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Abstract

A traditional interpolation model is characterized by the choice of reg-
ularizer applied to the interpolant, and the choice of noise model. Typi-
cally, the regularizer has a single regularization constant «, and the noise
model has a single parameter 3. The ratio «/3 alone is responsible for de-
termining globally all these attributes of the interpolant: its ‘complexity’,
‘flexibility’, ‘smoothness’, ‘characteristic scale length’, and ‘characteristic
amplitude’. We suggest that interpolation models should be able to cap-
ture more than just one flavour of simplicity and complexity. We describe
Bayesian models in which the interpolant has a smoothness that varies
spatially. We emphasize the importance, in practical implementation, of
the concept of ‘conditional convexity’ when designing models with many
hyperparameters.

We apply the new models to the interpolation of neuronal spike data

and demonstrate a substantial improvement in generalization error.

*David MacKay is with the Cavendish Laboratory, Cambridge, United Kingdom. Email:

mackay@mrao .cam.ac.uk.

tRyo Takeuchi is with the Electrical Engineering department, Waseda University, Tokyo,

Japan. Email: takeuchi@matsumoto.elec.waseda.ac. jp.



1 Introduction

In this paper our philosophy of generalization is as follows: the best generaliza-
tion will be achieved by a Bayesian model that is well-matched to the problem
and that is accurately implemented. The aim of obtaining the best general-
ization is thus subsumed under the aim of searching for good models. In this
paper we expand the space of interpolation models by introducing additional
hyperparameters, and demonstrate that the generalization performance on a
real problem is substantially improved.

A traditional linear interpolation model “H;’ is characterized by the choice
of the regularizer R, or prior probability distribution, that is applied to the
interpolant; and the choice of noise model A'. The choice of basis functions A
used to represent the interpolant may also be important if only a small number
of basis functions are used. Typically the regularizer is a quadratic functional
of the interpolant and has a single associated regularization constant «, and the
noise model is also quadratic and has a single parameter 8. For example, the

splines prior for the function y(z) (Kimeldorf and Wahba 1970) is:!
1
log P(y(x)|e, H1) = —3 a/ dx [y(p)(m)]2 + const, (1)

where y{?) denotes the pth derivative of y. The probability of the data measure-
ments D = {t(™}N_ assuming independent Gaussian noise is:

N
8 (y(;r(m)) - t(m))2—|— const. (2)

m=1

log P (D|y(z),8,H1) = —

(The constants in equations (1) and (2) are functions of « and f respectively.)
When we use these distributions with p = 2 and find the most probable y(z) we

obtain the cubic splines interpolant. For any quadratic regularizer and quadratic

I Strictly this prior is improper since addition of an arbitrary polynomial of degree p — 1 to
y(z) is not constrained. It can be made proper by adding terms corresponding to boundary
conditions to (1). In the present implementations of the models, we enforce the boundary

conditions y(0) = 0 and, where appropriate, y’'(0) = 0.
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Figure 1: An inferred spike signal from a zebra finch neuron.

Courtesy of M. Lewicki and A. Doupe, California Institute of Technology.

log likelihood, the most probable interpolant depends linearly on the data values.
This is the property by which we define a ‘linear’ interpolation model.

Such models may be optimized and compared using Bayesian methods as
reviewed in MacKay (1992). In such models, for fixed f, the ratio o/ alone
determines globally all the following attributes of the interpolant: its complexity,
flexibility, smoothness, characteristic scale length, and characteristic amplitude.
Now, whilst some of these terms may be synonyms, surely others describe dis-
tinct properties. Should not our models be able to capture more than just one
flavour of simplicity and complexity? And should not the interpolant’s smooth-

ness, for example, be able to vary spatially?

