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Abstract

These notes review the idea of non-linear data modelling then explain the ra-
tionale behind the objective functions that can be used in the Cambridge Gaussian
Process software package when optimizing the input variables.

1 Empirical regression models

Let us assume that we have gathered a data set {x,¢}, where x are the input variables,
assumed to be measured accurately, and ¢ is the measured ‘target’ variable, which is
assumed to be a noisy version of an underlying output variable y(x).

We represent the inference of this unknown function y(x) from the data using Bayes

theorem:

The left hand side, P (y(x)|{t}), is the posterior probability of the function y(x) given
the data. On the right hand side, the first factor is the likelihood function P({t}|y(x)).
This specifies the probability of obtaining the observed data set {¢} if the true underly-
ing function were y(x), that is, it specifies the noise model. The simplest noise model
assumes that the noise is additive and independent from sample to sample, and Gaus-
sian distributed. The use of least-squares estimation methods corresponds directly to an
assumption of independent Gaussian distributed noise. The second factor is the prior
P(y(x)). This expresses our prior assumptions about the nature of the function y(x), for
example, an assumption that y(x) is a continuous and smooth function of x. Clearly,
without some such assumptions it is impossible to do regression. The key do doing good
empirical modelling is to use a carefully chosen likelihood function and a carefully chosen

prior which capture prior beliefs and uncertainties about the noise process and the un-
derlying function y(x). The normalizing constant P({t}) is called the evidence for the
model. It does not depend on y(x) so is not important if our hypothesis space is fixed.



But if there are aspects of our prior and likelihood function that are uncertain, then the
evidence can act as a guide towards the most probable priors and the most probable
likelihood function.

We may be interested in the following issues.

1. How to represent the function y(x). In order to obtain predictions that we can
trust, our representation should be capable of describing all complex non-linear
functions that we believe might be the case.

2. How to describe a prior distribution over y(x) that captures the concept of uncertain
relevance of input variables.

3. How to implement the computations corresponding to the inference of equation
(1), and how to represent the inferences (e.g., predictive mean and error bars).

4. Having inferred y(x) with error bars, we might also be interested in two types of
decision problem.

(a) The inversion problem — selecting input values so as to achieve a desired
output value.

(b) The experimental design or active learning problem — selecting input
values for new experiments in order to learn useful information about y(x).

Both of these decision problems require that we (implicitly or explicitly) define
utility functions that measure, for example, how costly inaccuracy is, and how
informative a measurement is.

2 Representation and Priors

Let us discuss the question of representation and priors together. There are two ap-
proaches to representing a function y(x). One is the parametric aproach where y is
written as an explicit function of x, y(x;w), parameterized by parameters w. Neural
networks are an example of a parametric model, as are radial basis functions. A standard
method for putting a prior on y is to put a prior on the parameters w, for example, a Gaus-
sian prior. (For reading on Gaussian priors applied to neural networks see (MacKay 1991;
MacKay 1992a; MacKay 1992d; MacKay 1992b; MacKay 1996; MacKay 1995; Neal 1996).)

In a nonparametric approach there are no parameters describing the function y(x),
but there is some procedure for predicting y(xn41) given the training data. Examples of
non-parametric models are cubic splines interpolation, and Gaussian processes. Splines
correspond to a model in which the prior probability distribution over the function y(x)

(Kimeldorf and Wahba 1970) is:*
log P(y(z) o Hy) = — o [ de [y ()] + const, 2)

where y(®) denotes the pth derivative of y, and p = 2 for cubic splines.

1Strictly this prior is improper since addition of an arbitrary polynomial of degree p — 1 to y(z) is not
constrained. It can be made proper by adding terms corresponding to boundary conditions to (2).



2.1 Gaussian processes

The Gaussian process model is now our preferred model for non-linear regression problems.
In a Gaussian process (Williams 1995; Williams and Rasmussen 1996),> we model the joint
distribution of {y(x")}"_ with a Gaussian distribution

n=1

P (")) = e (—5y°C7ly). 3
where C is an appropriate positive definite covariance matrix which is a function of the in-
put coordinates {x("}_  and possibly of some hyperparameters. Most parametric mod-
els and non-parametric regression models are in fact special cases of Gaussian processes,
with the covariance matrix depending on the details of the model. Efficient methods for
implementing Gaussian processes are described in Gibbs and MacKay (1996). Gaussian
processes have the advantage that predictive distributions given data are obtained by sim-
ple matrix operations. (These matrix operations are the equivalent of two operations in
the case of a standard implementation of a parametric model — the parameter adaptation

process and the computation of error bars on those parameters.)

2.2 Hyperparameters

Lurking in most prior probability distributions are ‘hyperparameters’, such as o in (2),
which have the role of controlling the ‘complexity’ of functions drawn from the prior, and
thus the complexity of the inferred function. The values of such hyperparameters are
important in controlling the nature of the predictions given by the model. Hyperparam-
eters can be controlled using Bayesian methods. In many problems it is advantageous to
have multiple hyperparameters that control different aspects of complexity. For example,
if we are unsure how ‘relevant’ each input is in a non-linear regression, we can have for
each input variable one hyperparameter that quantifies the lengthscale on which the out-
put varies significantly as a function of that input variable. These unknown lengthscales
can then be inferred from the data. This ‘automatic relevance determination” method is
available when we use either neural networks or Gaussian processes.

