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ABSTRACT. We examine the problem of deconvolving blurred text. This is a task in which there
is strong prior knowledge (e.g., font characteristics) that is hard to express computationally. These
priors are implicit, however, in mock data for which the true image is known. When trained on
such mock data, a neural network is able to learn a solution to the image deconvolution problem
which takes advantage of this implicit prior knowledge. Prior knowledge of image positivity can be
hard—wired into the functional architecture of the network, but we leave it to the network to learn
most of the parameters of the task from the data. We do not need to tell the network about the
point spread function, the intrinsic correlation function, or the noise process.

Neural networks have been compared with the optimal linear filter, and with the Bayesian
algorithm MemSys, on a variety of problems. The networks, once trained, were faster image recon-
structors than MemSys, and had similar performance.

1 Traditional image reconstruction methods
OPTIMAL LINEAR FILTERS

In many imaging problems, the data measurements {d,,} are linearly related to the under-
lying image f:
Ao = Rynifj + V. (1)
J

The vector v denotes the inevitable noise which corrupts real data. In the case of a camera
which produces a blurred picture, the vector f denotes the true image, d denotes the blurred
and noisy picture, and the linear operator R is a convolution defined by the point spread
function of the camera. In this special case, the true image and the data vector reside in
the same space; but it is important to maintain a distinction between them. We will use
the subscript m = 1...N to run over data measurements, and the subscripts i,7 =1...k
to run over image pixels.

One might speculate that since the blur was created by a linear operation, then perhaps
it might be deblurred by another linear operation. We derive the optimal linear filter in
two ways.

BAYESIAN DERIVATION

We assume that the linear operator R is known, and that the noise v is Gaussian and
independent, with a known standard deviation o,,.

P(d|f,0,,H) = Wexp (— > (dm - ijfj)2/ (203)) (2)

m
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We assume that the prior probability of the image is also Gaussian, with a standard devi-
ation oy.
1
det™2 C 9
P(flva’H) = Wexp (—ZZ]: fZ-Cijf]-/(chf)) (3)

If we assume no correlations among the pixels then the symmetric, full rank matrix C is
equal to the identity matrix I. The more sophisticated ‘intrinsic correlation function” model
uses C = [GG*]7!, where G is a convolution that takes us from an imaginary ‘hidden’
image, which is uncorrelated, to the real correlated image. The intrinsic correlation function
should not be confused with the point spread function R which defines the image to data
mapping. A zero-mean Gaussian prior is clearly a poor assumption if it is known that
all elements of the image f are positive but let us proceed. We are now able to infer the
posterior probability of an image f given the data d.

P(d|f,0,, H)P(flos, ) (4)
P(le’m gf, %)

P(f|d,0,,07,H) =

In words,

Likelihood x Prior

Posterior =
Evidence

(5)
The ‘evidence’ P(d|o,,0¢,H) is the normalizing constant for this posterior distribution.
Here it is unimportant, but it is used in a more sophisticated analysis to compare, for
example, different values of o, and oy, or different point spread functions R.

Since the posterior distribution is the product of two Gaussian functions of f, it is also
a Gaussian, and can therefore be summarized by its mean, which is also the most probable
tmage, fyp, and its covariance matrix:

Ef|d = [_VV log P(f|d7 Ou; Of, ,H)]_l ) (6)

which defines the joint error bars on f. In this equation, the symbol V denotes differentiation
with respect to the parameters f. We can find fy; by differentiating the log of the posterior,
and solving for the derivative being zero. We obtain:

5 -1
fup = [RTR—l— %cl R"d. (7)
f
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The operator [RTR + j—éc] RT is called the optimal linear filter. When the term Z—gC
f f

can be neglected, the optimal linear filter is the pseudoinverse “R~'” = [R"R]™' R”. The

2
term Z—‘Q’C ‘regularizes’ this ill-conditioned inverse.

The optimal linear filter can also be manipulated into the form:

5 7-1
Optimal linear filter = C™'R” [RC_IRT + U—;I] . (8)
o
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MINIMUM SQUARE ERROR DERIVATION

The orthodox derivation of the optimal linear filter starts by assuming that we will ‘estimate’
the true image f by a linear function of the data:

f=wd. (9)

The linear operator W is then ‘optimized’ by minimizing the expected sum-squared error
between f and the unknown true image . (Interestingly, any quadratic metric using a
symmetric positive definite matrix gives the same optimal linear filter.) In the following
equations, summations over repeated indices 7, 7, m are implicit. The expectation (-) is
over both the statistics of the random variables {v,,}, and the ensemble of images f which
we expect to bump into. We assume that the noise is zero mean and uncorrelated to second
order with itself and everything else, with (v, v,,1) = 026,

(E) = %<(Wmdm - fi)2> (10)
- %<(Wimijfj - fi)2> + %Wimwmai. (11)

Differentiating, and introducing F = (f;/ f;) (cf O'J%C_l in the Bayesian derivation above),
we find that the optimal linear filter is:

-1
Wop, = FR™ [RFR" +071) . (12)

If we identify F = O'JQ;C_17 we obtain the optimal linear filter (8) of the Bayesian deriva-
tion. The ad hoc assumptions made in this derivation were the choice of a quadratic error
measure, and the decision to use a linear estimator. It is interesting that without explicit
assumptions of Gaussian distributions, this derivation has reproduced the same estimator
as the Bayesian posterior mode, fyp.

