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Abstract

Ensemble learning by variational free energy minimization is a tool introduced to
neural networks by Hinton and van Camp in which learning is described in terms of
the optimization of an ensemble of parameter vectors. The optimized ensemble is an
approximation to the posterior probability distribution of the parameters. This tool
has now been applied to a variety of statistical inference problems.

In this paper I study a linear regression model with both parameters and hyper-
parameters. I demonstrate that the evidence approximation for the optimization of
regularization constants can be derived in detail from a free energy minimization view-
point.

1 Ensemble Learning by Free Energy Minimization

A new tool has recently been introduced into the field of neural networks and statistical
inference. In traditional approaches to neural networks, a single parameter vector w is
optimized by maximum likelihood or penalized maximum likelihood. In the Bayesian in-
terpretation, these optimized parameters are viewed as defining the mode of a posterior
probability distribution P(w|D,H) (given data D and model assumptions ), which can
be approximated, with a Gaussian distribution P for example (MacKay 1992b), in order to
obtain predictive distributions and optimize model control parameters.

The new concept introduced by Hinton and van Camp (1993) is to work in terms of an
approximating ensemble Q)(w;#), that is, a probability distribution over the parameters,
and optimize the ensemble (by varying its own parameters #) so that it approximates the
posterior distribution of the parameters P(w|D, H) well. The objective function chosen to
measure the quality of the approximation is a variational free energy,!

P(D|w,H)P(w|H)
Q(w; 0)

The free energy F(6) is bounded below by —log P(D|#) and only attains this value for
Q(w;0) = P(w|D,H). F(6) can be viewed as the sum of —log P(D|H) and the Kullback-

F(9) = —/dka(w; 6) log (1)

'Variational free energy minimization is a well-established tool in statistical physics (Feynman 1972);
‘mean field theory’ is an important special case. The free energy can also be described in terms of description
lengths.



Leibler divergence between @) (w;6) and P(w|D, ). For certain models and certain approx-
imating distributions, this free energy, and its derivatives with respect to the ensemble’s
parameters, can be evaluated.

Hinton and van Camp (1993) considered a regression network with one non-linear hidden
layer and showed that a separable Gaussian approximating distribution Q(w;#) can be
optimized with a deterministic algorithm.

Hinton and Zemel (1994) have applied the same approach to the optimization of an
autoencoder. The hidden-to-output part of an autoencoder is viewed as defining a gen-
erative model employing latent variables that live in the hidden layer of the model. The
optimization of such a generative model is challenging, requiring, for every given data ex-
ample, an implicit or explicit computation of the posterior probability distribution P of the
latent variables. Hinton and Zemel (1994) view the input-to-hidden ‘recognition’ part of the
autoencoder as defining an approximating distribution ¢} for this distribution P. A single
objective function F can then be defined for simultaneous optimization of the generative
model and the recognition model. The Helmholtz machine (Dayan et al. 1995) is a further
generalization of these ideas.

In a broader statistical context, Neal and Hinton (1993) have shown that it is possible to
view the Expectation-Maximization (EM) algorithm in terms of a free energy minimization.
The deterministic Boltzmann machine can be derived as a free energy approximation to
the Boltzmann machine (Radford Neal, personal communication). And MacKay (1995a)
has obtained an algorithm for decoding certain binary codes by variational free energy
minimization.

In this paper I study a free energy approximation for a linear regression model with
an unknown hyperparameter. This model captures the essence of an important problem in
neural networks, namely how to set regularization constants or weight decay parameters.

2 Inference of parameters and hyperparameters

There has been a debate over the appropriateness of the generalized maximum likeli-
hood method, also known as the evidence framework (Gull 1989; MacKay 1992a), for
controlling hyperparameters in linear and non-linear regression models (Wolpert 1993;
MacKay 1994). In this section I demonstrate that, for linear models, a simple free energy
minimization approximation reproduces the method of the evidence framework precisely.
This demonstration further clarifies the sense in which the evidence approximation is a
reasonable method of computationally tractable inference.

