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ABSTRACT.

The 1993 energy prediction competition involved the prediction of a series of build-
ing energy loads from a series of environmental input variables. Non-linear regression
using ‘neural networks’ is a popular technique for such modeling tasks. Since it is not
obvious how large a time-window of inputs is appropriate, or what preprocessing of
inputs is best, this can be viewed as a regression problem in which there are many
possible input variables, some of which may actually be irrelevant to the prediction of
the output variable. Because a finite data set will show random correlations between
the irrelevant inputs and the output, any conventional neural network (even with reg-
ularisation or ‘weight decay’) will not set the coefficients for these junk inputs to zero.
Thus the irrelevant variables will hurt the model’s performance.

The Automatic Relevance Determination (ARD) model puts a prior over the re-
gression parameters which embodies the concept of relevance. This is done in a simple
and ‘soft’ way by introducing multiple regularisation constants, one associated with
each input. Using Bayesian methods, the regularisation constants for junk inputs are
automatically inferred to be large, preventing those inputs from causing significant
overfitting.

An entry using the ARD model won the competition by a significant margin.

1 Overview of Bayesian modeling methods

A practical Bayesian framework for adaptive data modeling has been described
in (MacKay 1992). In this framework, the overall aim is to develop probabilistic
models that are well matched to the data, and make optimal predictions with
those models. Neural network learning, for example, is interpreted as an infer-
ence of the most probable parameters for a model, given the training data. The
search in model space (i.e., the space of architectures, noise models, preprocess-
ings, regularisers and regularisation constants) can then also be treated as an
inference problem, where we infer the relative probability of alternative mod-
els, given the data. Bayesian model comparison naturally embodies Occam’s
razor, the principle that states a preference for simple models.



Bayesian optimisation of model control parameters has four important ad-
vantages. (1) No validation set is needed; so all the training data can be de-
voted to both model fitting and model comparison. (2) Regularisation constants
can be optimised on-line, i.e. simultaneously with the optimisation of ordinary
model parameters. (3) The Bayesian objective function is not noisy, as a cross-
validation measure is. (4) Because the gradient of the evidence with respect
to the control parameters can be evaluated, it is possible to optimise a large
number of control parameters simultaneously.

Bayesian inference for neural nets can be implemented numerically by a
deterministic method involving Gaussian approximations, the ‘evidence’ frame-
work (MacKay 1992), or by Monte Carlo methods (Neal 1993). The former
framework is used here.

Neural networks for regression

A supervised neural network is a non-linear parameterised mapping from an
input x to an output y = y(x;w). Here, the parameters of the net are denoted
by w. Such networks can be ‘trained’ to perform regression, binary classification,
or multi-class classification tasks.

In the case of a regression problem, the mapping for a ‘two-layer network’
may have the form:

(Zw 2 +01)) yi = O3 wiPh; + 60 (1)
J

where, for example, f(!)(a) = tanh(a), and f(*)(a) = a. The ‘weights’ w and
‘biases’ # together make up the parameter vector w. The non-linearity of F
at the ‘hidden layer’ gives the neural network greater computational flexibility
than a standard linear regression. Such a network is trained to fit a data set
D = {x(™) t(™)} by minimising an error function, e.g.,

ZZ( — ui(xt™ );W))2. (2)

This function is minimised using some optimisation method that makes use of
the gradient of Ep, which can be evaluated using ‘backpropagation’ (the chain
rule) (Rumelhart, Hinton and Williams 1986). Often, regularisation or ‘weight
decay’ is included, modifying the objective function to:

M(w) = BEp + aBy (3)

where Ew = 3 Z w?. The additional term decreases the tendency of a model
to ‘overfit’ the detalls of the training data.



Neural network learning as inference

The above neural network learning process can be given the following probabilis-
tic interpretation. The error function is interpreted as the log likelihood for a
noise model, and the regulariser is interpreted as a prior probability distribution
over the parameters:

1 1
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The minimisation of M (w) then corresponds to the inference of the parameters
w, given the data:

P(Dlw, 8, H)P(wla,7) _ 1
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(wiD.a,0,%) = DAL - ep-M(w). ()
This interpretation adds little new at this stage. But new ideas emerge when
we proceed to higher levels of inference.

