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Abstract

Gallager codes with rates about 0.9 and block length
about 2000 or 4000 bits have previously been shown
to have promising performance (MacKay and Davey,
2000). In this paper we investigate puncturing as a
possible method for further increasing the rate of such
codes.

At low signal-to-noise ratios, high-rate punctured
Gallager codes appear to be inferior to unpunctured
Gallager codes constructed ‘beyond the Steiner limit’.
We find evidence, however, that the punctured codes
are superior at higher signal-to-noise ratios.

We also explore the possible benefits of irregular con-
structions. For these rates and blocklengths, it seems
hard to beat regular Gallager codes.
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1 Introduction

A regular Gallager code (Gallager, 1962) has a parity
check matrix with uniform column weight j and uniform
row weight k, both of which are very small compared
to the blocklength. If the code has transmitted block-
length N and rate R then the parity check matrix H
has N columns and M rows, where M > N(1 — R).
[Normally parity check matrices have M = N(1 — R),
but the matrices we construct may have a few redun-
dant rows so that their rate could be a little higher than
1—-M/N]

In an earlier paper we found evidence that regular
Gallager codes are useful for high rates (R > 2/3) and
small block lengths (N < 5000) (MacKay and Davey,
2000). Both binary codes and codes over GF(16) had
promising performance. These positive results have re-
ceived further confirmation from studies of magnetic

recording applications at IBM Zurich research labora-
tories (Eleftheriou, 2000).

When constructing Gallager codes it is common prac-
tice to impose the constraint that no two columns in
the parity check matrix may have an overlap greater
than one, in order to reduce the probability of the
code’s having either low-weight codewords or ‘near-
codewords’. This constraint, which we will call ‘the
overlap constraint’, imposes a maximum rate on the
Gallager code. In the case of regular Gallager codes
with column-weight j, the overlap constraint’s impli-
cations are spelled out in (MacKay and Davey, 2000):
for a given blocklength N, the rate R cannot exceed a
rate called the Steiner limit, defined implicitly by the
equation
MM -1)
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For example, if the column weight is j = 4, the Steiner
limit is 0.9 at a blocklength of N = 1000 bits, and 0.94
at N = 4000 bits.

In this paper we explore puncturing as a method for
further increasing the rate of high-rate Gallager codes.
In a punctured code, some of the bits in the graph are
omitted from the transmitted codeword. The number of
constraints is unchanged, but the transmitted codeword
is shorter, so the rate is greater.

Punctured Gallager codes may still be decoded by the
sum-product algorithm; the punctured bits are included
in the graph, and are inferred during the decoding.

Punctured Gallager codes have been studied before,
though not with high rate: linear MN codes (MacKay
and Neal, 1995) are punctured Gallager codes in which
K bits are punctured, K being the number of source
bits. In the parameter regimes we explored, we did
not find that such punctured codes were superior to
unpunctured Gallager codes.

In this paper two issues are investigated.

N(M,j) = (1)

First,



we construct Gallager codes and measure their perfor-
mance when punctured, comparing them with ordinary
Gallager codes, including codes that achieve high rates
by violating the overlap constraint. Second, we explore
the option of irregular code constructions, which for
large blocklength N are known to give superior perfor-
mance to regular constructions. Do irregular construc-
tions help for high rate codes with N ~ 2000-40007

2 Method and results
2.1 INCREASING RATE BY PUNCTURING

2.1.1 N ~2000. Starting from a four-cycle-free reg-
ular (j,k) = (4,36) Gallager code with N, M, R =
1998, 222, 8/9, we increased the rate to 0.906, 0.914
and 0.923 in two ways:

1. by puncturing 37, 55, and 74 bits from the original
code;

2. by making new regular codes violating the overlap
constraint. (For each new rate, two codes were
selected from a large number of random codes; the
selected ones had the smallest number of overlaps.)

Figure 1 compares the empirical performance (block er-
ror probability) of these codes, on a Gaussian channel.
In all three cases, the punctured Gallager code is in-
ferior to the regular Gallager code on the low signal-
to-noise side of the curve. For the cases where 55 and
74 bits are punctured, however, the regular Gallager
code shows some evidence of flattening at high signal-
to-noise, so it seems that puncturing might be a su-
perior method if performance at high signal-to-noise is
important.

In this experiment, none of the codes made any un-
detected errors.

N ~4400. We made a similar experiment with a reg-
ular j, N, M, R = 4, 4376, 282, 0.9356 Gallager code.
By puncturing 40 and 80 bits, we increased the rate to
0.9442 and 0.9530 respectively. These two punctured
codes were each compared with two new Gallager codes
violating the overlap constraint. The results, shown in
figure 2, are similar to those of figure 1: puncturing
is an inferior method at low signal-to-noise, but at the
highest rate, the regular Gallager codes with overlaps
have an error floor, and the punctured code is superior.

In this experiment, both of the regular rate-0.9530
Gallager codes with overlaps made undetected errors
which dominated the error floor.
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Figure 1: Puncturing compared with violating the over-
lap constraint as a method for increasing the rate of
Gallager codes. From top to bottom, the number of
punctured bits is 34, 55, 74. The parity check matrix
of the original regular Gallager code with rate R = 8/9
and N = 1998, $2.94.594, can be found in the online
archive (MacKay, 1999).
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Figure 2: Puncturing comapred with violating the over-
lap constraint, N ~ 4400, R ~ 0.95. The lower-left
curves show the Shannon limits for the three rates stud-
ied.

2.2 IRREGULAR HIGH-RATE GALLAGER CODES

We compared the j, N, M = 4,1998,222 regular Gal-
lager code with two irregular codes that were con-
structed with the aid of Chung et al.’s (1999) code de-
sign applet. An unconstrained optimization was not
used, because that would have led to large numbers of
weight-two columns, which we know would produce low-
weight codewords. We constrained the minimum col-
umn degree to be 4 and found that if columns of degree
14 were permitted, the optimal fraction of such columns
was roughly 6% [optimal according to the threshold re-
turned by density evolution]. The predicted improve-
ment in threshold was very small (less than 0.05dB).
Two irregular codes of rate 8/9 were constructed hav-
ing 100 columns of weight 14 and 1898 of weight 4.
Figure 3 shows the empirical results. The irregular
codes are scarcely any better at low signal-to-noise, and
at high signal-to-noise they have an error floor. These
irregular codes did not have any undetected errors.

3 Conclusions

Puncturing is not the best way to make higher rate
codes, except possibly at high signal to noise ratios,
where punctured codes sometimes seemed to have bet-
ter slope than ordinary Gallager codes.

It seems difficult to get a benefit from irregular con-
structions for the rates and block lengths studied here.
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Figure 3: Regular Gallager code compared with irregu-
lar.
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