Bayesian analysis of linear phased-array radar
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ABSTRACT. A number of methods have been developed to analyze the response of the linear
phased array radar. These perform remarkably well when the number of sources is known, but in
cases where a determination of this number is required, problems are often encountered. These
problems can be resolved by a Bayesian approach.

Here, a linear phased-array consisting of equally spaced elements is considered. Analytic ex-
pressions for the posterior probability distribution over source positions and amplitudes, and the
corresponding Hessians are derived. These are integrated to give the evidence for each model order.

Tests using model data showed that performance at the second level of inference is critically
determined by the accuracy of position estimation. If adequate parameter optimization is available,
the Bayesian approach is demonstrated to work well, even in extreme circumstances. A commonly
employed method of source location, noise subspace eigenanalysis of the correlation matrix, was
tried and found to be inadequate. A Newton-Raphson optimization was then used starting from
the positions predicted by eigenanalysis.

1 Introduction

We investigate the analysis of data from linear phased-array radar. Recent improvements in
the speed of computers have made feasible the real-time use of more sophisticated methods
than simple beam-sweep methods. One technique of interest is noise sub-space eigen-
analysis of the correlation matrix [1]. This is one of a class of algorithms commonly known
as super-resolution methods, because of their ability to resolve sources below the Rayleigh
criterion [2, 3].

The merits of Bayesian inference have been demonstrated in many diverse fields of data
analysis [4, 5, 6, 7]. Here, the improvements which may be made to position inference by
eigen-analysis, with the application of Bayesian methods, is assessed. The locations of a
finite number of sources are inferred, with error bars, by maximizing the integrated posterior
probability. The number of sources is similarly inferred by evaluating the appropriate
evidence.

2 Radar Configuration

The phased-array radar consists of a series of equally spaced elements with (ideally)
isotropic far field responses. This arrangement is indicated in figure 1. For each source
configuration, a number of data-sets, S, are collected in rapid succession. These are known
as snapshots.
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Figure 1: Antenna Configuration.

d: element separation; A: wavelength; #: source positions.

For a single snapshot the phase difference between the signal at adjacent elements of
the antenna due to the j*® source is given by:

¢; = (2nd/X)sinb; . (1)
The response of the k" element may be written as

Ty = ZFj expi(ko;) + ny . (2)

J

This is more elegantly expressed in terms of matrices,
zt=VF+n, (3)

where z is the antenna response, n, the noise vector, F, the source amplitude vector and
¢, the source position vector. The steering matrix V is given by

Vij = exp(iko;) . (4)

The source locations are assumed not to change between snapshots, although their complex
amplitudes may. We have, therefore, a single position vector ¢ for all snapshots and a set
of amplitude vectors F?, one for each snapshot.

3 Eigen-analysis of correlation matrix

There are a number of inter-related techniques in spectrum analysis based upon the eigen-
analysis of the data correlation matrix [2, 3]. The method described in brief below, due
to Reilly et al. [1], is one of several super-resolution algorithms known as “maximum like-
lihood”. These can be shown to depend upon the orthogonality relationship given at the
end of this section [2, 3].



The correlation matrix is formed by taking the outer product of the data vector with
itself. Using equation (3) we find

2! = VE(VE)! + ! + VEn' + n(VE) . (5)

Averaging over snapshots we note that the final two terms will ideally go to zero, since
the sources and noise are uncorrelated. The matrix V may be removed from the averaging
since the source positions are the same for all snapshots. Equation (5) may then be written

R=VRsV' 4 25T, (6)

where R = (zz') is the correlation matrix, Rs = (FF') is the source correlation matrix, I
is the identity matrix, o2 is the variance of real and imaginary parts of the noise, and ()
indicates averaging over snapshots. Note that the noise power is assumed identical for each
element of the antenna.

