increases the achievable region
rises towards the fundamental limit, the capacity.

N K t f R C ers/trials  itns. pur jon

10000 9839 3 .077 .385 .609 6/20603  19.5 .000291  .000659
076 .382 .612 3/114711 17.6 2.62e-05 8.3e-05

10002 3296 3 .155 .205 .378 3/2685 21.8 .00112 .00354
154 .204 380 6/64543  20.7 9.3e-05  .00021
153 .203 383 7/107635 19.3 6.5e-05  .000138
152 203 .385 0/100809 18.1 O 1.98e-05
.150  .201 .390 0/97058 164 0 2.06e-05

Table 2: Results of sum—product decoding experiments for two MN codes on binary symmetric
channels. ‘trials’ = number of blocks decoded; ‘ers’ = number of block errors. pyr, = maximum
likelihood estimate of block error probability. p; is upper error bar for block error probability
(appendix C). Here, fs = fn = f. See also figure 20(a).

We then explored cases with fs > fn, using the same encoder with K = 3296 and N = 10002.
Figure 20 shows that a single encoder can be used to transmit quite near to capacity over two
channels with substantially different noise levels (15.3% and 11.4%), simply by changing the density
of the source stream. Contrary to our expectations, the performance appeared to get better when
the symmetry between the source and the noise in the decoding was broken; in the case with
fs = 0.5 and f, = 0.114, the performance is beyond Ry.

6.3.2 MN codes for the Gaussian channel

We have simulated MN codes with dense sources and sparse sources. The rate 0.33 code with a
dense source gave a probability of bit error less than 1075 at Ej,/Ny = 1.81 dB. The same code,
encoding a sparse source with fs = 0.2 (R = 0.238) gave a similar error probability at E/Ny = 2.31
dB. MN codes seem to be inferior to Gallager codes in terms of E,/Ny, but it may be that their
novel properties offer compensating benefits.
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Figure 20: One MN code with fixed generator matrix can communicate at good rates over two
binary symmetric channels with substantially different noise levels by changing the source density.
In (a) fn = 0.153 and the source is sparse with density fs = 0.153; in (b) fn = 0.114, and a dense
source is used (fs = 0.5).

The empirical decoding results are compared with calculated performance of Reed-Muller codes
(diamonds) and BCH codes (squares), and the Shannon limit (solid curve). Horizontal axis: in-
formation rate R. Vertical axis: block error probability e. Arrows show the values of Ry and
GV (fa).

The MN code has N = 10000, K = 3296, and ¢ = 3 (construction 1B).

7 Discussion

This paper has given a semi-constructive proof of the noisy channel coding theorem using low
density parity check codes. Gallager and MN codes are good not only for the binary symmetric
channel but also for any channel models for which the optimizing input distribution is symmetrical
and the law of large numbers holds. It is a surprise to us that a single code can be good for any
channel. We had anticipated that to achieve very good performance on a new channel (such as a
bursty noise channel), a new custom-designed code would be needed. This expectation is shared by
Golomb, Peile and Scholtz, who state that ‘the optimal code for a given set of channel conditions
may not resemble the optimal code for another’ [29, p. 369]. But theoretically, the same encoder
family can be used for any channel — all that needs to be changed is the decoding algorithm.

The practical performance of Gallager’s 1962 codes, using Gallager’s 1962 decoding algorithm,
would have broken practical coding records up until 1993. The decoder works beyond the minimum
distance of the code, beyond the Gilbert bound, and beyond the rate that was widely believed to
be the ‘effective capacity’, Ry.

As far as we know, the only traditional code that can match the performance of Gallager codes is
the code for Galileo developed at JPL, which employs a rate 1/4, constraint length 15 convolutional
code surrounded by a Reed—Solomon code, giving an effective block length of about 8000 bits (R.J.
McEliece, personal communication). This system can only be decoded using expensive special
purpose hardware, and the details of the code are unpublished outside JPL [61].

7.1 Comparison with Turbo Codes

We heard about Turbo codes [12, 11], which outperform Gallager’s codes in terms of Ey/Ny, towards
the end of this work. There are some similarities between the codes. The Turbo decoding algorithm
may be viewed as a sum—product algorithm ([69, 68, 46]). Turbo codes also have a construction in
terms of sparse random trellises. Indeed, as shown schematically in figure 21, Turbo codes are low
density parity check codes. However, few ‘goodness’ properties have been proved for Turbo codes.

At error probabilities of about 1075, Gallager and MN codes are not able to get quite so close
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Figure 21: Convolutional codes and Turbo codes are low density parity check codes. Schematic
pictures of the parity check matrices of (a) a systematic recursive convolutional code with (binary)
generator polynomials (10001/11111) and (b) a rate 1/3 Turbo code formed by combining two such
convolutional codes. Notation: A band of diagonal lines represent a band of diagonal 1s. Horizontal
and vertical lines indicate the boundaries of the K x K blocks within the matrix. In (a) the left
hand band is 10001, corresponding to the numerator polynomial, and the right hand band, 11111,
corresponds to the denominator. In (b) the first K bits are the systematic bits, the next K are the
parity bits from the first convolutional code, and the last K are the parity bits from the second
convolutional code, which receives the systematic bits in a permuted order. The weight per row of
the Turbo code’s parity check matrix is 7 for almost all rows, and the weight per column is 4 or 5.