1.1 Example: Neural spike modelling

An example of a function from a real system is shown in figure 1; this is the action
potential of a neuron deduced from recordings of 40 distinct events (Lewicki
1994). The graph was created by fitting a simple spline model (with p = 1) to
the data. This function has one ‘spiky’ region with large characteristic amplitude
and short spatial scale. Elsewhere the true function is smooth. However the

fitted function shown in figure 1, controlled by only one regularization constant



a, overfits the noise on the right, having a rough appearance where it should
plausibly be smooth. The value of a appropriate for fitting the spiky region is
too small for the rest of the curve. It would be useful here to have a model
capable of capturing the concepts of local smoothness, because such a model,
having a prior better matched to the real world, would require less data to
yield information of the same quality. Furthermore, when different hypotheses
are compared, broad priors introduce a bias toward simpler hypotheses. For
example, if we ask whether one or two distinct spike functions are present in
a data set, the traditional model’s prior with small a will bias the conclusion
in favour of the single spike function. Only with well-matched priors can the
results of Bayesian hypothesis comparison be trusted.

In this paper we discuss methods for introducing multiple flavours of simplic-
ity and complexity into a hierarchical probabilistic model in a computationally
tractable way, and demonstrate new interpolation models with multiple hyper-
parameters that capture a spatially varying smoothness.

Prior work making use of variable hyperparameters includes the modelling of
data with non-Gaussian innovations or observation noise (see, e.g., (West 1984;
Carter and Kohn 1994; Shephard 1994)). The interpolation models we propose
might be viewed as Bayesian versions of the ‘variable bandwidth’ kernel regres-
sion technique (Muller and Stadtmuller 1987). The aim of our new model is
also similar to the goal of inferring the locations of discontinuities in a function,
studied by Blake and Zisserman (1987). Traditional interpolation models have
difficulty with discontinuities: if the value of «/3 is set high, then edges are
blurred out in the model; if a/3 is lowered the edge is captured, but ringing
appears near the edge, and noise is overfitted everywhere. Blake and Zisser-
man introduce additional hyperparameters defining the locations of edges. The
models they use are computationally non-convex, so that finding good rep-
resentatives of the posterior distribution is challenging. They use ‘graduated

non-convexity’ techniques to find good solutions. By contrast we attempt to



create new hierarchical models that are, for practical purposes, convex.

2 Tractable hierarchical modelling: Convexity

Bayesian statistical inference is often implemented either by Gaussian approxi-
mations about modes of distributions, or by Markov Chain Monte Carlo meth-
ods (Smith 1991). Both methods clearly have a better chance of success if the
posterior probability distribution over the model parameters and hyperparame-
ters is not dominated by multiple distinct optima. If we know that most of the
probability mass is in just one ‘hump’, then we know that we need not engage in
a time-consuming search for the more probable optima, and we might hope that
some approximating distribution (e.g., involving the mode of the distribution)
might be able to capture the key properties of that hump. Furthermore, convex
conditional distributions may be easier to sample from with, say, Gibbs sam-
pling methods (Gilks and Wild 1992). It would be useful if all the conditional

and marginal probability distributions of our models were log convex:

Definition 1 A probability distribution is log convex if there is a representa-
tion x of the variables such that the matriz M defined by
2

M;; = —
8:528%

log P(x) (3)

1s everywhere positive definite.

It is hard, however, to make interesting hierarchical models such that all
conditional and marginal distributions are log convex. We introduce a weaker

criterion:

Definition 2 A model is conditionally convex if its variables can be divided
into groups such that, for every group, their distribution conditioned on any

values for the other variables is log conver.



An example of a conditionally convex model is the traditional interpolation
model with three groups of variables: D (data), w (parameters), and a (one
hyperparameter). The probability distribution P(D|w,«) = P(D|w) is log
convex over D (it is Gaussian). The distribution P(w|D, &) is log convex over
w (it is Gaussian). And the distribution P(a|w,D) = P(a|w) is log convex
over « (it is a Gamma distribution).

That a model is conditionally convex does not guarantee that marginal dis-
tributions of all variables are unimodal. For example the traditional model’s
posterior marginals P(w|D) and P(«|D) are not necessarily unimodal; but good
unimodal approximations to them can often be made (MacKay 1996). So we
conjecture that conditional convexity is a desirable property for a tractable
model.

We now generalize the spline model of equation (1) to a model with multiple
hyperparameters that is conditionally convex, and demonstrate it on the neural
spike data. We then discuss general principles for hierarchical modelling with

multiple hyperparameters.