Setting regularisation constants o and (3

The control parameters a and 3 determine the flexibility of the model. Bayesian
probability theory can tell us how to set these parameters. All we need to do is
write down the inference we wish to make, namely the probability of a and
given the data, and then use Bayes’ theorem:

P(D|ea, B, H)P(c, 5|H)

P(a, 5D, H) = P(DIH)

(6)

The data-dependent term, P(D|a, 3,7H), is the normalising constant from our
previous inference (5); we call this term the ‘evidence’ for & and 3. This pattern
of inference continues if we wish to compare our model H with other models,
using different architectures, regularisers or noise models. Alternative models
are ranked by evaluating P(D|#), the normalising constant of inference (6).

Assuming we have only weak prior knowledge about the noise level and the
smoothness of the interpolant, the evidence framework optimises the constants
a and § by finding the maximum of the evidence. If we can approximate the
posterior probability distribution by a Gaussian,

P(w|D,a,(,H)

exp (=M (we) + v = wor) Al =) ) (1)

=7, 2

then the maximum of the evidence has elegant properties which allow it to be
located on-line. I summarise here the method for the case of a single regularisa-
tion constant «. As shown in (MacKay 1992), the maximum evidence « satisfies
the following self-consistent equation:

o= wl/y (3



where wMP is the parameter vector which minimises the objective function

M = BEp + aEw and 7 is the ‘number of well-determined parameters’; given
by v = k—aTrace(A!), where k is the total number of parameters, and A =
—VVlog P(w|D,H). The matrix A~! measures the size of the error bars on
the parameters w. Thus v — &k when the parameters are all well-determined;
otherwise, 0 < v < k. Noting that 1/« correponds to the variance o2 of the
assumed distribution for {w;}, equation (8) specifies an intuitive condition for
matching the prior to the data, 02 = (w?), where the average is over the 7y
effective parameters; the other k — v effective parameters having been set to
zero by the prior.

Equation (8) can be used as a re-estimation formula for . The computa-
tional overhead for these Bayesian calculations is not severe: one only needs
evaluate properties of the error bar matrix, A~. In my work I have evaluated
this matrix explicitly; this does not take a significant time if the number of
parameters is small (a few hundred). For large problems these calculations can
be performed more efficiently (Skilling 1993).

Automatic Relevance Determination

The automatic relevance determination (ARD) model (MacKay and Neal 1994)
is a Bayesian model which can be implemented with the methods described in
(MacKay 1992).

Consider a regression problem in which there are many input variables, some
of which are actually irrelevant to the prediction of the output variable. Because
a finite data set will show random correlations between the irrelevant inputs and
the output, any conventional neural network (even with regularisation) will not
set the coefficients for these junk inputs to zero. Thus the irrelevant variables
will hurt the model’s performance, particularly when the variables are many
and the data are few.

What is needed is a model whose prior over the regression parameters em-
bodies the concept of relevance, so that the model is effectively able to infer
which variables are relevant and switch the others off. A simple and ‘soft’ way
of doing this is to introduce multiple regularisation constants, one ‘@’ associated
with each input, controlling the weights from that input to the hidden units.
Two additional regularisation constants are used to control the biases of the
hidden units, and the weights going to the outputs. Thus in the ARD model,
the parameters are divided into classes ¢, with independent scales .. Assuming
a Gaussian prior for each class, we can define Ey () =) ¢, w?/2, so the prior
is:

P({wi}{ac), Hann) = H%W(C)exp(— S acBwie)), (9)

The evidence framework can be used to optimise all the regularisation con-
stants simultaneously by finding their most probable value, i.e., the maximum



over {a.} of the evidence, P(D|{a.}, Harp).! We expect the regularisation
constants for junk inputs to be inferred to be large, preventing those inputs
from causing significant overfitting.

In general, caution should be exercised when simultaneously maximising
the evidence over a large number of hyperparameters; probability maximisation
in many dimensions can give results that are unrepresentative of the whole
probability distribution. In this application, the relevances of the input variables
are expected to be approximately independent, so that the joint maximum over
{a.} is expected to be representative.

2 Prediction competition: part A

The American Society of Heating, Refrigeration and Air Conditioning Engi-
neers organised a prediction competition which was active from December 1992
to April 1993. Both parts of the competition involved creating an empirical
model based on training data (as distinct from a physical model), and making
predictions for a test set. Part A involved three target variables, and the test set
came from a different time period from the training set, so that extrapolation
was involved. Part B had one target variable, and was an interpolation problem.