to the Shannon limit as Turbo codes (figure 9). However, Turbo codes as originally presented are
known to have an error ‘floor’ at about 10~% due to low-weight codewords (B.J. Frey, personal
communication); the error probability of these Turbo codes no longer decreases rapidly with in-
creasing Ey/Ny below this floor. We have seen no evidence of such a floor in Gallager codes; and
theoretically we do not expect Gallager codes to have the low weight codewords that could give
rise to this behaviour. So it is possible that at very low bit error probabilities, Gallager codes
outperform Turbo codes. It should also be emphasised that all the errors made by Gallager codes
that we have observed are detected errors, whereas the Turbo codes’s errors that are caused by low
weight codewords are undetected errors. Gallager codes may also have an advantage over Turbo
codes in terms of their decoding complexity.

7.2 Computational Complexity

In a brute force approach, the time to create a Gallager code scales as N, where N is the block
size. The encoding time scales as N2, but encoding involves only binary arithmetic, so for the block
lengths studied here it takes considerably less time than the simulation of the Gaussian channel.
We are currently investigating the performance of low density parity check codes which can be
encoded in linear time [42].

Decoding involves approximately 6 Nt floating point multiplies per iteration (assuming a model
of computation where the cost of elementary operations does not grow with N), so the total
number of operations per decoded bit (assuming 20 iterations) is about 120¢/R, independent of
block length. For the codes presented here, this is about 800 operations. This is not at all excessive
when compared with textbook codes — the constraint length 7 convolutional code used by Voyager
requires 256 operations per decoded bit. The Turbo codes of [12] require about 3800 operations
per decoded bit (B.J. Frey, personal communication).

Strictly, a constant number of iterations (taken above to be 20) is not sufficient to achieve
negligible probability of error for any blocklength [26]. Assuming the truth of the conjecture of
section 3.3.2 that the bit error probability decreases as exp(—a(t — 1)T) where T is the number
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of decoding iterations and a is a constant, in order for this probability to decrease as 1/N with
increasing IV, we need the number of decoding iterations to grow as 1" ~ loglog V.

The decoding algorithm involves no adjustable parameters, except those associated with the
handling of overflows. After each vertical step we prevented all the probabilities from going greater
than 1 — 10719 or less than 107!, [One could view the ‘update schedule’, i.e., the order in which
the quantities ¢ and r are updated, as an adjustable aspect of the algorithm [24]; we have not
explored this option. We have briefly examined two modifications of the algorithm, making the prior
probabilities more extreme if a decoding has not emerged, and making the propagated probabilities
more (or less) extreme, but we have not found any useful improvement in performance. However,
Turbo code researchers have found similar tweaks to the sum—product algorithm are helpful [21].]

The encoding and decoding software and the parity check matrices used in this paper are
available from http://wol.ra.phy.cam.ac.uk/mackay/codes/.

7.3 Descriptive Complexity

The descriptive complexity of these codes is much smaller than the descriptive complexity of ar-
bitrary linear codes, which is ~ NK bits. A Gallager (N, K) code has a descriptive complexity of
about tN log(N — K) bits, since for every one of N columns we have to select ¢ bits from N — K.

7.4 Distance properties

We have proved minimum distance properties of Gallager codes in section 2.3.2 (the Gilbert bound
can be attained), but we do not view this as a primary result. We view distance properties as a
secondary attribute compared with the block error probability. The minimum distance of a code
may be viewed as a convenient measure of how ‘good’ it is, but in fact it is not possible to distinguish
between good and very good codes by their minimum distance, and bounded distance decoders are
well known to be unable to achieve the Shannon limit [43]. We have proved that Gallager and
MN codes can (when optimally decoded) achieve capacity. Moreover, we have demonstrated error
correcting abilities at rates well above the Gilbert rate.

7.5 Discussion specific to MIN codes

In a conventional linear (N, K) code, the codewords form a complete linear subspace of {0,1}",
and it is conventional to assume that its generator matrix G might as well be put in systematic
form. In designing MN codes we made the assumption instead that the source is sparse, so the
codewords that have high probability are only a small subset of a complete linear subspace. In this
sense, MN codes are nonlinear codes, even though the transmitted vector t is a linear function of
a source vector s. The generator matrix may not be put in systematic form. The systematic form
for a code with symbol rate p = 1 would simply be an identity matrix, giving no error protection
at all. We think the MN code’s sparse source is an interesting idea which could have a variety of
spinoffs. For example, MN codes offer the potentially useful property that the rate of the code can
be changed without changing the generator matrix.

7.6 Application of MIN codes to multiple user channels

Consider a multiple user linear binary channel whose output, each cycle, is r = D NEC) NN CONE
nmod 2, where (%) is the bit transmitted by user u, and n is noise. The information theoretic bound
on the total information that the U users can communicate is the capacity C(fn) = 1 — Ha(fn)-
We can create multiple user codes for this channel directly from MN codes that encode K
sparse source bits into N transmitted bits. The K columns of the matrix Cg are divided up
between the users, with user u receiving K, columns, forming a matrix Cé“). All users know the
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sparse matrix C,, and the decoder knows the entire matrix A = [Cél) |C§2)| e |C§U)|Cn]. In each

block cycle, user u encodes a vector s of K, bits with density f, into a vector of length N bits,
t(w = c;lcéu)s(u), and transmits this vector.