3 A new interpolation model

We replace the regularizer of equation (1) by:
log P(y(z)|a(z), Ha) = —% / dx a(a:)[y(p)(x)]z + const, (4)

where a(z) is written in terms of hyperparameters u = {uy} thus:
H
a(z;u) = exp (Z upp (.IL‘)) , (5)
h=1
and the constant of equation (4) is a function of a(z;u) which becomes im-
portant when «(z;u) is inferred. The exponentiated quantity has the form
of a linear interpolant using basis functions ¢, (z). In the special case H =
1,41(x) = const., we obtain the traditional single alpha model. This represen-

tation is chosen because (1) it embodies our prior belief that «(z) should be a



smooth function of z, and (2) the model is conditionally convex (a partial proof
is given in section 4).
When implementing this model we optimize the hyperparameters u and g

by maximizing the marginal likelihood or ‘evidence’,

P(D|u16a%2):/ dkyP(D|yaﬁ7%2)P(y|ua%2)7 (6)

where k is the dimensionality of our representation y of y(). Some authors view
this ‘empirical Bayes’ approach as controversial and inaccurate (Wolpert 1993),
but it is widely used under various names such as ‘ML-II’, and is closely related
to ‘generalized maximum likelihood’ (Gu and Wahba 1991). The ideal Bayesian
method would put a proper prior on the hyperparameters and marginalize over
them, but optimization of the hyperparameters is computationally more conve-
nient and often gives predictive distributions that are indistinguishable (MacKay
1996).

We use a discrete representation of y(z) and a(z) on a finely spaced grid,
{}, writing y(z) — y, a(z;u) = {a. = a(z;u)} and Ype = Yp(ze). In
this representation the Hessian of the log posterior is a sum of band-diagonal
terms from the log prior and a diagonal matrix from the log likelihood, A =
—VVlog P(y|D,{a}, B, Hs2) = Zle a.C. + FI. The gradient of the log evi-

dence, which we use for the optimization, is then:

) < )
Fur 108 P (D, 8, H5) = ; Yheates —log P(D|{ac}) (7)
where
L p 1 -1
log P(D|{ac}) = —§yMPCcyMP—§Trace[A C.]
o

1 _
+§Trace (> aeCe) e, l. (8)
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Figure 2: Traditional models: p = 1 and p = 2. The diamond-shaped points in
the upper plots are the artifical data. The solid line shows the most probable
interpolant found using the traditional single alpha model. The predictive error
bars (dotted lines) are one-standard-deviation error bars. The lower row shows
the errors between the interpolant and the original function to which the noise
was added to make the artificial data. The predictive error bars are also shown.

Contrast with figure 3.
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Figure 3: New models with multiple hyperparameters: p = 1 and p = 2. Top
row: The diamond-shaped points are the artifical data. The solid line shows
the most probable interpolant and the predictive error bars (dotted lines) are
one-standard-deviation error bars. Second row: the inferred «(z) on a log
scale (contrast with the values of 5.9 x10~7 and 2.0 x 10~° inferred for the
traditional models). The third row shows the nine basis functions ¢ used to
represent a(z). The bottom row shows the errors between the interpolant and
the original function to which the noise was added to make the artificial data.
The predictive error bars are also shown. The top and bottom graphs should

be compared with those of figure 2. 9



Table 1: Comparison of models on artificial data.
The first three columns give the evidence, the effective number of parameters, and the
RMS error for each model when applied to the data shown in figures 2-3. The fourth

column gives the RMS error averaged over four similar data sets.

Model log ~ RMS | avg. RMS
Evidence error error
Trad., p=1 -886.0 54.7 730 694
Trad., p =2 -891.7 322 692 642
New, p=1 -859.2 23.6 509 470
New, p =2 -861.5 15.3 510 417

3.1 Demonstration

We made an artificial data set by adding Gaussian noise of standard deviation
1000 to the function depicted in figure 1. [This function plays the role, in
these experiments, of a true underlying function; the presence of some actual
roughness in this function is believed to be unimportant since our chosen noise
level is substantially greater than the apparent size of the roughness.] Figure
2 shows the data, interpolated using the traditional single alpha models with
p =1 and p = 2. The hyperparameter @ was optimized by maximizing the
evidence, as in Lewicki (1994). The noise level o, was set to the known noise
level. In order for the spiky part of the data to be fitted, a has to be set to
a small value, and the most probable interpolant is able in both models to go
very close to all the data points. There is considerable overfitting everywhere,
and the predictive error bars are large everywhere.

