Probabilistic Networks: New Models and New Methods

David J.C. MacKay
Cavendish Laboratory
Madingley Road, Cambridge CB3 0HE
United Kingdom

mackay@mrao.cam.ac.uk

To appear in Proceedings of [CANN’95

Abstract

In this paper I describe the implementation of a probabilistic regression model
in BUGS. BUGS is a program that carries out Bayesian inference on statistical
problems using a simulation technique known as Gibbs sampling. It is possible to
implement surprisingly complex regression models in this environment. I demon-
strate the simultaneous inference of an interpolant and an input-dependent noise
level.

1 Traditional regression models and their Bayesian
interpretation

In traditional regression methods, the interpolant y(z) is represented as a parameterized function
y(z;w), and, given data {z,,t,}Y_,, the parameters w are optimized to minimize the weighted

sum of an error function Fp(w) = ZnNzl(tn — yn(2n;w))?/2, and a regularizer Ew (w):

M(w) =B (ta = yn (225 W))*/2 + a By (w) (1)

The coefficients @ and 3 are known as hyperparameters, and the regularizer Ew is a function
which is smallest for parameter vectors w that correspond to smooth functions.

In the Bayesian interpretation (reviewed in (MacKay 1992a)), this optimization maps onto a
probabilistic model H where the function —FFEp is the log of a likelihood function, P({t,}|w, 5, H)
exp(—FEp)/Zp(F), and —aEyw is the log of a prior distribution on the parameters, P(w|a, H) =
exp(—aEw)/Zw (a), so that the minimization of M (w) corresponds to the maximization of the
posterior probability:

The hyperparameter 3 defines a noise variance o2 = 1/3, and the model H assumes that the
residuals (¢ — y) between the data and the unknown function are independent and identically
distributed Gaussian variables. If Ey is a quadratic function of w then the hyperparameter a

(2)

defines a variance for the parameters w. An important problem in regression modelling is to
control the relative strength of these two hyperparameters. If a/f is too large then the model
cannot fit the data well, but if the ratio is too small then overfitting occurs. As reviewed in
(MacKay 1992a), we can extend this probabilistic model by including a prior distribution over
the hyperparameters P(a, 5|#H) that expresses our lack of knowledge about the noise variance
and the variance of the parameters w, and then we can use Bayesian methods to infer the most
plausible values for the hyperparameters from the data.

This Bayesian approach to regression modelling has the following advantages. (1) The hy-
perparameters «, § are controlled using the same data as are used to optimize the parameters
w; there is no need for cross-validation. This is true even for models with multiple hyperparam-
eters {a} (MacKay 1994; MacKay and Takeuchi 1995). (2) One obtains quantified error bars
on model parameters and predictions. (3) One obtains a measure of the effective number of
well-determined parameters in a model. (4) Objective model comparison is possible, comparing
regression models with different basis functions, for example, or different regularizers (MacKay
1992a). (5) Generalizations to better probabilistic models are easy to formulate.

Modelling an input-dependent noise level

One improvement that we might wish to make is a modification of the noise model, which, in
the above model, assumes that all the residuals are independent and Gaussian with identical
variance. We might believe that in fact the noise level is a parameterized function 3(z;b) of the
input variable and we might wish to infer it from the data. This inference is not straightforward;
a maximum likelihood approach, in which w and b are simultaneously varied to maximize the
likelihood, leads to a biased estimate of 3(z)—because the optimized function y(x; w) unavoid-
ably fits some of the noise so that the noise variance is systematically underestimated. The
maximum likelihood solution may even have singularities with the local value of 3(z) going to
infinity in regions where the data points are interpolated perfectly. In (MacKay 1991:Chapter
6) an approximate Bayesian approach to the inference of an input-dependent noise level is de-
scribed which solves this problem using Gaussian approximations. Here an alternative approach
is described using a program that implements Bayesian inference using Gibbs sampling.

2 Markov Chain Monte Carlo

In Bayesian inference, the two key tasks are to write down a probabilistic model for the domain,
and to implement inferences given the observed data. Thus in the model with an input-dependent
noise level discussed above, the probability of everything is:

P({tn}awybaawaab|%) = Hp(tn|y(£naw):ﬁ(lnab);%) X
P(w|ay,H)P(blap, H)P(ay, as|H).