The properties proved for MN codes immediately carry over to these multiple user codes. In
particular, the Shannon limit for the multiple user linear channel can be achieved, given an optimal
decoder. Such a system, if appropriately controlled, would allow the users dynamically to change
their rate of communication by changing their densities f, without changing their encoder.

7.7 Conundrum: why were Gallager codes forgotten?

Why was Gallager’s work mostly forgotten by the information theory community?

There are very few citations of Gallager’s [26, 27] work on low-density parity-check codes. A
search on BIDS returns the following citations: [14, 25, 28, 63, 44, 49, 48, 54, 53, 55, 59, 64, 71, 72].
Of these, it seems that the only author who pursued the practical implementation of Gallager
codes (and variations on them) was Tanner [63]. An independent rediscovery of Gallager’s work
has been made by Wiberg [69, 68]. We regret that we initially misunderstood Gallager’s work: in
[40], we incorrectly asserted that Gallager’s codes were ‘bad’ owing to a confusion with their duals,
low density generator matrix codes, which are bad; we also confused the decoding algorithms of
Gallager and Meier and Staffelbach.

In 1963, the N? cost in memory for explicit storage of the generator matrix would have been
unattainable, so computational resources were (temporarily) a problem. R.G. Gallager (personal
communication) has suggested that Gallager codes were generally forgotten because it was assumed
that concatenated codes [23] were superior for practical purposes.

7.8 Future work

Generalization to g—ary alphabets. Gallager and MN codes can also be defined over g-ary
alphabets consisting of the elements of GF(q). The generator matrix of a Gallager code over

GF(q) takes the form , where the matrix A = [Cs|C,] is a very sparse matrix with its

I
_C; 1Cs
non-zero elements drawn from the non-zero elements of GF(g). The inversion and multiplication
operations are carried out in the algebra of GF(gq). The decoding can be performed with a belief
propagation algorithm, as with the binary Gallager codes. We are investigating the application of
these codes (with ¢ = 4,8,16) to the g-ary symmetric channel — and to the binary symmetric
channel and binary Gaussian channel, since there is no obvious reason to believe that the ¢ = 2
Gallager codes are the best Gallager codes for binary channels. Our results show that Gallager
codes over GF(4) and GF(8) perform better than comparable Gallager codes over GF(2) in the
case of the binary symmetric channel and the Gaussian channel [17].

Constructions. By introducing constructions 2A and 2B, we pushed the performance of Gallager
codes a little closer to capacity. Are there further useful changes we could make to the code
construction? We are currently investigating the possibility of systematic construction of matrices
A whose corresponding graphs have large girth [44, 8, 35].

In this paper we have mainly considered regular low density matrices, that is, matrices in which
the weight per column is constant and the weight per row is constant, or nearly constant. It is
obviously a disappointment that, whereas the way to obtain very good codes is to increase the
density, the sum—product algorithm performs worse for denser matrices. There is a way out of
this dilemma, however: we obtained better performance by using slightly irregular matrices with
weight two and weight three columns (see figure 9); Luby, Mitzenmacher, Shokrollahi and Spielman
[36] have recently extended this idea, investigating highly irregular Gallager codes. Their results
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indicate that significant enhancements in performance can be obtained. We have applied this idea
to Gallager codes over GF(8) and have discovered an irregular Gallager code with block length
24,000 bits whose performance equals that of the best Turbo codes [18]. The choice of construction
of Gallager code remains a productive area for further research.

Bursty channels and fading channels. Since Gallager codes are, given an optimal decoder,
good codes for any channel in a wide class, we are optimistic that they will be excellent codes for
channels with bursts and fades. We anticipate that the sum—product algorithm can be generalized
to handle simultaneous equalization and decoding. Only if we model and infer the channel variations
will we be able to get close to the Shannon limit of such time—varying channels. In contrast many
codes handle bursts by interleaving, that is, reordering the bits so that the bursts look like uniform
noise.

Our results on MN codes serve as initial results describing the performance of Gallager codes
for decoding in the presence of bursts. Consider a two state channel which flips between a high
noise state with f, = 0.5 and a low noise state with f, = 0.114. The rate 1/4 code of block length
13298 bits can communicate reliably over this channel if the burst periods are identified, as long as
the fraction of time spent in the high noise state is less than 25%.

In contrast, if we used a traditional interleaving method to cope with the bursts, the effective
noise level would be f = 0.25 x 0.5 4 0.75 x 0.114 = 0.21, for which the capacity is C ~ 0.26. It
seems unlikely that there is a practical rate 1/4 interleaved code that can communicate reliably
under these conditions.

Cryptanalysis. This work grew out of an interest in a problem in cryptanalysis [3], the inference
of the state of a linear feedback shift register given its noisy output sequence, which is also equivalent
to the decoding of a cyclic code. The free energy minimization algorithm was found to be an
improvement over Meier and Staffelbach’s algorithm in [38]. We anticipate that the sum—product
decoder might perform even better on these cryptanalysis problems. We are at present investigating
this possibility.