We then interpolated the data with two new models defined by equations (4)
and (5), with p = 1 and p = 2. We set the basis functions ¢ to the hump-shaped
functions shown in figure 3. These functions define a scale length on which the

smoothness is permitted to vary. This scale length was optimized roughly by

10



maximizing the evidence. The new models had nine hyperparameters u. These
hyperparameters were set by maximizing the evidence using conjugate gradi-
ents. Because the new models are conditionally convex, we had hoped that the
maximization of the evidence would lead to a unique optimum u,. However,
there were multiple optima in the evidence as a function of the hyperparam-
eters; but these did not cause insurmountable problems. We found different
optima by using different initial conditions u for the optimization. The best
evidence optima were found by initializing u in a way that corresponded to our
prior knowledge that neuronal spike functions start and end with a smooth re-
gion; we set u initially to {u,} = {0,—-10,—-10,—10,—10,—10,—10,0,0}. This
prior knowledge was not formulated into an informative prior over u during
the optimization, though doing so would probably be a good idea for practical
purposes.

Figure 3 shows the solutions found using the new interpolation models with
p =1 and p = 2. The inferred value of « is small in the region of the spike, but
elsewhere a larger value of « is inferred, and the interpolant is correspondingly
smoother.

The log evidence for the four models is shown in table 1. The reported ev-
idence values are log, P(D|awp, H1), log, P(D|uyp, Hz). If we were to make a
proper model comparison we would integrate over the hyperparameters; this in-
tegration would introduce additional small subjective Occam factors penalizing
the extra hyperparameters in Hq, c.f. MacKay (1992). The root mean square
errors between the interpolant and the original function to which the noise was
added to make the artificial data are given in table 1, and the errors themselves
are displayed at bottoms of figures 2-3.

By both the evidence value and the RMS error values, the new models are
significantly superior to the traditional model. Table 1 also displays the value of
the ‘effective number of well-determined parameters’ (Gull 1989; MacKay 1992),

11



~, which, when the hyperparameters are optimized, is given by:

= [ o o)

The smaller the effective number of parameters, the less overfitting of noise
there is, and the smaller the error bars on the interpolant become. The total

number of parameters used to represent the interpolant was in all cases 100.

3.2 Model criticism

It is interesting to assess whether the observed errors with respect to the original
function are compatible with the one-standard-deviation error bars that were
obtained. These are shown together at the bottom of figure 3. The errors are
only significantly larger than the error bars at the leftmost five data points,
where the small amount of noise in the original function is incompatible with
the assumed boundary conditions y(0) = 0 and ¥'(0) = 0. Omitting those five
data points, we find for the new p = 1 model that the other 95 errors have
x? = 72.5 (c.f. expectation 95 4 14), and for the p = 2 model, y? = 122. None
of the 95 errors in either case exceed 2.5 standard deviations. We therefore
see no significant evidence for the observed errors to be incompatible with the

predictive error bars.

3.3 Discussion

These new models offer two practical benefits. First, while the new models
still fit the spiky region well (indeed the errors are slightly reduced there),
they give a smoother interpolant elsewhere. This reduction in overfitting allows
more information to be extracted from any given quantity of experimental data;
neuronal spikes will be distinguishable given fewer samples. To quantify the
potential savings in data we fitted the four models to fake data equivalent to
1,2,...10 independent observations of the function shown in figure 1, that is,

N = 100,200, ...1000 data points with noise level o, = 1000 (we we did this

12
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Figure 4: Average RMS error of the traditional and new models as a function

of amount of data

by decreasing the actual noise level in the artificial data). The figures and
tables shown thus far correspond to the case of one observation, N = 100. In
figure 4 we show the RMS error of each model as a function of the number of
data points, averaged over four runs with different artificial noise. To achieve
the same performance (RMS error) as the new models, the traditional models
require about three times as much data.