Here an extra hyperparameter ap has been introduced that defines the expected smoothness of
the function f(x;b). The input variables {z,} are not being modelled, i.e., they are assumed
given under H.

We are interested in the inference, given the data {t,}._;, of the functions y(z) and §(z),
and the prediction of new target variables {41 at locations zy41. These inferences are jointly
described by a single equation:

P({tn},w,b, ay, as|H)
Pw,b,aw,aat tn nN—,H =) 3 My 3
(b INg1[{tn =1, H) P({t,}0_1H)

)

The task is to make a computational implementation of this complicated posterior distribu-
tion. There are three principal approaches to implementing Bayesian inference for this sort of
problem: approximations based on Gaussians, as for example in (MacKay 1992b); an ‘ensemble
learning’ approach, in which an approximating distribution is optimized by variational free en-
ergy minimization, introduced by Hinton and van Camp (1993); and Markov chain Monte Carlo
techniques, as reviewed and developed by Neal (1993).

In a Markov chain Monte Carlo (MCMC) approach, the posterior distribution (3) is not repre-
sented directly; rather, a procedure is used iteratively to take a state vector § = (w, b, vy, tp, tN41)
and generate a new random state vector ¢’ from a probability distribution ¢(#’;). Then we ob-
tain the next state 6" by sampling from the distribution ¢(8";6’), and so forth. The transition
probability ¢ is constructed in such a way that an ergodic Markov process is defined with sta-
tionary distribution equal to the desired posterior distribution (3). Thus assymptotically the
MCMC sampling procedure produces a sequence of states # each of which is a sample from the
posterior distribution (though consecutive state vectors are not in general independent samples
from that distribution). Then properties of interest, e.g., moments of predictive distributions,
can be estimated from large numbers of samples {6}.

There are two principal ways of constructing transition probabilities g that converge to desired
distributions p(#).

Metropolis methods. The Metropolis algorithm makes use of a a proposal density g(8'|6),
which in the simplest case might be a simple random distribution centred on the current
6. A tentative new state ' is generated from this distribution, and is accepted with

probability:
p(0]z) g(9’|9)>
" 9(010") p(0'|z)

If the step is rejected, then we set 6/ = f. To compute the acceptance probability we need
to be able to compute the probability ratios p(8|z)/p(6'|z) and g(6]6")/g(0'|6). Simple
Metropolis algorithms perform poorly in high dimensional problems because they explore
the space by a slow random walk. More sophisticated Metropolis algorithms such as hybrid
Monte Carlo (see Neal (1993)) make use of proposal densities that give faster movement
through the state space.

P(accept) = min <1

Gibbs sampling. In Gibbs sampling, each iteration § — 6’ involves a separate sampling of
each variable in turn from its distribution conditional on the current values of all the other
variables in the model. For many models (though not for general neural networks) these
conditional distributions are straightforward to sample from. Conditional distributions
that are not of standard form may still be sampled from by ‘rejection sampling’ if the
conditional distribution satisfies certain convexity properties.

Gibbs sampling suffers from the problem of simple Metropolis algorithms that the state
space is explored by random walk. However it is a relatively parameter-free method and
so is attractive as an implementation strategy.

3 BUGS

A new tool, BUGS, makes simple the implementation of complex Bayesian models by Gibbs
sampling. BUGS (Thomas et al. 1992) is copyright by the MRC Biostatistics Unit, Robinson
Way, Cambridge CB2 2SR, and is available by ftp from ftp.mrc-bsu.cam.ac.uk.

In BUGS, a statistical model is expressed using the BUGS language; a compiler processes the
model and the available data; and a sampler generates appropriate values of the unknown quanti-
ties. BUGS is intended for the analysis of complex models in which there may be many unknown
quantities but for which substantial conditional independence assumptions are appropriate.

% *
*
*
2 x* X x i
« ¥ X L X
] LA
0 o * % x o
o ¥ =)
* *
0 m Ko ox X X% *
2 o * %
O” ogx % o g xo . K
QDX@% g
4| 5 y
B 5 o
o o o
6 O D 4

08 06 04 02 0 02 04 06 08 1
Figure 1: Toy data from two populations differing by an offset dy.