Statistical Physics. Consider a set of L spins § = +1 among which there are M couplings of
order t, = 8 such that the Hamiltonian is:

M L
E(¢) = 21 Tm&ir (m) i (m) s (m) Eia(1m) Eis (m) Eig (m) Ein (m) Ei(m) + D> i€ (62)
m= =1

We have assumed that spins are coupled together in groups of 8 in order to obtain a relationship
to a matrix A with weight 8 per row. If we identify J,,, = 2z, — 1 and set up the functions i,(m)
to correspond to the 1s in the matrix A, then the decoding problem maps onto the task of finding
the ground state of this energy function in the limit of small b;.

We have found that the sum—product decoder is a better algorithm than the free energy min-
imization algorithm (appendix D) for solving this problem. A difference between the algorithms
is that the free energy minimization algorithm (also known as ‘mean field theory’) shows sponta-
neous symmetry breaking, whereas the sum—product algorithm only breaks symmetry if the energy
function itself breaks symmetry. Prior work related to this concept is found in [65].

It is possible that further benefits may be obtained by applying sum—product concepts in statis-
tical physics or to other optimization problems where mean field methods have been found useful
[30, 2].

Decoding algorithms. We conjecture that as we get closer to the Shannon limit, the decoding
problem gets harder. But we don’t understand what aspects of the problem determine the practical
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limits of our present decoding algorithms. It would be interesting to obtain a convergence proof
for the sum—product algorithm and to develop ways of reducing the inaccuracies introduced by the
approach of ignoring the cycles present in the belief network.
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A Glossary

The symbol ‘|” between two matrices denotes concatenation, for example a systematic parity check
matrix might be written H = [P|Iy_g].
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Symbol Meaning Type
N Transmitted block length of a code Integer
K Source block length of a code Integer
G Generator matrix of a code Binary matrix
H Parity check matrix of a code Binary matrix
P Parity block within a systematic generator matrix or parity Binary matrix
check matrix, e.g., H= [P|In_k]
S Source string, length K Binary vector
t Transmitted string, length N. t = G's Binary vector
n Noise vector Binary vector
r Received string (r =t + n) Binary vector
Hr Syndrome vector Binary vector
A Very sparse matrix of dimension M x L. A = [C;|Cy] = Binary matrix
[Cs[Cul
Cs Very sparse matrix of dimension M x (L — M) Binary matrix
C. Very sparse square matrix of dimension M x M Binary matrix
L Number of columns in A. In Gallager codes L = N. In MN Integer
codes L=N + K.
M Number of rows in A. In Gallager codes M = N — K. In Integer
MN codes M = N.
t Number of 1s per column in A (Gallager’s j) Integer or real
ty Number of 1s per row in A (Gallager’s k) Integer or real
p Ratio (L — M)/M. Symbol rate of MN code. Real
A Ratio L/M. A= p+ 1. Real > 0
x possibly sparse vector of length L Binary vector
z vector of length M such that Ax = zmod 2 Binary vector
w weight of vector x — x'; equivalently, the number of columns Integer
of A that might be linearly dependent
pgé) Probability that random walk on M-dimensional hypercube Real € [0, 1]
returns to starting corner on step r
q(()g) Upper bound for p&) Real
k,l,m,n indices running from 1 to K, L, M, N. Integer
¥ index running from 1 to M/2 in the eigenvalue expansion of Integer
Pho -
K Jj/M Real € [0,1/2]
1o w/L Real € [0,1]
f Density of x Real
fn Noise density Real
fs Source density Real
T Number of steps in random walk on M dimensional hyper- Integer
cube. 7 = wt. r/M = A\¢t.
g’ Ty, Probabilities in sum-product algorithm Real
(n,k,t) Traditional labels for block length, source block length, and Integers
maximum number of errors that can be corrected. N.B., ¢
above is different.
d Minimum distance of a code. Integer
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B Real-output channels

In the main body of the paper our theorems and discussions have focussed on binary—input, binary-
output channels of two types: the memoryless binary symmetric channel and the more general
symmetric stationary ergodic binary channel (definition 6). We proved that MN codes and Gallager
codes are good for such channels. The same codes are also good for channels with other output
alphabets as long as they satisfy simple symmetry and law-of-large-numbers properties. We have
in mind binary-input channels with real outputs such as the additive white noise Gaussian channel
and fading channels.

We start by discussing the simple case of a channel with inputs of ¢, = +1 and real-valued
outputs. Here, an implicit noise vector, n, can be envisioned on the basis of an arbitrarily selected
received vector r, with r = 0 being perhaps the most convenient choice, since it simplifies the
computation of the syndrome z = Armod 2 = 0 and equation (63) below. For independent noise,
the bits of n are probabilistically independent, with the probability of a bit being 1 being determined
by the likelihood ratio for the received signal. For a Gaussian channel with inputs of z;, = +z, the
received signal is y,, = (2t, — 1)z + vy, where v, is zero-mean Gaussian noise of variance o2. The
effective probability for a 1 in bit 7 of the noise vector n (based on r = 0) is then

1

= (63)

fugi)
(Note that this probability can be greater than 1/2, in keeping with the arbitrary nature of the
choice of r = 0.) In any given realization of the noise we can thus deduce an effective binary noise
distribution P(n) for an equivalent time-varying binary symmetric channel. Whether the decoding
problem is solvable depends on the entropy of this distribution. We thus need to add to our list of
error types (section 2.3) a third possibility:

IIT: The distribution P(n) has entropy greater (by some 7) than the mean entropy. Let
the probability of this event be Pjyy.