OTHER IMAGE MODELS

The better matched our model of images P(f|7) is to the real world, the better our image
reconstructions will be, and the less data we will need to answer any given question. The
Gaussian models which lead to the optimal linear filter fail to specify that all images are
positive. This leads to the most pronounced problems where the image under observation
has high contrast. Optimal linear filters applied to radio astronomical data give reconstruc-
tions with negative areas in them, corresponding to patches of sky that suck energy out of
radio telescopes. The ‘Maximum Entropy’ model for image deconvolution [2] was a great
success principally because this model forced the reconstructed image to be positive. The
spurious negative areas and complementary spurious positive areas are eliminated, and the
dynamic range of the reconstruction is greatly enhanced.

The ‘Classic maximum entropy’ model assigns an entropic prior P(f|a, m, Hclassic) =
exp(aS(f,m))/Z, where S(f,m) = >_,(filog(m;/ f;) + fi — m;) [6]. This model enforces
positivity; the parameter « defines a characteristic dynamic range by which the pixel values
are expected to differ from the default image m.

The ‘ICF maximum entropy’ model [1] introduces an expectation of spatial correlations
into the prior on f by writing f = Gh, where G is a convolution with an intrinsic correlation
function, and putting a classic maxent prior on h.



The ‘Fermi-Dirac’ model generalizes the entropy function so as to enforce an upper
bound on intensity as well as the lower bound of positivity. This model is appropriate
where the underlying image is bounded between two grey levels, as in the case of printed
text.

All these models are implemented in the MemSys package.

2 Supervised neural networks for image deconvolution

‘Neural network’ researchers often exploit the following strategy. Given a problem currently
solved with a standard data modelling algorithm: interpret the computations performed
by the algorithm as a parameterized mapping from an input to an output, and call this
mapping a neural network; then adapt the parameters to examples of the desired mapping
so as to produce another mapping that solves the task better. By construction, the neural
network can reproduce the standard algorithm, so this data-driven adaptation can (one
expects) only make the performance better.

There are several reasons why standard algorithms can be bettered in this way. (1)
Algorithms are often not designed to minimize the real objective function. For example, in
speech recognition, a hidden Markov model is designed to model the speech signal, whereas
the real objective is to discriminate between different words. If an inadequate model is being
used, the neural-net-style training of the model will focus the resources of the model on
the aspects relevant to the discrimination task. Discriminative training of hidden Markov
models for speech recognition does improve their performance. (2) The neural network can
be more flexible than the standard model; some of the adaptive parameters might have
been viewed as fixed features by the original designers. (3) The net can find properties in
the data that were not included in the original model.

In this paper we apply this neural network attitude to a toy image reconstruction
problem. The task is to reconstruct an image of a piece of text from blurred data. This
is not viewed as a character recognition task: we perform the reconstruction on a pixel by
pixel basis; the neural network is expected to learn general characteristics of the font, but
not to memorize the alphabet. We start from the optimal linear filter. If the point spread
function is a convolution, then the filter of equation (9) should also be a convolution. Such
a filter can be viewed as the very simplest neural network — a single linear neuron that
computes:

f(a?,y) = Z w(u,v)d(a:—}—u,y—}—v)' (13)
(u,v)

where (z, y) label the coordinates of points in the image. The neuron has a two-dimensional
input which might be about twice the size of the point spread function, and a single output
corresponding to a single pixel in the image. The network receives a patch from a data
image d as input, and its single output would be trained to produce the pixel value at the
centre of that patch of data in the true image f. As the trained network is scanned across
a blurred image, its output produces a deconvolved image, pixel by pixel. The minimum
square error derivation of the optimal linear filter in the previous section corresponds to
training this neuron on an ensemble of examples {d,f} where the original images f have
correlations defined by the matrix F.