Second, the new models have greater values of the evidence. This does not
only mean that they are more probable models (assuming that the omitted
Occam factors for the hyperparameters are smaller than these evidence differ-
ences). It also means that model comparison questions can be answered in a
more reliable way. For example, if we wish to ask ‘are two distinct spike types
present in several data sets or just one?’ then we must compare two hypotheses:
Hp, which explains the data in terms of two spike functions, and H 4, which
just uses one function. In such model comparisons, the ‘Occam factors’ that
penalize the extra parameters of Hp are important. If we used the traditional

interpolation model, we would obtain Occam factors about €2° bigger than those
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obtained using the new interpolation model. Broad priors bias model compar-
isons toward simpler models. The new interpolation model, when optimized,
produces a prior in which the effective number of degrees of freedom of the
interpolant is reduced so that the prior is less broad.

Of course, inference is open-ended, and we expect that these models will in
turn be superceded by even better ones. Close inspection of figure 3 reveals
that the smoothness assumption on the regularizer may be imperfect — we
know from prior experience that the true function’s spikiness is confined to a
very small time interval, but the new model gives a jagged interpolant in the
time interval before the spike too because the function a(z) is assumed to vary
smoothly. Future models might include a continuum of alternative values of p
(non-integer values of p can be implemented in a Fourier representation). It
might also make sense for the characteristic length scale of the basis functions
¢ with which a(z) is represented to be shorter where « is small.

The advantages conferred by the new models are not accompanied by a signif-
icant increase in computational cost. The optimization of the hyperparameters
requires that the Hessian matrix be inverted a small number of times.

Other approaches to the implementation of models with multiple hyperpa-
rameters could be considered. The confidence intervals in the present approach,
in which the hyperparameters are optimized, are likely to be too small. One
could use Markov chain Monte Carlo methods such as Gibbs sampling or hy-
brid Monte Carlo, both of which would involve a similar computational load (see
Neal (1993) for an excellent review). We have used the Gibbs sampling soft-
ware ‘BUGS’ (Thomas et al. 1992) to implement a similar interpolation model
in which the Gaussian noise level is a spatially varying function f(z) (MacKay

1995).
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4 Some Generalizations

4.1 Strategies for making models with multiple hyperpa-

rameters

We now discuss more generally the construction of hierarchical models with
multiple hyperparameters.

Consider a Gaussian prior on some parameters w, equivalent to the function
y(z) in the earlier example. There are various ways of defining a model with
multiple hyperparameters such that each hyperparameter controls a different

flavour of simplicity or complexity in w.

Sum Model

Firstly, one might define the inverse covariance matrix as a sum:

c=1

1 1<,
P(wl{a}) = 7 &XP (—ixacw ch) , (10)

where {C.} are arbitrary positive semi-definite matrices and a. > 0, Ve.

Covariance Sum Model

Secondly, one might define the covariance matrix as a sum:
-1

w

c
P(wl|{0}) = %exp —%WT [Z 0.C.
c=1

with hyperparameters 6. > 0, Ve.

Exponential Sum Model

Thirdly, we can take a sum model of the form (10) (though not necessarily using

the same matrices {C.}) and rewrite the coefficients as an exponential sum:

Q. = exp (Z uhi/)hc) , (12)

h
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with hyperparameters up € (—00, 00), so that

P(wl{u}) = %exp (—% Zexp (E uh'(/)hc) WTCCW) , (13)

e=1 h

These models have very different capabilities.

The sum model implements the paradigm of starting from a flexible distri-
bution, then adding in extra terms a.C. so as to kill degrees of freedom. This
model has no way of introducing selective flexibility. If one hyperparameter a,
is large, there is no way that other hyperparameters can be set to undo the
stiffness introduced.

The covariance sum model uses an alternative paradigm, starting from a stiff
distribution, and introducing lacunae of flexibility into it.

The important difference between these two paradigms is that whereas the
sum model is conditionally convex, the covariance sum model is not; it is possible
for there to be multiple optima over the hyperparameters even in the limit of
perfect data. This will be demonstrated and explained subsequently.