R is Hermitian and positive definite by construction. For an N element antenna in
the presence of k uncorrelated sources, R will have a series of real positive eigenvalues of
decreasing magnitude, that is,

MA202>X+202> ... >\ 4202 > 202 = ... =202, (7)

Multiplying equation (6) by one of the (N — k) noise subspace eigenvectors (i.e. an eigenvec-
tor e,,,;sc of R corresponding to an eigenvalue 20?), one obtains the orthogonality relation

VTQnoise =0. (8)

If an average correlation matrix of order (k 4 1) is formed by averaging (kK + 1) X (k+ 1)
minors along the leading diagonal of R, there will be only one noise subspace eigenvector,
corresponding to the lowest eigenvalue. In this case, taking the Z-transform of the noise
eigenvector, one obtains a polynomial whose solutions are z; = exp(i¢y) for each of the k&
sources present.

There exist more sophisticated ways of averaging R to form an order (k+ 1) matrix [3].
These have the property of resolving correlated sources (i.e. where F? is correlated with
Ff“ or Ff) as well as uncorrelated sources. These are disregarded here for simplicity. An
alternative method due to Burg et al. [8] involves finding the maximum likelihood Toeplitz
structure matrix from the data.

4 Bayesian analysis
SINGLE SNAPSHOT

The inferred parameters divide naturally into: the source amplitudes {F*} (which are
different for each snapshot), the source positions ¢, and the number of sources k, (specified
by the hypothesis H). Initially a single snapshot_will be considered. This is extended to
several snapshots in the following subsection.
We write Bayes’ theorem for a series of levels of inference, as follows;
P(DH, I, ¢)P(E|H, ¢)
P(EIH.D.¢) = == pom oD )




P(D|H,¢)P(6|H)
P(D|H) ’
P(H|D)x P(D|H)P(H) . (11)

We note that P(F|H, ¢) = P(F|H), since I’ and ¢ are independent.
We assume that these distributions are strongly peaked and may be approximated by
Gaussians about their peaks. In fact given the choice of likelihood and priors to be made

later, equation (9) is exactly Gaussian. By making a Gaussian expansion of equation (9)
and integrating, we obtain the expression for the evidence,

P(¢|H, D) =

(10)

P(D|H,¢) = P(D|H, Eyy, ) P(Ey|H) (27) det™ A(¢) (12)

where Fyr = Fyr(¢) is the F that maximizes (9) and the Hessian A is given by

A(¢) = ~VpVpln P(E|H,D,¢) . (13)

Substituting for P(D|H, ¢) from equation (12) in equation (10), with the Hessian,

B =-VVyln P(¢|H, D), (14)
gives upon integration,
P(H|D) o P(D|H, Faz, 6,,)P(Ex| H)P(6,,|[H)(27) ¥ det ' Adet™ B, (15)
where
A(¢) = —VEVg [In P(D|H, F, ¢) +1n P(F|H)] (16)
and

B = —V,V, [In P(DIH, Fpy, ¢) + In P(Ey|[H) +In P(6|H) — Indet™ A(¢)] . (17)

Equations (16) and (17) have been obtained from (13) and (14) by substitution from (9)
and (10), noting that the normalizing factors, P(D|H, ¢) and P(D|H) are constant with
respect to the differentiating variables, I’ and ¢ respect?vely. The determinants of A and
B appear to different powers in equation (15) because [ is a complex vector and ¢ is a real

vector.

EXTENSION TO SEVERAL SNAPSHOTS

In the case of several data sets or snapshots the above theory must be modified. The
positions of the sources, given by ¢, are the same for all snapshots. Their inference is based
upon the data from all the snap_shots taken together. The complex source amplitudes,
however, may be different for each snapshot, giving rise to S source amplitude vectors
{F°}, where S is the number of snapshots.