The task

The training set consisted of hourly measurements from September 1 1989 to
December 31 1989 of four input variables (temperature, humidity, solar flux
and wind), and three target variables (electricity, cooling water and heating wa-
ter) — 2926 data points for each target. The testing set consisted of the input
variables for the next 54 days — 1282 data points. The organisers requested pre-
dictions for the test set; no error bars on these predictions were requested. The
performance measures for predictions were the Coefficient of Variation (‘CV’, a
sum squared error measure normalised by the data mean), and the mean bias
error (‘MBE’, the average residual normalised by the data mean).

The three target variables are displayed in their entirity, along with my
models’ final predictions and residuals, in figures 1-3.

Method

A large number of neural nets were trained using the ARD model, for each of
the prediction problems. The data seemed to include some substantial glitches.
Because I had not yet developed an automatic Bayesian noise model that an-
ticipates outliers (though this certainly could be done (Box and Tiao 1973)),
I omitted by hand those data points which gave large residuals relative to the

IThe quantity equivalent to ~v is ve = ke — Tracec(jx_l)7 where the trace is over the
parameters in class ¢, and k. is the number of parameters in class c.
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Figure 1: Target A1 — Electricity

first models that were trained. These omitted periods are indicated on some of
the graphs in this paper. 25% of the data was selected at random as training
data, the remainder being left out to speed the optimisations, and for use as a
validation set. All the networks had a single hidden layer of tanh units, and a
single linear output (figure 4). It was found that models with between 4 and 8
hidden units were appropriate for these problems.

A large number of inputs were included: different temporal preprocessings
of the environmental inputs, and different representations of time and holidays.
All these inputs were controlled by the ARD model. ARD proved a useful guide
for decisions concerning preprocessing of the data, in particular, how much time
history to include. Moving averages of the environmental variables were created
using filters with a variety of exponential time constants. This was thought to be
a more appropriate representation than time delays, because (a) filters suppress
noise in the input variables, allowing one to use fewer filtered inputs with long
time constant; (b) with exponentially filtered inputs it is easy to create (what I
believe to be) a natural model, giving equal status to filters having timescales
1, 2, 4, 8, 16, etc..

The on-line optimisation of regularisation constants was successful. For
problem A, 28 such control constants were simultaneously optimised in every
model. The optimisation of a single model and its control constants took about



Figure 2: Target A2 — Cooling water
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Figure 3: Target A3 — Heating water
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Figure 4: A typical network used for problem A
The filters produced moving averages of the four environmental inputs on three time-
scales: 2.5, 24 and 72 hours. The temperature variable was also given a 144 hour filter.
Time was represented using the cos of the year angle, a holiday indicator, and the cos
and sin of: the week angle, the day angle, and twice the day angle. All hidden and
output units also had a connection to a bias unit (not shown).

one day on a Sun 4 workstation, using code which could probably be made sub-
stantially more efficient. About twenty models were optimised for each problem,
using different initial conditions and different numbers of hidden units. Most
models did not show ‘overtraining’ as the optimisation proceeded, so ‘early stop-
ping’ was not generally used. The numerical evaluation of the ‘evidence’ for the
models proved problematic, so validation errors were used to rank the models
for prediction. For each task, a committee of models was assembled, and their
predictions were averaged together (see figure 5); this procedure was intended
to mimic the Bayesian predictions P(t|D) = [ P(t|D,H)P(H|D) dH. The size
of the committee was chosen so as to minimise the validation error of the mean
predictions. This method of selecting committee size has also been described
under the name ‘stacked generalization’ (Breiman 1992). In all cases, a com-
mittee was found that performed significantly better on the validation set than
any individual model.

The predictions and residuals are shown in figures 1-3. There are local
trends in the testing data which the models were unable to predict. Such trends
were presumably ‘overfitted’ in the training set. Clearly a model incorporating
local correlations among residuals is called for. Such a model would not perform
much better by the competition criteria, but its on-line predictive performance
would be greatly enhanced.