2.1 The linear regression model with regularization

The statistical model is as follows:
P(D,w,a, 3|H) = P(D|w, 3, 1) P(w|a, H) P(a, B|H), (2)

where D is the data, w is the parameter vector, of dimension k, § defines a noise variance
02 =1/, and a is a regularization constant. In a regression problem, for example, D might
be a set of data points, {x,t}, and the vector w might parameterize a function f(x;w).
The model H states that for some w, the dependent variables {t} are given by adding noise
to {f(x;w)}; the likelihood function P(D|w, 3, H) describes the assumed noise process,
parameterized by a noise level 1/3; the prior probability of the parameters, P(w|a, H),



embodies assumptions about the spatial correlations and smoothness that the true function
is expected to have, parameterized by a regularization constant «. The variables « and [
are known as hyperparameters. Problems for which models can be written in the form (2)
include linear interpolation with a fixed basis set (Gull 1988; MacKay 1992a), non-linear
regression with a neural network (MacKay 1992b), and image deconvolution (Gull 1989).

In the simplest case (linear models, Gaussian noise), the first factor in (2), the likelihood,
can be written in terms of a quadratic function of w, Fp(w):

P(Dlw, 3, H) = exp(—BEp(w). (3)

1
Zp(B)
What makes the problem ‘ill-posed’ is that the hessian VV Ep is ill-conditioned — some of
its eigenvalues are very small, so that the maximum likelihood parameters depend undesir-
ably on the noise in the data. The model is ‘regularized’ by the second factor in (2), the
prior, which in the simplest case is a spherical Gaussian:

1
Zw ()

P(w|a,H) = exp(—atw w). (4)
The regularization constant « defines the variance 0%, = 1/« of the prior for the components
w; of w.

Finally, a gamma distribution prior is assumed for a and 3, P(a|H) = ['(a; by, o),
where this notation means:

1 at~t o
F ) bo(7 o = T 1cCa < -7 b S
(a;bq, co) o) o exp ( ba) 0<a<o

This distribution has mean b,c, and variance bica.
In what follows I will for simplicity assume that § is known and fixed, and that the
model is indeed a linear model (i.e., Fp is a quadratic function of w).

2.2 Review of the evidence framework

The evidence framework divides our inferences into distinct ‘levels of inference’:
Level 1: Infer the parameters w for a given value of a:

P(D|w,a, H)P(w|a, H)

Pw|D,a,H)= P{Dla, 1) . (5)
Level 2: Infer a:  P(Dla, H)Plal)
P(a|D,H) = PO : (6)
Level 3: Compare models:
P(H|D) < P(D|H)P(H). (7)

There is a pattern in these three applications of Bayes’ rule: at each of higher levels 2 and
3, the data-dependent factor (e.g. in level 2, P(D|a, #)) is the normalizing constant (the
‘evidence’) from the preceding level of inference.

The evidence framework obtains approximate inferences using the following procedure.



e The level 1 inference is approximated by making a quadratic expansion of
log P(D|w,a, H)P(w|o, H) around a maximum of P(w|D, «, H); this expansion de-
fines a Gaussian approximation to the posterior. The evidence P(D|a, H) is estimated
by evaluating the appropriate determinant. For linear models the Gaussian approxi-
mation is exact.

e By maximizing the evidence P(D|a,H) at level 2, we find the most probable value
of the regularization constant, cyp, and error bars on it, 0y, 4p. (Because « is a
positive scale variable, it is natural to represent its uncertainty on a log scale.)

e The value of ayp is substituted at level 1. This defines a probability distribu-
tion P(w|D, ayp, H) which is intended as a ‘good approximation’ to the posterior
P(w|D,#); this distribution is a Gaussian around the maximum, Wyp|a,,,, With co-
variance matrix X defined by ¥7! = —~VVlog P(w|D, ayp, H). Marginals for the
components of w are easily obtained from this distribution.

e Predictive distributions P(D3|D,#) are approximated by using the posterior distri-
bution with o =ayyp:

P(Dy|D, ayp, H) = /dkw P(Dy|w, H)P(w|D, ayp, H). (8)

For a locally linear model with Gaussian noise, both the distributions inside the
integral are Gaussian, and this integral is straightforward to perform.