It follows from the product rule of probability that one must take the product of the
likelihood and priors over snapshots. The amplitude vectors, {F°}, are assumed, as a
rather crude first approximation, to have independent priors between snapshots. Then the

likelihood P(D|H, F, ¢) is replaced by P™(D|H, F*, ¢) = HSS:1 P(D|H, F?, ¢), and the prior



P(F|H) is replaced by P™(EF*|H) = [[>_, P(F*|H). The prior on the source positions ¢ is
unchanged. B
Using these distributions with Bayes’ theorem we obtain the multi-snapshot analogue
of equation (9),
PT(D|H, F*, ¢)P"(E°|H)
P(D|H, ¢)

PT(E°|H, D, ¢) = (18)

Equations (10) and (11) are used without alteration. Expanding the distributions as Gaus-
sians about their maxima and integrating, as in section 4, we derive the final result,

P(D|H) o P™(D|H, Fiy, &) P™ (Eyy| H)P(6,, | H) (27) 5T/ )det =S A det™?B,  (19)

where

A(¢) = —VEVE [In P(D|H, F*, ¢) +In P(F*|H)] , (20)

and
S
B = —Vﬁw E In P(D|H, Fiy, ¢) + In P(F|H) +In P(¢|H) — Indet A(9)] . (21)

Equation (20) is identical to equation (16), and equation (21) is simply the sum over
snapshots of equation (17).

APPLICATION TO PHASED-ARRAY RADAR

For a single snapshot, assuming Gaussian noise, the likelihood function is

N TL2
P(D|H, F, ) - (2;02) expl |20|2] . (22)

The noise vector n is defined for each snapshot as the difference between the data and mock
data, i.e.,
n=z—VF. (23)

The noise variance o2 is assumed to be known for a particular antenna rather than included

as a hyperparameter. Noise is generated in the antenna and can be measured. Taking the
product over snapshots, the likelihood is given by

SN S |n?
PO E*,0) = (3 exp[ 22——] (24)

k
The prior on positions is simply a uniform distribution between i@, P(¢|H) = (ﬁ) .
The prior on source amplitudes is taken to be Gaussian with variance ? on real and
imaginary parts, where 62 is entered as a user defined parameter, i.e.,

1 \5* 1S L,
PT(E |H):<m) exp [_W;E']' (25)



Using the above priors, the Hessian matrices A and B defined in equations (20) and
(21) are found to be:

viv 1
AlQ) =5+ 5 (26)
and
13 t f
By = 322 F[BL + B1f,) - B2 - B2l - By
t t N
- B2;y) — B2(j;) + B3(;) + B3(;) + Bl + B |z
LOA L 0A _, 0%A 7
+ Tr [_A agb]A 0¢; A 3@3@'] .
where
1 0’V
Bli) = — [ _IVT)
@) = 5 (a@a@
1 {0V  _,0A _
B2uj) = ﬁ(a@ la—éjA IVT)
1 (ov oVt
B3 = ﬁ(a@A 16@) "
1 L O0A S O0A
Bdi;) = — (VA 952 e A IVT)
1 o, 0PA
B5.i;) = E(VA laqbiacbjA IVT)
5 Results

Code was written to simulate the antenna response {z®} for up to thirty-two snapshots of
data. The simulated source environment consisted of up to five uncorrelated sources, with
arbitrary position and amplitude, and Gaussian noise of arbitary amplitude. Using these
data, the eigenanalysis procedure was tested, and the ability of equation (19) to evaluate
the evidence for different model orders was determined.

FIGENANALYSIS

Without noise, and given the correct model order (i.e., number of sources), the eigenanalysis
predicted the position and amplitude of sources to within the computer accuracy as was
expected. If the procedure was used assuming a model order greater than the actual, the
extra sources were predicted to have zero amplitude to within the computer accuracy.

With Gaussian noise added to the data, eigenanalysis predicted positions and powers
well, as long as the sources were well separated. Estimates of resolution for a range of noise
powers were made by moving two unit amplitude sources together until the eigenanalysis
predicted a single source of twice their amplitude at their average position. Resolution
reduced with increasing noise power.
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Figure 2: Variation of log Likelihood with Optimization iterations.

Figenanalysis as described here depends upon the noise-subspace eigenvector, €, ise,
corresponding to the lowest eigenvalue of R. For an S snapshot data-set with Gaussian
noise, this eigenvalue is ~ 202(1 4+ 1/\/§) For a source configuration containing two nar-
rowly separated sources, the lowest source subspace eigenvalue, A, reduces with separation
and amplitude of the sources. It is evident from equation (7), that the resolution limit will

2
occur when Aj ~ %

DoEs EIGENANALYSIS MAXIMIZE THE LIKELIHOOD?