The exponential sum model, of which the interpolation model of section 3 is
an example, is intended to combine the best of both worlds. Consider the case
where the matrix elements 1., are non—negative. As one hyperparameter uy is
increased, it introduces selective stiffness, and as it is decreased, it introduces
selective flexibility. The model, being a reparameterization of the sum model, is

still conditionally convex (as long as ¢ does not have pathological properties).

4.2 Convexity of the sum model

We give a partial proof of conditional convexity for the sum model. It is
straightforward to confirm that the conditional distributions P(D|w,{a}) and
P(w|D,{«a}) are log convex. The non-trivial property is that P({a}|w, D) x
P({a})P(w|{a}) is convex. We assume that the prior over {a} is defined to be

16
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a) Sum model b) Covariance sum c¢) Exponential sum

Figure 5: Toy problem probability contours.
Each figure shows the likelihood of two hyperparameters given w = (0.01,2.0,0.1).
Hyperparameters aq,cq and ug are on the horizontal axes, and as,cy and up on the
vertical axes. In all figures the top e® of the function is shown and the contours are

equally spaced in log probability.

convex and examine the second factor. Defining M = Zle a.C., we find:

2
_ 1 -1 -1
Sadas log P(w|{a}) = 2Trace M~'C.M~'Cy] (14)

This second derivative is negative definite.
Proof

For arbitrary x,

> wcTraceMC:MCylz g (15)
c,d

2
= Trace (ZMU?chU?xd) > 0. (16)
d

4.3 A toy illustration

As an illustration, we examine the conditional convexity of a model that as-
signs a zero-mean Gaussian distribution to a three component vector w. This

distribution is to be parameterized by two hyperparameters. For simplicity, we

17



assume w is directly observed: w = (0.01,2.0,0.1). This choice of w favours
priors that give flexibility to component 2. Components 1 and 3 do not call for
such flexibility.

Sum model: We build M as a sum of two matrices, diag(1,1,0) and

diag(0,1,1).

M = diag(ag, aq + b, ap). (17)

Figure 5a shows the log probability log P(w|{a}) as a function of loga, and
log ap. The function is convex.

Covariance sum model: We now build M~! as a sum of diag(1,1,0) and

diag(0,1,1), letting:
. 1 1 1
M = diag | — . (18)

3 s
Cq Cq+Cp Cp

Figure 5b shows the log probability log P(w|{c}) as a function of log ¢, and
logep. The function is not convex. The two alternative flavours of flexibility
compete with each other to give the required variance for component 2 of w.
Either we may switch on ¢, to a large value, or we may switch on ¢, — but we
may not switch on both to an intermediate degree.

Exponential sum model: We build M as a sum of three matrices, diag(1,0,0),
diag(0,1,0). and diag(0,0,1), with the aid of basis functions ¢, = (1,1,0) and
¥» = (0,1,1). Thus

M = diag (e““,e““+“”,e“b) . (19)

This model has the same number of hyperparameters as the previous two models
but uses them differently. Figure 5c¢ shows the log probability log P(w|{u}) as
a function of u, and u,. The function is convex. Two alternative flavours of
flexibility are embodied, but (just) do not compete with each other destructively.

The sum model starts from flexibility and adds in constraints of stiffness that
kill degrees of freedom in w. The covariance sum representation starts from stiff-

ness and adds in selective flexibility to create required degrees of freedom. The
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covariance sum model is not convex because different forms of flexibility compete
to account for the data. There is a struggle for existence, because any potential
piece of flexibility is penalized by Occam factors in the det M term, encouraging
it to stay switched off. In contrast, alternative ways of introducing stiffness (as
in the sum model and the exponential sum model) do not compete. If two sorts
of stiffness are compatible with the data, they can both be switched on without
incurring any penalty. This is why the sum model is convex. The exponen-
tial sum model, we conjecture, pushes flexibility to the limits of convexity. We
believe these ideas may be relevant to the design of computationally tractable
Gaussian process models for non-linear regression (Williams and Rasmussen

1996).

4.4 How to represent a covariance matrix

In this paper we have used interpolation of neural spike data as a test bed for
the new models. We now discuss another task to which the general principles
we have discussed may apply.