As reviewed in MacKay (1992a), the most probable value of a satisfies a simple and intuitive

implicit equation,

1 _ v ©)
Qpp Y

where w; are the components of the vector wyp,a,,, and vy is the number of well-determined

paramelers:

v =k — oTraceX. (10)

This quantity is a number between 0 and k. Recalling that « can be interpreted as the
variance o2, of the distribution from which the parameters w; come, we see that equation
(9) corresponds to an intuitive prescription for a variance estimator. The idea is that we
are estimating the variance of the distribution of w; from only v well-determined parame-
ters, the other (k—+) having been set roughly to zero by the regularizer and therefore not
contributing to the sum in the numerator.

In principle, there may be multiple optima in «, but this is not the typical case for
a model well matched to the data. Under general conditions, the error bars on loga are
Ologa|D = V2/7 (MacKay 1992a; MacKay 1994). Thus log « is well-determined by the data
ifty>1.

The central computation can be summarised thus:

Evidence approximation: find the self-consistent solution {Wyp|ayp, @up )
such that wWyp|,,,, maximizes P(w|D, ayp, H) and ayp satisfies equation (9).

Justifications for this approximation are given in (MacKay 1995b; MacKay 1994), where
correction terms of order 1/,/7 are also given.



2.3 Free energy approximation

Let us consider approximating the joint distribution of w and « given the data,

P(D|w,H)P(w|a, H)P(a|H)
P(DI7) / .

P(w,a|D,H) =

by a distribution Q(w,a). I make one assumption only, namely that our approximation is
separable into the form Q(w, @) = Qw (W)Qa(a). No functional form for these distributions
s assumed. We write down a variational free energy,

P(D|w,H)P(w|a, H)P(a|H)

Qw(W)Qala) '
This functional is bounded below by the evidence for the model thus: F > —log P(D|H),
with equality only attained if Q(w,a) = P(w,a|D,H). We can find the optimal separable

distribution ) by considering separately the optimization of F' over Qw(w) for fixed Q, (),
and then the optimization of @, () for fixed Qw(wW).

- [ dw da Qu(w)Qu(a) log (12)

2.4 Optimization of Qw(w)
As a functional of Qw (W), F is:

F = —/dWQW [ da Qu(a)log P(w|a) 4+ log P(D|w, H) — logQ(W)] + const.

= /dw Qw(w) [/ da Qa(a)oéwa + BEp(w) + logQ(W)] + const.’

The dependence on J, thus collapses down to a dependence simply on the mean a =

[daQq (o).

/dw Qw(w [a ww' + BEp(w )—I—logQ(w)] + const.’

1

Noting that the w-dependent terms —a;ww™ — 3Ep(w) are the log of a posterior distribu-

tion, and using the theorem that a divergence [ @ log(€Q)/P) is minimized by setting @ = P,
we can immediately write down the distribution Qw(w) that minimizes this expression.
Thus for given data D and @, the optimizing distribution Q?,&)t(w) is a Gaussian identical
to the posterior distribution for a particular value of a = a.

w'(w) = P(w|D,a,H) = Normal(wy 5, 2). (13)

2.5 Optimization of (Q),(«)
As a functional of Q,(a), F is:

F(Q) = /daQ [/ dw Qw(w) log P(w|a, H) + log P(a|H) — log Qu )] + const.
= /daQ [ /dWQW( Jw’ W—Eloga—(Ca—l)logoz—l—a—l—logQa(a)]
= /daQ [( WMP|Q Wyp|a T 1Trace2 + bl ) o

k
_ (5 +c, — 1) log @ + log Qa(a)] + const.’

5



where ¢, b, are the parameters of the gamma prior on «. Here, the a-dependent expression
in the brackets can be recognized as the log of a gamma distribution, giving as the optimal
distribution that minimizes F for fixed Qw:

QP (a) =T(e ', ) (14)
where . ) . )
l/b/ = 1/bs + Wz Wyp|s + 5 TraceX (15)
= k/24c¢,

This completes our derivation of the free energy optimization. The optimal approximating
distribution is given by finding the gamma distribution for « and the normal distribution
for w that satisfy the simultaneous equations (13) and (15).