4 Inferring an interpolant and an input-dependent noise
level with BUGS

A slight generalization of the model given above is made in this work. Data in the form of (z,1)
pairs are assumed to be obtained from two populations (figure 1). Both populations depend on
the same function y(z) and have the same noise level 3(z), but there is an offset dy added to
all the points in one population. We have fifty labelled points from each population. I make the
assumption that we are particularly interested in inferring the offset between the populations.
This task is motivated by the problem of inferring the difference between the distances to two
populations of Cepheid stars (Freedman et al. 1994).

The underlying function is described by a linear combination of basis functions y(z;w) =
>on th:‘"i én (). The basis functions ¢ are Legendre polynomials. In neural network terms, this is
a two-layer network with a fixed non-linear hidden layer and adaptive linear output connections.

Similarly, the varying noise level is written as 5(z;b) = exp (22{:31 bron (1)) The parameters of

the model are w = {w, }X% and b = {b,}X7. Gaussian priors on these parameters are specified
with hyperparameters a,, and a; that have broad gamma priors. For convenience I introduce
K = max(Kw,Kp). We obtain the special case of uniform noise by setting Kp = 1 and the
special case of a straight line relationship by setting Ky = 2.

4.1 Defining the model in the BUGS language

BUGS uses a language similar to that of S-plus, but access to the latter is not required. Ex-
pressing the model in the BUGS language is almost as simple as writing the model on paper. The
symbol <- defines a deterministic relationship, giving the quantity on the left as a function of the
quantity on the right. The symbol ~ specifies a conditional distribution. This model uses normal
distributions dnorm and gamma distributions dgamma. The notation dnorm(m,beta) defines a
normal distribution of mean m and variance 1/3. The function inprod(w[],p[]1) denotes the
inner product of the vectors w and p.

Here is the file astro10.bug, which specifies a model in which the interpolant and the noise
level are both described by Legendre polynomials of degree 10. The data from the two populations
are stored in vectors x and t such that population ‘a’ gave rise to {(zn, tn)}N”

n=1, and population
‘b’ gave rise to {(zn,tn) N 41

model astrolO;

const # - constants —--—————————————————
N=100, # Number of data
Na=50, # Number of data in first population
Kw=10, # Number of basis functions for y(x)
KB=10, # Number of basis functions for beta(x)
K=10, # K=MAX(KW,KB)
x0=0.0,dx=1.0; # characteristic range of the x-axis
var # —— variables --
x[N1, dy , yIN], t[N], wIK], bIK],
philK,N],

alphab, alphaw, betal[N];

data in "astro.dat" ;
inits in "astrol.in" ;

{
dy ~ dnorm(0.0, 0.0001) ; # noninformative prior for
offset between populations
for (m in 1:N) { # recurrence relation to
phili,m] <- 1.0 ; # define Legendre polynomials
phil2,m] <- (x[m]-x0)/dx ;
for (h in 3:K) {
philh,m] <- ((2 * h - 3) * (x[m]-x0)/dx * phil[h-1,m]
- (h-2)#*philh-2,m]1) / (h -1) ;
}
}
for (h in 1:KW) {
wlh] ~ dnorm(0.0 , alphaw) ; # Gaussian prior for w
}
for (h in 1:KB) {
b[h] ~ dnorm(0.0 , alphab) ; # Gaussian prior for b
}
for (h in KW+1:K) {
wlh]l <- 0.0 ; # Excess parameters
}
for (h in KB+1:K) {
b[h] <- 0.0 ; # Excess parameters
}

for (m in 1:N) {
t [m] “ dnorm(y[m] , betalm]) ; # Gaussian residuals
betalm] <- exp(inprod(b[] , phil,m])) ; # Noise level

¥
for (m in 1:Na) {

y [m] <- inprod(w[l , phil,ml) ; # Interpolant
¥

for (m in Na+1:N) {
y [m] <- dy + inprod(w[] , phil[,m]) ; # Other interpolant

}

alphab
alphaw

“ dgamma(1.0E-3 , 1.0E-3) ; # noninformative priors
“ dgamma(1.0E-3 , 1.0E-3) ; # for hyperparameters
¥

And here is the file astrol. in, which specifies the initial conditions for the sampler:
list (alphab=1.0 , alphaw=1.0 , dy=0)

The data file astro.dat contains an ASCII list of the values {x,,t,}. The toy data were
generated using true values Kp = Kw = 3 and dy = 3.0. The study here examines the
inference of the offset dy when interpolation models of various orders, with and without the
input-dependent noise level, are used.