The first advantage of training such a neuron on real data is that the neuron can
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Figure 1: Optimal linear filters and neural networks

implicitly learn the correlations F from the data. One need not explicitly know the point
spread function R, the noise statistics o2 or the correlation statistics F; the optimization
process implicitly learns all these for itself. This network could also learn the appropriate
filter if the noise in the data were spatially correlated. Further advantages of a neural
network approach arise when we imagine using a more sophisticated network than a linear
one. By changing the function performed by the output unit, we can hard-wire prior
knowledge into the net. For example, if we know that the true image is everywhere positive,
then we can use a non-linear output function which only assumes positive values. In the toy
problem studied here, we know that the true image has only two possible intensity levels
(black and white, or £ = 0 and ¢ = 1), so we can make the network into a classifier which
discriminates between these different possibilities. We define the output of the network to

be:
1

P(t = 1|d,W) = —1 T e—(d~W+w0) .

(14)

By introducing additional non-linear processing between the input and the output, one
might allow the network to select from a richer space of non-linear filters. Such a network
could implicitly learn a more complicated prior probability distribution for images, learn a
more complicated noise model, and learn about non-linear detector responses. We do not
go that far in this paper. Here we report the performance achievable using just a single
neuron.

TRAINING WITH LIMITED AMOUNTS OF DATA

If our training set {d,f} is small in size, a network trained to minimize the error on
training data will ‘overfit’ the data. We cope with this by putting a standard Gaussian
prior on the network parameters. We find parameters w that maximize the posterior
probability, i.e., the product of the likelihood (factors of the form (14)) and the prior.
We optimize the variance of the prior (the ‘weight decay constant’) using approximate
Bayesian methods [5, 4]. (Amusingly, these Bayesian regularization methods are descended
from those developed in the Bayesian Maximum entropy method.)
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Figure 2: From left to right: original image; blurred and noisy data; reconstruction by
MemSys; reconstruction by trained network.

EXAMPLE

We created data sets from an image of text, using various degrees of blurring and adding
various amounts of noise. The blur was spatially Gaussian, and noise was additively Gaus-
sian. For each data set, an optimal linear filter was created, a MemSys deconvolution using
the Fermi-Dirac prior was performed, and a neural network was trained on a small patch
of the image. The network was trained on three hundred examples (i.e., just a six letter
word in the image).

We first contrast the properties of the network with the optimal linear filter. In all cases
the trained network outperforms the optimal linear filter in terms of sum-squared error, the
difference being greatest for the most difficult problems. In figure 1 we display examples
of the parameters of the optimal linear filter and the network. In the case of a small blur
radius (a standard deviation of one pixel), the network looks similar to the optimal linear
filter except for a slight squareness produced by the font statistics. At a larger blur radius
(two pixels standard deviation), the neural net’s weights are completely unlike the optimal
linear filter, and are also satisfyingly hard for a human to explain — a good sign that the
network is doing something useful!

In table 1 we summarize the relative performance of MemSys and a neural network with
a 13x13 input. In the cases with blurring and noise, the neural net’s performance is slightly
inferior to MemSys’s. Where there is noise only, the net significantly outperforms MemSys.
It is conjectured that the network would have done better had it been trained on more
examples (the training set consisted of only 6 characters of text). Figure 2 shows patches
of reconstructions given by the two methods for the case of the small blurring radius.

The comparison between these methods favours the network most strongly when we
turn to the computational requirement. Once trained, a network can process an image in
seconds (about 8 seconds for a well-programmed network with a 13 x 13 input on a 256 x
256 image). Whereas MemSys takes 10-15 minutes to process the same image.

3 Discussion

The neural network approach has proved a viable image reconstruction strategy in a problem
where there are strong implicit priors in the data. Bayesian Maxent image reconstruction
with MemSys depends on knowledge of the point spread function, and assumptions about
the noise process and the prior on images. In contrast, the network approach requires
examples of data for which the true image is known, but does not require explicit knowledge



Blur radius Noise level ‘Difficulty’ | MemSys error Net error
1 medium 15.7 7.4 8.8

2 medium 26.3 16.3 18.2

0 high 66.9 22.0 13.9

Table 1: Performance of network relative to MemSys
The ‘difficulty’ of a task is the sum-squared error between the data and the true image. The
performance measure for reconstruction is the sum-squared error between the reconstruction and
the true image. Both are in the same arbitrary units.

of the point spread function, noise level, or image statistics; these are ‘learnt’ implicitly from
the data, so that our reconstruction ability is not limited by our inability to express a good
prior over images. Once trained, a neural network is a much faster image reconstruction
device.

It will be interesting to attempt more realistic problems, and investigate networks using
more complex non-linear computations. A more sophisticated form of prior knowledge that
could be incorporated is the spatial smoothness of the point spread function, which leads
us to expect spatial smoothness in the deconvolving filter also. This prior expectation can
be incorporated by changing the regularizer from a W,,W,,/2 to a3 C\ W, W1 /2,
with appropriate cross terms between the parameters. Equivalently, one can retain the
former regularizer, and blur the input data before feeding it to the network. This may
sound surprising, but blurring the data even more can indeed enhance the performance of
such networks [3].
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