3 Implementation method

There are deterministic and Monte Carlo implementation methods (Neal 1993) for Bayesian
models. Both have advantages.

4 Decision problems

In order to make decisions, we need to have not only a probabilistic model but also
a utility function. If there are possible actions a and possible states of the world s
with probability distribution, given the current information, P(s), then we need a utility

2Gaussian processes have also been used in geophysical data modelling.



function U(a,s) which says what the utility of action a is if the state of the world is in
fact s. The optimal action given P and U is then

dops = argmax U(a) (4)

where
0(a) = /ds P(s)U(a, 5). (5)

Decision theory is thus ‘trivial” once a utility function and probability distribution are
given.
What should the utility function be?

4.1 Utility functions for experimental design

I have studied the problem of active learning in neural networks a few years ago and
derived a few experimental design objective functions (MacKay 1992c). 1 learnt two
things from this work:

1. The choice of objective function must be made carefully to avoid getting silly results.
If one wants an objective function that sensibly measures how informative a new
measurement would be, it is necessary to define a region of interest about which
information is desired.

2. The objective functions I derived seem typically to be multimodal so searching for
the most informative measurement may be a non-trivial task.

4.2 Utility functions for inversion and selection of ‘optimal’
inputs

Imagine we want to select an input that produces a desired output; or maybe we want to
select an input that is likely to produce the maximum output. What utility functions
describe these situations?

In the notation introduced above, the choice of action a is a choice of input x; the
state of the world s is the true function y. The utility function is U(x,y) which, we will
assume, has the form u(y(x)), so that

U(x) = [ dyx Plyx)u(us) (6)

In general there might be an additional cost associated with the choice of x — perhaps
x represents the choice of ingredients in some process and y represents the quality of the
product; the economic utility takes into account both the cost of the ingredients x and
the expected quality of the product. But if we assume that these two terms are additive
then there is no need to consider them together.



4.3 Utility function for inversion

We want the output y to be as close as possible to z. A utility function that does the
trick is

ur(y) = (y — 2)%. (7)
If we write P(yx) as a Gaussian
P(yx) = Normal(yx; fix, o) (8)
[where o2 describes the uncertainty in the value of y(x)] then the expected utility is
Ui(x) = (ux — 2)" + oy (9)

It is easy in the case of Gaussian processes to evaluate the derivative of this objective
function with respect to x.

4.4 Utility function for maximization

We want the output y to be as large as possible. The most obvious utility function, but
one which I think is not appropriate, is:

uz(y) = y. (10)
The expected utility is

Ua(%) = . (1)
which does not take into account the error bars. Is this appropriate? The user must
decide, but I would suggest that if there is some value of x where the error bars on y are
enormous, and the mean happens to be a little higher than elsewhere, it seems unlikely

that this is the optimal location. An objective function that takes into account error bars
seems desirable.

4.4.1 A concave utility function

If y is not known to be positive, it may be that an appropriate utility function is

us(y) = —exp(—PBy) (12)
where (3 is a dimensional constant that the user must specify. This utility function is
concave downwards and so (by Jensen’s inequality) increasing variance in y leads to a
decrease in expected utility.

The expected utility, given a Gaussian distribution for y, is

Us(x) = [ dy Normal(ys i, 22)[— exp(=)] = —exp [~Brux + 5502 (13)

So from the point of view of optimization, the objective function might as well be:

Vi) = 5 {~logl U]} = pex = 5% (14)

This makes complete sense. We want big u, but we also want small 0. The user chooses
the trade-off between these by setting 3.

It is easy in the case of Gaussian processes to evaluate the derivative of this objective
function with respect to x.



4.4.2 Special case: y positive

If y is in fact known to be positive, then it may be that an appropriate utility function is

us(y) = log(y/v) (15)

where v is a dimensional constant that the user need not specify [sic]. This utility function
is concave downwards and so (by Jensen’s inequality) increasing variance in y leads to a
decrease in expected utility.

This utility function says, for example, that a chance of a 100% increase in y is about
equal and opposite in value to a chance of a 50% decrease in y.

We will derive the expected utility below.

4.4.3 General case: other concave objective functions

Imagine that we use a concave utility function with a Taylor expansion, around some
convenient value of p,

u(y) = ulp) + aly —p) = Bly —p)* ... (16)
Then the expected utility is (assuming we can neglect subsequent terms)
U(x) ~ uljex) — 2. (1)
For example, in the case of uy = log(y/v), 6 = %:—2, S0
- 1o
Us(x) =~ log(px/7) — 2 (18)

4.4.4 Other functions of the input
Since it is easy to visualize, we have also included the objective function
U(x) = apix + Box, (19)

which, if & and  are both 1 defines the upper one—sigma error bar on the predictions.
So minimizing this U finds the input for which the upper error bar is lowest.

4.5 Discussion

Whether these objective functions can be optimized using gradient descent will clearly
depend on the problem at hand. We have implemented all the above objective functions
in our Gaussian process software.

Appendix

Jensen’s inequality. If f is a convex function (convex upwards) and x is a random
variable then:

E[f(x)] 2 f(Elz]), (20)
where E denotes expectation. If f is strictly convex and E [f(z)] = f (E[z]), then
x is a constant (with probability 1).
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