The parameters predicted by eigenanalysis do not maximize the likelihood. This conclusion
was drawn for two reasons:

1. Manual insertion of the source parameters used to generate the data gave higher likeli-
hoods than the parameters generated by eigenanalysis.

2. The log likelihood is expected to increase by ~ 0.5 for each additional parameter beyond
the correct number. This was not the case. (In this case, an increase in k of 1 introduces
(1 + 25) extra parameters giving an expected increase in log likelihood of about 32
between models.)

Although the predicted parameters do not maximize the likelihood, they do give a fair first
approximation. A simple Newton-Raphson procedure was used to optimize the parameters
predicted by eigenanalysis. (This was easily done, since the relevant Hessian matrix, B, has
already been evaluated using equation (27).) Initially, the integrated likelihood P(D|H, ¢)
was optimized by setting §% to a very large value. Figure 2 shows typically how the likelihood
increased with the number of iterations of the optimization routine. The likelihood increases
above that for manual insertion of the parameters after only one iteration and remains fairly
constant at this value through the subsequent iterations. Reassuringly, this indicates that
the distributions are indeed Gaussian at their peaks.

Figure 3 shows the variation of log likelihood with model order. The expected increase
is observed for each additional parameter beyond the correct model order.
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Figure 3: Variation of Likelihood and Evidence (Parameters Generated by Eigenanalysis
and Newton-Raphson Optimization.)
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EsTIMATED EVIDENCE.

Figure 3 shows the variation of log likelihood and log evidence with model order for a well
resolved source environment with three sources. The evidence has a maximum at the correct
model order. Figure 4 similarly shows the variation of log likelihood and log evidence, but for
a situation where two of the sources have not been resolved by the eigenanalysis. Newton-
Raphson optimization of the eigenanalysis parameters did not resolve these sources. The
model order predicted by the evidence is correspondingly reduced.

Note that in cases such as that shown in figure 4, where the unresolved sources have large
amplitude, the peak evidence is greatly reduced (as compared with cases where parameters
are correctly evaluated). It is tempting to interpret this as an indication of error in the
inferring of the parameters, however, it is not at all clear that such deductions may be
drawn consistently.

LiMITATIONS OF MODEL COMPARISON.

In all cases discussed up to now, Bayesian model comparison has worked well. No severe
test of this level of inference has been made, due to the limitations of the techniques used
to determine the source positions. In lieu of a good optimization method the following test
of the model comparison was made.

Several well separated sources of unit amplitude were generated and a source at the
noise level introduced at a small angle from one of these. Below the correct model order
eigenanalysis was used to seed the Newton-Raphson optimization of parameters. At and
above the correct model order, optimization was seeded with actual source positions cou-
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pled with spurious source positions, predicted by eigenanalysis (note that this amounts to
starting the optimization in the correct place, so this is not a demonstration of the entire
system; it is only a test of the model comparison part). The variations of log likelihood and
log evidence obtained in this way are shown in figure 5. The Bayesian analysis correctly
predicts the number of sources present.

6 Conclusions.

Limitations to the resolution of noise subspace eigenanalysis have been exposed. For real
systems, where the number of snapshots is large, resolution will still be much better than
the Rayleigh limit which restricts Fourier transform and beam-sweep methods.

The eigenanalysis technique as employed here does not give the maximum likelihood
parameters. The predicted parameters are, however, a good approximation to the opti-
mum. The success of Newton-Raphson optimization shows that assumptions of Gaussian
probability distributions are well founded.

The application of Bayesian techniques has enabled the prediction of source positions
to be given error bars. Bayesian model comparison has been shown to give consistent
predictions even when positions are not well determined. In cases where parameters are
well optimized, the Bayesian approach correctly infers the number of sources k.

Finally, it has been shown that the use of Bayesian techniques to make model compar-
isons is limited only by the standard of optimization routines employed.
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