This failure mode occurs with a probability determined by the distribution of large deviations of
the channel. This probability obviously must vanish with increasing block length for our codes to
be good.

B.1 Extension of proofs to channels with non-binary outputs and temporal
correlations

Gallager and MN codes are good for channels that are stationary and ergodic, that have vanishing
Prrr and that satisfy this symmetry property:

Definition 8 A temporal binary—input channel is symmetric! if the optimizing distribution P (t)
of the channel is a uniform distribution Py (t) = 1/2.

If this symmetry property is satisfied then it is evident that the decoding problem is equivalent to
the decoding of a symmetric stationary ergodic binary channel (definition 6).

'Our definition of a ‘symmetric’ channel differs from that of Cover and Thomas [16]. For them, a channel is
‘symmetric’ if the rows of p(y|z) are permutations of each other and the columns are permutations of each other; a
channel is ‘weakly symmetric’ if the rows of p(y|z) are permutations of each other and the column sums are equal.
This definition of a symmetric channel is too restrictive, as it can’t even encompass a Gaussian channel. The definition
given here may conversely be viewed as too broad.
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B.2 Gaussian channel definitions

We simulated the following Gaussian channel. The binary inputs are z;, = +z and the real output
y has a conditional distribution that is Gaussian with mean z;, and variance o?:

P(y|zin) = Normal(zy,, 0?). (64)

For convenience we set ¢ = 1 and varied z to change the signal to noise ratio. The capacity of the
channel can be defined in a couple of ways. If we were allowed to use arbitrary input values with
the same mean power as the binary inputs ziy, = +x, the capacity would be

1 z?
CUnconstrained = C’U = 5 10g2 1+ ; (65)

If we accept the constraint that only the defined binary inputs are allowed, then the capacity is
reduced to:

CBinary = Cp=H(Y)— H(Y|X) (66)

— — [ dyP)log Ply) + [ dy Plyls = w0) log Pyl = o), (67)

where 1
__ [.~y—2)?/(20?) —(y+z)%/(20?)
P(y) = W [e +e ] , (68)

which may be evaluated numerically. If one communicates over the Gaussian channel using a code
of rate R then it is conventional to describe the signal to noise ratio by

Eb_ .’132

Ny 2Ro? (69)

and to report this number in decibels as 10log;q Ep/Np.

C Reporting of empirical results

C.1 Error bars

The experiments result in a certain number of block decoding failures r out of a number of trials n.
We report the maximum likelihood estimate of the block error probability, p = r/n, and a confidence
interval [p_,py], defined thus: if r > 1 then p; = pexp(£20i0gp) Where oiogp, = v/(n —7)/(rn);
else if r = 0, p+ =1 —exp(—2/n) and p_ = 0. When reporting the bit error probability we use
the error bars derived from the block error probability; we do not bother including the additional
uncertainty in the bit error rate within erroneous blocks, which is expected to be much smaller
than the uncertainty in the block error probability.

C.2 Comparison with other codes

Performances of RM and BCH codes were computed assuming for an RM code of minimum distance
d that more than |d/2] errors cannot be corrected. For BCH codes it was assumed that more than
t errors cannot be corrected, as specified in the (n, k,t) description of the code. In principle, it may
be possible in some cases to make a BCH decoder that corrects more than ¢ errors, but according
to Berlekamp [9], “little is known about. .. how to go about finding the solutions” and “if there are
more than ¢ + 1 errors then the situation gets very complicated very quickly.” All relevant BCH
codes listed in [56] are included [block sizes up to 1023].
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D Decoding by free energy minimization

MacKay [38, 37] derived a continuous optimization algorithm for solving the discrete decoding
problem
Ax +y =zmod2 (70)

where A is a given binary M x L matrix and z is a received vector of length M. The vectors x and y
are assumed to have a, prior distribution that is separable thus: P(x,y) = [T, P(z;) [TX_, P(ym)-
The algorithm is only practically useful for matrices A that are sparse. Problems of the form

Ax = zmod 2 (71)

can also be solved using the free energy minimization algorithm by solving a sequence of problems
of the general form (70) with the fictitious noise level of the vector y decreasing to zero.

The algorithm works by approximating the complicated posterior probability of x given z by
a simpler separable distribution Q(x;0) = Hle qi(z;6;). This distribution’s parameters 6 = {6}
(one parameter for each bit of x) are then adjusted so as to minimize a measure of the divergence
between the approximating distribution Q(x) and the true distribution P(x|z, A), the variational
free energy:

P(z|x, A)P(x)
Q(x;0)
The evaluation of this objective function and its gradient is possible in time linear in the weight of
A. There is also an update algorithm for each component §; such that F' is guaranteed to decrease.
This iterative procedure is obviously not the optimal decoding algorithm, but it is practical. We
originally developed MN codes with this decoding algorithm in mind, so we report some experimen-
tal results. However this decoder has been superseded by the sum—product algorithm of section 3.
Sum-—product decoding is less complicated because there is no need to have an annealing schedule

for a temperature parameter.

F(O) =~ Y Q(x:0) log (72)

D.1 Empirical results: free energy minimization, ensemble 4

A value of f = 0.05 was selected for experiments with Gallager codes having rate R ~ 1/2 and
t = 4, using construction 1A.

