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Abstract

Does the replica method give correct thresholds for low-
density parity-check codes?

This note shows a graph comparing the thresholds derived
by the typical set method (McEliece et al), the density evo-
lution method (Richardson and Urbanke), and the replica
method (Nakamura and Kabashima).

The typical set method is believed to give an accurate
threshold below which the maximum likelihood decoder’s
block error probability tends to zero. [The typical set cal-
culation can also find a threshold below which the bit error
probability tends to zero. In the case of LDPCCs with j = 2,
this is what is computed; the average block error probability
in this case does not vanish for any noise level.]

The density evolution method is believed to give an ac-
curate threshold below which the sum-product decoder’s bit
error probability tends to zero.

The replica method aims to find two thresholds: po,
the threshold below which the the maximum likelihood de-
coder’s bit error probability tends to zero; and a smaller
threshold p;, a noise level above which the maximum likeli-
hood answer is hard to find, so that the sum-product algo-
rithm is expected to fail.

If the above claims are correct, then we expect p; > ppE.

If the maximum likelihood decoder’s bit error probability
and block error probability are closely related (as is expected
to be the case for a good code), we also expect ps = prs.

In the case of bad codes with low-weight codewords, it
is possible that the thresholds for bit error probability and
block error probability might be different; this is an open
question.

COMMENTS ON THE FIGURE

Codes with good distance Figure 1(a) (j > 3) has a con-
tradiction: ps exceeds prs. So either ps is too high, or the
typical set method is inaccurate. The replica method’s p;
appears to always lie very close to, and slightly above, the
density evolution answer. (The difference is within the nu-
merical precision of Nakamura’s calculations.)

Now, is the reason ps > prs because the threshold where
the bit error probability vanishes is different from the thresh-
old where the block error probability vanishes? In the case
of a code with bad distance properties, such as the codes
with j = 2 discussed below, it is conceivable that the two
thresholds might be different. But for a code with good
distance properties, the thresholds must be identical. This

theorem is proved in MacKay (2000).

Theorem 1 If a sequence of codes with increasing block-
length N has minimum distance satisfying dmin > 0N,
where § > 0, then, for any given channel, the codeword
bit error probability of the optimal bitwise decoder, Py (also
known as the magnetization), and the block error probability
of the mazimum likelihood decoder, Py, are related by:
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Thus if Py vanishes then Pp must vanish also, and vice
Versa.

So the bit and block thresholds of a code with good dis-
tance are identical.

Codes with bad distance Figure 1(b) (j = 2) shows simi-
lar differences between the methods, but we cannot be sure
whether there is a contradiction before we resolve the ques-
tion whether the bit and block error probabilities are closely
related for bad codes like these.

Other comments

I (DJCM) am pretty sure that the replica method sometimes
gives incorrect results. In particular, the claim that MN
codes with row weight greater than 2 achieve the Shannon
limit, given an optimal decoder, seems incorrect to me, given
that we have typical set decoder results that do not achieve
the Shannon limit. Strictly speaking, the typical set results
are inequalities, so they cannot disprove the replica claim,
but I am very sceptical indeed.
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Figure 1: (a) j =3 and j =4. (b) j = 2.