In the competition rules, it was suggested that scatter plots of the model
predictions versus temperature should be made. The scatter plot for problem
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Figure 5: Target A2 — detail from test period
This figure shows detail from figure 2 and illustrates the use of a ‘committee’ of nine
equally weighted models to make predictions. The diversity of the different models’
predictions emphasises the importance of elucidating the uncertaintyin one’s predic-
tions. The z-axis is the time in hours from the start of the testing period. The
prediction (lower graph) is the mean of the functions produced by the nine models
(upper graph).
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Figure 6: Predictions for target A3 (HW) versus temperature
a) Model predictions. This graph shows that my model predicted a substantially
different correlation between target A3 and temperature (—l—) from that shown in the
training set (-). b) Data. This predicted offset was correct. Units: hot water /10°Btu
versus temperature / F.

A3 is particularly interesting. Target A3 showed a strong correlation with tem-
perature in the training set (dots in figures 6b). When I examined my models’
predictions for the testing set, I was surprised to find that, for target A3, a
significantly offset correlation was predicted (‘+’s in figure 6a). This change in
correlation turned out to be correct (‘+’s in figure 6b). This indicates that these
non-linear models controlled with Bayesian methods discovered non-trivial un-
derlying structure in the data. Most other entrants’ predictions for target A3
showed a large bias; presumably none of their models extracted the same struc-
ture from the data.

In the models used for problem A3, I have examined the values of the pa-
rameters {a., 7.}, which give at least a qualitative indication of the inferred
‘relevance’ of the inputs. For prediction of the hot water consumption, the time
of year and the current temperature were the most relevant variables. Also
highly relevant were the holiday indicator, the time of day, the current solar
and wind speed, and the moving average of the temperature over the last 144
hours. The current humidity was not relevant, but the moving average of the
humidity over 72 hours was. The solar was relevant on a timescale of 24 hours.
None of the 2.5 hour filtered inputs seemed especially relevant.

How much did ARD help?

An indication of the utility of the ARD prior was obtained by taking the final
weights of the networks in the optimal committees as a starting point, and

11



training them further using the standard model’s regulariser (i.e., just three
regularisation constants). The dotted lines in figure 7 show the validation error
of these networks before and after adaptation. As a control, the solid lines show
what happened to the validation error when the same networks were used as a
starting point for continued optimisation under the ARD model. The validation
error is a noisy performance measure, but the trend is clear: the standard
models suffer between 5% and 30% increase in error because of overfitting by
the parameters of the less relevant inputs; the ARD models, on the other hand,
do not overfit with continued training. The validation errors for the ARD model
in some cases change with continued training, because my restarting procedure
set the a; to default values, which displaced the model parameters into a new
optimum.

On the competition test data, the performance difference between these two
sets of models is not so pronounced, because the residuals are dominated by
other effects. Maybe the greatest contribution of the ARD method to this
problem was that it guided the choice of input variables to include large time-
delays.

After the competition, it was revealed that the building in this study was a
large university engineering center in Texas. Some of the glitches in the data
were caused by the bursting of cold water pipes during a frost — a rare event
apparently not anticipated by Texan architects!

The holiday period for staff ended on January 1st, but the student population
did not return to the building for a couple of weeks. This may account for the
significant bias error in the predictions of electricity usage (figure 1). Another
factor which changed between the training period and the test period is that the
Computer Science department moved to another building. This too will have
caused a reduction in electricity usage. The reduction in electricity consumption
may also account for some fraction of the biases in the cold and/or hot water
supplies: one might expect less cooling water to be used, or more heating water,
to make up the missing energy. The observed average electrical power deficit
(according to my model) of 50kW corresponds to an expected decrease in CW
or increase in HW consumption of 0.17 x10°Btu (assuming that the CW and
HW figures measure the actual energy delivered to the building). This is only
about a fifth of the overall shift in correlation between HW and temperature
shown in figure 6b. In fact, relative to my models, both CW and HW showed
an increase of about 0.2 x10°Btu.