We found that as the block size N was increased the performance improved. The block error
probabilities for rate 1/2 codes with block lengths of 2000, 4000, 8000 and 20000 were 0.11, 0.046,
0.0058 and 0.00017. We also found that with larger and smaller values of ¢ than ¢ = 4, the code
did not work as well when decoded by free energy minimization.

D.2 Insights into the source of errors.

We examined some of the errors made by the free energy minimization decoder and found that
they tended to occur when the vector x was such that another slightly different typical vector
x' had a similar (but not identical) encoding z'. In terms of the random walk on the hypercube
(section 2.3), these errors correspond to walks that after a small number of steps return close to
the starting corner. They were possible because of rare topologies in the network corresponding
to the A matrix such as the topology illustrated in figure 5¢c. We can eliminate the possibility of
these errors by modifying the ensemble of matrices A so that the corresponding network does not
have short cycles in it.
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D.3 Empirical results: free energy minimization, construction 1B

We made new A matrices by taking matrices from ensemble 4 with £ = 4 and deleting columns until
there were no short loops of the type shown in figure 5e. These matrices, having fewer columns,
correspond to codes with slightly lower rates. They also have non-uniform weight per row, which
may make them slightly suboptimal. We found that the topological modifications gave codes which
were able to communicate at slightly higher rates over slightly noisier channels with a smaller
probability of error. A summary of our results is that in terms of block error probability for a given
communication rate, Gallager and MN codes, when decoded by free energy minimization, can be
superior to Reed-Muller codes, and Gallager codes can outperform BCH codes by a small margin.

Significantly better results were obtained using the sum—product decoder described in the main
body of this paper.

D.4 Contrast with sum—product algorithm

We believe the reason the sum—product algorithm performs much better than the variational free
energy minimization (mean field) algorithm is that the mean field algorithm exhibits spontaneous
symmetry breaking. It is possible for a cluster of bits, whose state has not been determined by the
influence of the data, to collapse into a locally consistent state. The sum-product algorithm (at
least in the ideal case of a graph without cycles) does not show any such spontaneous symmetry
breaking.

E Inequalities

We prove the following inequalities.

1 N
AR ( K) < oMLK/ (73)

In general, if K1 + Ko +... K; = N and H(p1,p2,...pr) = Y. ; pilogy ; then

(2

N!
< 9NH(K1/N,K2/N,...K1/N) 4
Ki'...K;! — (7)
Proofs of inequalities (73) and (74)
Proof of right hand inequality: consider the multinomial distribution
P(K1, K K N ' 7
(K1, Ko, ... I|P1,p2,---PI)—m1;[pi (75)
Set p; = K;/N. Then evaluate the probability, which we know is less than 1:
N!
_ 2V T oKiloga(Ki/N) « 1. 76
Ki!...K;! 1:[ - ( )
N L < 9(=NY, Ki/Nlogy(Ki/N)) (77)
Ki'...K;! — '
The left hand inequality in equation (73) is proved by considering again the quantity
N!
P(k) = ———p*(1 —p)V*.
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If p= K/N then P(K) is greater than or equal to P(k) for all k. So

(N+1)P(K) > P(k) =1 (79)
k
S () > ;(K/N)_K(l — K/N)~"WN-K) = L onm/N), (80)
K)~ N+1 N+1
Similarly we may prove that, for K < N/2,
K
> N\ < onvma(i/n), (81)
k=0 k

Proof: consider the sum of binomial terms:
P(k) = —=p (1-p)" " <1 (82)
= = ENN — k)!

Setting p = K/N, we examine the factor (1 —p)/p = (N — K)/K. Because K < N/2, this factor
is greater than 1. So, dividing each term in the sum by (1 — p)/p an appropriate number of times,

K N1
: K N-K
Yo P A-p)N < (83)
2 BN — k)
(N
= < ) < 9(~ Klogy(K/N)~(N—K)logy((N-K)/N)) (84)
ico \F
We also note the following inequalities.
z! > z% ®e or equivalently logz!>zlogr —z+1 (85)

The proof is straightforward by integration of log x.

F Bounds on random walk’s return probability
We derive several upper bounds on the probability p(()g) that the random walk on the M-dimensional
hypercube returns to its starting corner on the rth step. We use the result from [31] that

M .
(r) _ o-M M 27\
o = ];)(3)(1 M> . (86)

See [13, 20, 32, 34, 62] for further information about this random walk, which is also known as
the Ehrenfest Urn model. Equation (86) is an eigenvalue expansion, where the eigenvalues of the

Markov process are labeled by 7 = 0... M and have value (1 — ZMJ) For every positive eigenvalue

there is an opposite negative eigenvalue. We note that for odd r, p((]z) is zero, and that for even r,

p(()g) is a decreasing function of r. For convenience we can obtain a monotonic upper bound on p(()g)

by restricting the sum over j to the positive eigenvalues and including a leading factor of 2.