2.6 Comparison with evidence framework

To understand this result we complete the loop by evaluating the mean &' for this optimized
gamma distribution, which is:

k
° + c
Wyl o ate (16)
7o+ 2Wurla Wuela T 5 TraceX
In the special case of an uninformative prior on a (co — 0 and 7~ — 0) we obtain:
k
a' = (17)

Wyrp|a Wyp|a T TTaceX

Is this the same optimal a as that? found by the evidence approximation? The answer is
yes. Substituting (equation 9) W1\TAP|aMPWMPIaMp = v/ayp, and using ¥ = k — aTraceX, we
find that if we set @ = & = ayp on the right hand side we obtain
y k
o= —— —
v/a+(k—7v)/a

Thus any optimum of the evidence approximation is also a minimum of the free energy.

=a. (18)

2.7 Intuition for this relationship

These two approaches give complementary views of the task of inferring « given the data.
In the evidence framework we examine the optimized value of w, wyp|,, and think of
(WMPM){‘) as giving information about the variance o2, of the prior distribution of w. The
maximum likelihood estimator would be O"Q,V(ML) = (WMP|Q)2/]€, but the evidence framework
modifies this estimator to take into account the fact that some of the & parameters have
not been determined by the data, and have effectively been set to zero by the prior. Thus
the variance estimate replaces k by the effective number of well determined parameters v:
O-I%V(MP) = (WMP|04)2/7'
The free energy minimization approach is like an EM algorithm, in which we wish to
find the most probable a and do this by introducing an E-step in which a distribution
over w is obtained. This distribution takes into account the ill-determinedness of the

k — v ill-determined parameters by assigning each of them a variance of o2, in the matrix

20r ‘are these the same as those found by the evidence approximation?’ if there are multiple optima.



3.. Then when the M-step occurs, finding the optimal «, the maximum likelihood equation

U%V(ML) = (WMP|Q)2/IC is modified by adding these variance terms to the numerator: o2 =

W (FE)
{(WMPM)Q + TraceE} /k.

Thus evidence maximization decrements the denominator of the equation U%V(ML) =
(WMP|Q)2/IC to take into account the smallness of the ill-determined parameters, whereas
free energy minimization increments the numerator to take into account their variability.
As we have seen, the two formulae converge on the identical result.

2.8 Further work on this model

There are two small differences between previous Bayesian results and the results of the
free energy minimization.

1. The variance of the optimized gamma distribution for « is, in the limit of the unin-
formative prior,

var(a) = V¢ = 2k/(k/a)? = a?/k (19)
so that log « has standard error \/2/k. This contrasts with the result \/2/v from the

evidence framework.

2. This free energy approximation for QQw(w) fails to produce the small order correction
terms identified in (MacKay 1994), which arise because of the uncertainty in a.

It will be interesting to investigate whether a more complex approximating distribution
() might capture these terms.

2.9 Discussion

This result gives insight into the properties of both the evidence framework and ensemble
learning. An additional spin-off is a convergence proof (at least for linear models) for a
re-estimation formula for a (equation 16) which previous work on the evidence framework
had not provided. The steps of re-estimating @ and computing the new distribution Qw(w)
both decrease F, and F is bounded below, so the iterative procedure converges.

3 Work in progress

In the final version of this paper (in preparation) I will describe work on two more simple
models and one more complex model which capture the essence of other statistical problems
of relevance to neural network regression models and classifiers:

1. The inference of an unknown mean and standard deviation. This example
highlights the problem of inferring a noise level. Maximum likelihood noise level
estimates are overconfident (hence the distinction between the o and oy buttons on
a calculator). I compare free energy approximations with the ideal solution obtained
by Bayesian marginalization.

2. The predictive distribution of a classifier whose parameters are uncertain.
In this problem marginalization is also important, but the outcome of the free energy
approximation has a different character.

-~



3. Mixture models, including mixtures of Gaussians and the hierarchical mix-
ture of experts. This work starts from Neal and Hinton’s view of the EM algorithm
as a free energy minimization and generalizes it to include distributions over the pa-
rameters and hyperparameters too.
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