3 Prediction competition: part B
The data for part B consisted of 3344 measurements of four input variables
at hourly intervals during daylight hours over about 300 days. Quasi-random

chunks of this data set had been extracted to serve as a test set of 900. The
other 2444 examples were accompanied by a single target variable. The physical
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Problem A1 | RMS Mean CV  MBE | RMSgyy Meanggy; RCV
ARD 64.7  50.3 10.3 8.1 54.1 42.2 11.1
ARD off 71.2 56.2 11.4 9.0 59.3 47.3 12.2
Entrant 6 11.8 105

Median 16.9 -104

Problem A2 | RMS Mean CV  MBE | RMSgyy Meanggy; RCV
ARD 642 -314 13.0 -6.4 415 -.296 11.2
ARD off 668  -.367 13.5 -T.4 451 -.349 12.2
Entrant 6 13.0 -5.9

Median 14.8 -7.6

Problem A3 | RMS Mean CV  MBE | RMSgyy Meanggy; RCV
ARD b32 -204 15.2 5.8 384 -.167 9.15
ARD off 495 -121 14.2 -35 .339 -.094 8.08
Entrant 6 30.6 -27.3

Median 31.0 -27.0

Problem B RMS Mean CV  MBE | RMSgy Meanggyy; RCV
ARD 11.2 1.1 3.20 0.32 6.55 0.67 .710
Entrant 6 2.75 0.17

Median 6.19 0.17
Key:

My models:

ARD The predictions entered in the competition using the ARD model.
ARD off Predictions obtained wusing derived models with the standard
regulariser.

Other entries:
Entrant 6
Median

Raw Performance measures:

RMS  Root mean square residual. RMSgq0

Mean Mean residual.

CV Coefficient of variation (per- Meanggy,
centage). The competition RCV
performance measure.

MBE  Mean Bias Error (percentage).

Normalising constants: Problem | Mean of test data

The entry which came 2nd by the competition’s average CV score.
Median (by magnitude) of scores of all entries in competition.

Robust Performance measures:

Root mean square of the
smallest 90% of the residuals.
Mean of those residuals.

RMSgqy /( 90% data range).

90% data range

Al 624.77
A2 4.933
A3 3.495
B 350.8

486.79
3.7
4.2
923

Table 1: Performances of different methods on test sets
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Figure 7: Change in validation error when the ARD prior is suspended
The solid lines without stars show the performance of ARD models. The dotted lines
with stars show the models with ARD suspended. In most cases, these standard (‘ARD
off’) models get significantly worse.

source of the data were measurements of solar flux from five outdoor devices.
Four of the devices had a fixed attitude. The fifth, whose output was to be
predicted, was driven by motors so that it pointed at the sun. The aim is
to enable four cheap fixed devices to substitute for one expensive moving one.
Clearly, information such as the day of the week and past history of the input
variables was not expected to be relevant. However, I did not realise this,
and I spent some time exploring different temporal preprocessings of the input.
Satisfyingly, all time-delayed inputs, and the time of the week, were correctly
found to be irrelevant by the ARD model, and I pruned these inputs from the
final models used for making predictions — without physical comprehension of
the problem.

The inputs used in the final models were the four sensor measurements,
and a five dimensional continuous encoding of the time of day and the time of
year. For training, one third of the training set was selected at random, and the
remaining two thirds were reserved as a validation set. This random selection
of the training set was later regretted, because it leaves randomly distributed
holes where there are no training data. This caused my models’ predictions to
become unnecessarily poor on a small fraction of the testing data. As in part
A, a committee of networks was formed. Each network had between 5 and 10
hidden units.

14



Results

Problem B was a much easier prediction problem. This is partly due to the fact
that it was an interpolation problem, with test data extracted in small chunks
from the training set. Typical residuals were less than 1% of the data range, and
contrasts between different methods were not great. Most of the sum-squared
error of my models’ predictions is due to a few outliers.

4 Discussion

The ARD prior was a success because it made it possible to include a large
number of inputs without fear of overfitting.

Further work could be well spent on improving the noise model, which as-
sumes the residuals are Gaussian and uncorrelated from frame to frame. A
better predictive model for the residuals shown in figures 1-3 might represent
the data as the sum of the neural net prediction and an unpredictable, but
auto-correlated, additional disturbance. Also, a robust Bayesian noise model is
needed which captures the concept of outliers.

In conclusion, the winning entry in this competition was created using the
following data modelling philosophy: use huge flexible models, including all
possibilities that you can imagine might be appropriate; control the flexibility
of these models using sophisticated priors; and use Bayes as a helmsman to
guide the search in this model space.
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