M/2 <y
) < g —g g vy (M (1—2—”> : 87
Poo = 490 ]go j M ( )

We now derive various bounds valid for all » > 0; some bounds are tight for » < M and some for
r > M. We also evaluate a numerical bound that is useful for all r.
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F.1 Bound that is tight for » > M

M/2-1 N
(1) g — oM MY (1 _2
w2 = 27 ) ()(1 M) (58)
j=0 J
M/2-1 ; &
_ MY _ 2
< 27M —e "M 89
2 (89)
° ]. 2r .
< 2—M2ﬁe—(v—1°gM)f (90)
=07

o 1 . _
Z e = ele™) (91)
— 4!
7=0
and obtain:
2
q(()g)/2 < 27Mexp [exp (MT —log M)] (92)
= 2 Mexp [MefQT/M] (93)
= q(()g) < q,(f) = 2exp [M(e_Q’"/M —log 2)] . (94)
The logarithm of this bound is
log (q,()T)/Q) = M(e /™ _log?2). (95)

F.2 Bound that is tight for r < M

We consider the logarithm of one term in the sum over j in equation (87). We obtain a bound on
the maximum value over j that this quantity can assume. We define k = j/M and p =1 — 2k.

)62

At equation (96) we use inequality (73) and at equation (97) we use the inequality HS(k) <
log 2 — (1 — 2x)2. We differentiate and find that the maximum of this function is at u? = r/M, so
that we can bound every term thus, for any j:

IN

MHS(k) + rlog(1 — 2k) (96)

1
< M(log2 — ;p*) + rlog(u). (97)

(M 25\" 1 1 T
log |2~ M 1-22) | <—Zr+Zrlog—
ogl <j)< M> < 27‘+27‘ 0g 7 (98)
We thus conclude that for any r > 0,
M/2—-1 :
M 27\"
a0 < 2x2M Y <><I_MJ> (99)
i=0 \J
M 1 1 T
< = _Z - —
< 3 2exp[ 2r+ 27'log M] (100)
r/2
=gl <gD = M (%) . (101)
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This bound illustrates the important power law decrease of q(()g) for small r. The logarithm of this

bound is

1
logg" = logM — g + irlog% (102)
1 T T T
- M —— + — — ). 1
log M + 2M( Y + Mlog (M)) (103)

The leading factor of M in equation (101) is the undesirable side-effect of two of the inequalities.

F.3 Bound that is a factor of M tighter for r < M

The above bound is tight enough to prove the main theorems of the paper for ¢ > 4 but not for
t = 3, because of the leading factor of M, so we now improve on it.

We count the number of walks of length r (where r is even) that return to the origin. A walk that
returns to the origin can be created as follows. First we select (with replacement) 7/2 directions
from the M axes of the hypercube as the directions that will be traversed twice. The number of
different selections is equal to the number of ways of putting r/2 indistinguishable objects in M
bins, which is the number of distinct ways of ordering M — 1 indistinguishable partitions and r/2
indistinguishable objects, which is ((M_Tl/;r/ 2)). Then having decided which are the directions we
will traverse, the number of distinct walks that can be created is less than or equal to the number
of distinct orderings of r/2 pairs of indistinguishable objects, 21%, with equality in the case where
all directions are traversed twice or zero times. Thus the total number of walks of length r that

(r)

return to the origin, n,’, is bounded by:

(r) M—1+r/2\ r!
LIS < r/2 /2 (104)

and so, since the total number of walks of length r is M",

(r)
(r) _ Ngo 1 (M—1+4r/2\ 7!
0 = aqr = _]\17"( ,,1/2 or/2” (105)

p

We loosen this bound into a slightly more convenient form, introducing a largest value of r, r* = yM,
for which we plan to use this bound. We will set v at our convenience to a value independent of

M. .
(r) 1 (M—1+%)T/2 7!

Po S 3 gt g ST =M (106)
(r) 2 (T \"? . _
= ol <240/ (1) forr <t =M (107)
For our proof we set v = 1 so that
r/2
) < (%%) for r < M (108)

This bound decreases monotonically in 7 up to ' = v'M, where v = % (found by differentiation),

(r)

so, since we know p;, is bounded by a decreasing function, we obtain:

r/2 A
(r) (1) — (%%) r <r'=+'M (where v = )
Poo S 4" = g e (109)
(Z'YI) r>r
The logarithm of q((;) is:
(ry T 3r B .
log qq = E log (ZM) for r < pl = ,-)//M (Where ’)’I _ 5) (110)
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F.4 Numerical bound useful for all r

We continue from equation (96) and derive a numerical bound:

M 25 \"
1 1— =
% K j ) ( M)
We differentiate with respect to k to find the maximum value of this quantity; then we can bound

the sum q(()g) by the number of terms in the sum times the maximum value of the summand. Thus

M/2—1 S\
() _ -M M B 2_]>
a0 = 2x27M 3 ()(1 7 (112)

< MH;5(k)+rlog(1l — 2k) (111)

— \J
< Mexp [—J\JJlogQ + M HS(k*) 4+ rlog(1 — 2x%)], (113)
or equivalently
logq(()f)) < logM+ M [— log2 + H3 (k") + % log(1 —2x")|, (114)
where x* is the solution of: -y 20 /M
log( - )—(1_25) =0 (115)
or equivalently .
K= S [(%r_%] (116)

We can solve this equation numerically by iteration, starting (for example) from x = 0, and setting &
equal to ’, the value of the right hand side, repeating until convergence is established. Convergence,
which can be slow, may be accelerated by setting s equal to (k + ') /2.