Imagine that we wish to model correlations between k variablesy = (y1 ... yx)"
that are assumed to be Gaussian with a covariance matrix V that varies with
other variables x. How should this varying covariance matrix V(x) be param-
eterized? We assume that a representation V(U(x)) is to be used. We would

like the parameterization V (U) to satisfy the following desiderata.

1. Any setting of the parameters U should produce a valid positive definite

matrix V.

2. Any positive definite matrix V should be realizable by a unique value of

the parameters U.

3. The parameterization and its inverse should be continuous and differen-

tiable.
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4. The representation should treat all indices of the covariance matrix sym-
metrically; for example, the first row of V should not be treated differently

from the second row.

5. U should have k(k 4+ 1)/2 degrees of freedom, that being the number of

independent elements in the symmetric matrix V.

6. Finally we would like the representation to be conditionally convex; that
is, given one or more vectors y, the conditional probability of U should

be log convex.

These desiderata rule out most obvious representations of V. The raw matrix
V is not permitted because it violates desideratum 1. A triangular decomposi-
tion violates 4. An eigenvector / eigenvalue representation violates 2,3,5. The
‘variance component model’ representation used for example in Gu and Wahba
(1991) is a covariance sum representation and violates desiderata 5 and 6.

The ideas of this paper motivate the following representation, which is con-
ditionally convex. Let y be k dimensional, and let Ry_; be the unit spherical
surface, with v being a unit vector in that space. As parameters we introduce
a symmetric matrix U that is not constrained to be positive definite. Then we
represent V as the inverse of a sum of outer products thus:

-1

V(U) = [/R d* v exp(v'Uv) vv' (20)

This representation satisfies all the desiderata. Since this may not be self-
evident, we include a sketch of a proof of half of property 2, namely, that the
mapping from U to V is one to one. We first transform into the eigenvector
basis of U (by an orthogonal transformation that leaves Rg_; invariant) and
prove that the eigenvectors {e} of U are also eigenvectors of V. Let {w;} be
the components of v in the eigenvector basis so that v = w;e(;), where the

eigenvectors and eigenvalues of U satisfy Ue(;) = )\?e(i). Then from equation

20



(20) we can write

vy /R e | YWt | wged (21)
i,j -1 J

The integrand, for i # j, is antisymmetric in w; and wj, so the integral is zero

in these cases. Thus

V= Sendy [ wen (D6 w2
i k=1 J

that is, V has the same eigenvectors as U, and its eigenvalues are given by:

()\Z‘»/)_lzf72 dk_lwwfexp Z/\?wf , (23)
k—1 ]

Then the mapping from U to V is one to one if the above mapping from the
eigenvalues of U, {A\Y}, to the eigenvalues of V, {AV}, is one to one. We
differentiate equation (23) to obtain the Jacobian; if the Jacobian is full-rank

then the mapping is one to one.

M = / d*'w wlw? exp Z Aaw? . (24)
PV i e

This Jacobian is a sum of outer products of positive vectors z given by z; = w?,
so it either defines a positive semi-definite or a positive definite matrix. The
matrix can only be positive semi-definite if there is some direction h such that
Zi hiw? = 0 for all w having non-zero measure under the integral over Rg_1.
Because the integral is over all of Rg_1, there is no such vector h. Thus the
matrix is full rank, and the mapping from U to V is one to one.

The only problem with this representation is that it involves a high-dimensional
integral. We propose for practical purposes the following approximation:

-1

C
V(U) = éz exp(viUV,) v Ve (25)
c=1
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where {v.}¢_; are fixed unit vectors lying in Rg_1, selected either at random
or systematically. This representation is conditionally convex and is able to

represent arbitrary V in the limit C' = co.

5 Conclusions

This work builds on a data modelling philosophy previously illustrated by
work on the ‘Automatic Relevance Determination’ model for neural networks
(MacKay 1994; Neal 1996): use a huge, flexible model with an essentially in-
finite number of parameters; and control the complexity of the model with
sophisticated regularizers. Models with large numbers of hyperparameters can,
if carefully designed, be practically implemented. The hyperparameters reduce
the effective number of degrees of freedom of the model in a manner appropri-
ate to the the properties of the data, leading to substantial improvements in

generalization error.
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