For each model a burn—in period of 500 iterations was followed by 1000 iterations during
which statistics on dy were recorded.

4.2 Results

I present, for each of the four models (Kw,Kp) = (2,1),(2,10), (10, 1), (10, 10), the inferred
value of dy, in terms of its posterior mean and standard deviation (as estimated by BUGS), and
a 95% confidence interval.

dy | Kg 1 10

Kw mean sd 2.5%:97.5% | mean sd 2.5%:97.5%
2 244 0.30 1.86: 3.02 276 0.26 2.25: 3.24
10 254 031 1.98:3.16 271 0.27 2.18:3.23

The over—simple model Kg = 1, Ky = 2, which assumes a linear interpolant and constant
noise level, gives a 95% confidence interval for dy that only just includes the true value. As is often
the case with over-simple models, this model is not only wrong, it gives over-confident predictions
too. Changing from the over—simple model to the model with more parameters in the interpolant
(moving down from the top left corner) produces a slight increase in the uncertainty of dy. The
increase is only slight because there are two opposing effects: first, for any particular value of
noise level 1/3, the more flexible interpolant is less well determined and the uncertainty in dy
increases; but second, the greater flexibility of the interpolant allows it to fit the curving shape
of the data and makes smaller noise levels 1/3 probable. Small noise levels give more accurate
inferences. A similar effect occurs as we increase the number of terms in the representation of
B(z) (going from left to right). The estimation of dy can become more precise, in intuitive terms,
because the model is able to discover that some values of z give more reliable measurements than
others, so that the inference of dy can be based on them, ignoring the more noisy measurements.
The net effect is that when we change from the over—simple model to the most flexible model
(bottom right), the confidence interval becomes smaller and more accurate.

5 Conclusion

Complex regression models that would take considerable effort to implement by Bayesian methods
based on Gaussian approximations can be simulated in BUGS with great ease. BUGS implicitly
infers hyperparameters from the data and automatically marginalizes over all the parameters to
give the desired predictions. The Gibbs sampling method is not the most efficient of Markov
chain Monte Carlo methods, but there may be problems of interest where the convenience of

this tool outweighs this drawback. Not all probabilistic models can be implemented in BUGS;
the conditional distributions that are sampled from must be log concave. But this paper has
demonstrated that interesting new models can be implemented.

Acknowledgements

I thank David Spiegelhalter, Andrew Thomas, Nicky Best and Wally Gilks for creating BUGS
and for helpful discussions.

References

FREEDMAN, W. L., MADORE, B. F., MouLp, J. R., HiLL, R., and OTHERs. (1994) Distance to
the Virgo cluster galaxy M100 from Hubble space telescope observations of cepheids. Nature
371: 757-762.

HinToN, G. E., and vaN Camp, D., (1993) Keeping neural networks simple by minimizing the
description length of the weights. In: Proceedings of COLT-93.

MacKay, D. J. C., (1991) Bayesian Methods for Adaptive Models. California Institute of
Technology dissertation.

MacKay, D. J. C. (1992a) Bayesian interpolation. Neural Computation 4 (3): 415-447.

MacKay, D. J. C. (1992b) A practical Bayesian framework for backpropagation networks.
Neural Computation 4 (3): 448-472.

MacKay, D. J. C. (1994) Bayesian non-linear modelling for the prediction competition. In
ASHRAE Transactions, V.100, Pt.2, pp. 1053-1062, Atlanta Georgia. ASHRAE.

MacKay, D. J. C.; and TAKEUCHI, R. (1995) Interpolation models with multiple hyperpa-
rameters. In Mazimum Entropy and Bayesian Methods, Cambridge 1994, ed. by J. Skilling
and S. Sibisi, Dordrecht. Kluwer.

NEeAL, R. M. (1993) Probabilistic inference using Markov chain Monte Carlo methods. Technical
Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

THOMAS, A., SPIEGELHALTER, D. J., and Gitks, W. R. (1992) BUGS: A program to perform

Bayesian inference using Gibbs sampling. In Bayesian Statistics 4, ed. by J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith, pp. 837-842. Oxford: Clarendon Press.