For large M and r > 1, the log M term is of small order and we neglect it in our numerical
computations, using:

logqyy S logg{) =M

—log2 + H5 (k™) + ﬁ log(1 —2x%)| . (117)

F.5 Another good bound for large r

Using the same method as in section F.4 we can obtain an explicit bound.

o[ (7) 030

Now Hs is a convex function, so it is upper bounded by its tangent. For any choice of x*, and for
all &,

< MH3(k)+ rlog(l — 2k) (118)

HE(k) < HE(K*) + (k — K%) log (M) . (119)

o[ (7) 030

We differentiate with respect to x to find the maximum value of this quantity, which is at
1 2 .
2 M log (—(1_“*)) ’

So

< MH$(K")+ (k — k") log ((1;7*%*)> +rlog(l1—2k). (120)

(121)

KR =

K*
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Figure 22: Plot of five bounds on the function ﬁ log p(()z), for large M, as a function of r/M.

Bound b: %logq,(f) = (e /M _1og2). Bound c: ﬁlogqgr) = % (—r/M +r/Mlog(r/M)).

2
Bound d: q((ir) = (%ﬁ)r/ for r < 7' = M, where ¥/ = 3. Bound £ q)(f) =
M exp[—Mlog2 + MHS(k*(r)) — 2rk*(r)] where k*(r) = m. Numerical bound %log qer)
M

computed as described in section F.4.

(r)

then we can bound the sum gy,’ by the number of terms in the sum times the maximum value of
the summand, choosing x* to have any convenient value. Based on what we have learnt from the
previous bound, we choose

1
r) = ————— 122
and obtain (after straightforward algebra)
a < df) = Mexp[-Mlog2 + MHS(x"(r)) — 2rs"(r)] . (123)

The five bounds qér),qgr), CI,ST), qgr) and qff) are plotted in the large M limit in figure 22.

G Evaluation of upper and lower bounds on achievable informa-
tion rate in case of noise of uniform density

We start from equation (21). In the case of uniform density, h(w|x) depends only on the weight of
x, which we will denote ux.

L
Prr <303 P(x)h(wlux)gly” (124)
w=1xeT

We obtain a numerical lower bound on the achievable rate of Gallager codes by computing as a
function of w a bound on g(w) = Y ;e h(w|ux), the number of pairs (x,x’) that give rise to an

(x — x') of weight w.
First consider the number of pairs such that x has weight u, x’ has weight ', and (x — x’) has
weight w. This quantity g(u,u’,w) can be written in terms of A = (u —«')/2 and | = (u + u')/2

as:
!

(F+2)(F — M) — SINL - I— !
where it is understood that ¢ = 0 whenever any of the terms v! in the denominator has v < 0. We
arrive at this expression by considering the number of ways of subdividing L bits into four blocks:

g(u,u',w) = (125)
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the 1 bits found in x but not x’; the 1 bits found in x’ but not x; the 1 bits common to x and x';
and the 0 bits common to x and x'.
The number of pairs g(w) = 3, s g(u, %', w) is bounded by the number of terms in the sum
times the maximum value:
g(w) < (2nL)* maxg(u, v, w) (126)

We can bound the maximum by minimizing the products (% +A)!(% —A)! and (I—$)/(L—1—%)!

in the denominator. The first product is minimized by setting A = 0; the second by setting [ to its
largest value (assuming that the density f +n < 1/2). Thus,

L!

* — 2
o) <67 = L) NG L - pRa - L -

(127)

where fT = f + 1.
The function g*(w) is an increasing function of w for 0 <w < 2f(1 — f)L, where it has a sharp
maximum. It is well approximated by log ¢* (w) ~ LG(¢), where ¢ = w/L and

G(¢) = —¢log(¢/2) + (f—¢/2)log(f—¢/2) + (1~ f—¢/2)log(1 — f—¢/2).  (128)

The step to (128) made use of inequality (74). We find achievable rates by finding values of f and

A such that the maximum value over ¢ and k of G (¢) + /\LM log ngw‘M) is just less than zero (see

section F.4).

H Arithmetic coding for creation of sparse sources

A redundant source having density less than 0.5, with consecutive source symbols that are inde-
pendent and identically distributed, can be produced from a dense source by using a variation on
arithmetic coding [70, 57]; one simply reverses the role of encoder and decoder in a standard arith-
metic coder based on a model corresponding to the sparse messages. The following pseudocode
gives an algorithm for this task, but ignores issues of initialization and termination.

Loop to read a dense stream and output a sparse stream with density f.
loop

At this point, 0 < R< 21 and 0 <V < R.

while R < 2k—2

R < 2R
V < 2V + next input bit

end while

M + |fR]

if V. < M then
output ‘1’ bit
R+ M

else
output ‘0’ bit
VV-M
R+ R-M

end if

end loop

Loop to reconstruct the original dense stream from its encoding as a sparse stream.
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loop

At this point, 0 < R< 251 and 0 < V + R < 2F.
while R < 2k—2

if 2572 <V < 2¥71 then
V « V—2k2
d <+ d+1
else
if V> 2k=1 then
V + V—2k1
output a ‘1’ bit followed by d ‘0’ bits
else
output a ‘0’ bit followed by d ‘1’ bits
endif
d+ 0
end if

R + 2R
V « 2V

end while
M « |fR]

if next input bit = 1 then
R+ M

else
R+~ R-M
V&« V+M

end if

end loop
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