Almost-certainly Runlength-limiting Codes

David J. C. MacKay

Department of Physics, University of Cambridge
Cavendish Laboratory, Madingley Road,
Cambridge, CB3 OHE, United Kingdom.

mackay@mrao.cam.ac.uk
http://wol.ra.phy.cam.ac.uk/mackay/

Abstract. Standard runlength-limiting codes — nonlinear codes defined
by trellises — have the disadvantage that they disconnect the outer error-
correcting code from the bit-by-bit likelihoods that come out of the chan-
nel. I present two methods for creating transmissions that, with proba-
bility extremely close to 1, both are runlength-limited and are codewords
of an outer linear error-correcting code (or are within a very small Ham-
ming distance of a codeword). The cost of these runlength-limiting meth-
ods, in terms of loss of rate, is significantly smaller than that of standard
runlength-limiting codes. The methods can be used with any linear outer
code; low-density parity-check codes are discussed as an example.

The cost of the method, in terms of additional redundancy, is very small:
a reduction in rate of less than 1% is sufficient for a code with blocklength
4376 bits and maximum runlength 14.

This paper concerns noisy binary channels that are also constrained chan-
nels, having maximum runlength limits: the maximum number of consecutive 1s
and/or Os is constrained to be r. The methods discussed can also be applied to
channels for which certain other long sequences are forbidden, but they are not
applicable to channels with minimum runlength constraints such as maximum
transition-run constraints.

I have in mind maximum runlengths such as r = 7, 15, or 21. Such constraints
have a very small effect on the capacity of the channel. (The capacity of a
noiseless binary channel with maximum runlength r is about 1 —27".)

There are two simple ways to enforce runlength constraints. The first is to use
a nonlinear code to map, say, 15 data bits to 16 transmitted bits [8]. The second is
to use a linear code that is guaranteed to enforce the runlength constraints. The
disadvantage of the first method is that it separates the outer error-correcting
code from the channel: soft likelihood information may be available at the chan-
nel output, but once this information has passed through the inner decoder, its
utility is degraded. The loss of bit-by-bit likelihood information can decrease the
performance of a code by about 2dB [3]. The second method may be feasible,
especially if low-density parity-check codes are used, since they are built out of
simple parity constraints, but it only gives a runlength limit r smaller than 16 if
the outer code’s rate is smaller than the rates that are conventionally required
for magnetic recording (0.9 or so) [7].

I now present two simple ideas for getting the best of both worlds. The
methods presented involve only a small loss in communication rate, and they
are compatible with the use of linear error-correcting codes. The methods do not
give an absolute guarantee of reliable runlength-limited communication; rather,
as in a proof of Shannon’s noisy channel coding theorem, we will be able to
make a statement like ‘with probability 1—1072°, this method will communicate
reliably and satisfy the r = 15 runlength constraint’. This philosophy marries
nicely with modern developments in magnetic recording, such as (a) the use
of low-density parity-check codes, which come without cast-iron guarantees but
work very well empirically [7]; and (b) the idea of digital fountain codes [1],
which can store a large file on disc by writing thousands of packets on the disc,
each packet being a random function of the original file, and the original file
being recoverable from (almost) any sufficiently large subset of the packets — in
which case occasional packet loss is unimportant. The ideas presented here are
similar to, but different from, those presented by Immink [4-6], Deng and Herro
[2], and Markarian et al. [9].

1 Linear method

The first idea is a method for producing a codeword of the linear outer code
that, with high probability, satisfies the runlength-limiting constraints.

We assume that a good outer (N, K) linear error-correcting code has been
chosen, and that it is a systematic code. We divide the K source bits into K
user bits and K, > log, M additional special source bits that we will set so as
to satisfy the runlength constraints. The code has M = N — K parity bits. We
choose the special source bits such that all M of the parity bits are influenced by
at least one of the K special bits. When transmitting the codeword we order the
bits as shown below, such that the K, + M special bits and parity bits appear
uniformly throughout the block. We call these K, + M bits the pad bits.

K
M
Ku Kr
Tooii. .. %%,
10011 .

We modify the code by adding an offset o to all codewords. The random vector
o is known to the sender and receiver and satisfies the runlength constraints.
As we will see later, it may be useful for o to change from block to block; for
example, in magnetic recording, it might depend on a seed derived from the
sector number.

The method we will describe is appropriate for preventing runs of length
greater than r for any r greater than or equal to p, the distance between pad
bits. Two examples of the code parameters are given in table 1. R is the overall
code rate from the user’s perspective. We intend the number of special source bits

Table 1. Some feasible parameter settings.

K. 4096 4096
K, 20 24
M 296 432
N 4412 4552

R=K,/N 0928 0.9
p=N/(M+K,) 14 10

K, to be very small compared with the blocklength. For comparison, a standard
rate 15/16 runlength-limiting inner code would correspond to K, ~ 256 bits.
If instead we use K, = 24 then we are using one tenth the number of bits to
achieve the runlength constraint.

The idea of the linear runlength-limiting method is that, once the user bits
have been set, there are very likely to be codewords that satisfy the runlength
constraints among the 2%+ codewords corresponding to the 2%+ possible settings
of the special source bits.

Encoding method

We write the user data into the K, bits and note which, if any, of the K, + M
pad bits are forced by the runlength constraints to take on a particular state.
[If the maximum runlength, r, is greater than the spacing between pad bits, p,
then there may be cases where we are free to choose which of two adjacent pad
bits to force. We neglect this freedom in the following calculations, noting that
this means the probability of error will be overestimated.)

For a given user block, the probability, averaging over offset vectors o, that
a particular pad bit is forced to take state 0 is the probability that it lies in or
adjacent to a run of r 1s, which is approximately

B=r27". (1)

The probability that a particular pad bit is forced to take state 1 is also . The
expected number of forced pad bits in a block is thus 26(K, + M). Table 2 shows
that, for r > 14, it will be rare that more than one or two pad bits are forced.

Having identified the forced bits, we use linear algebra to find a setting of the
K, special bits such that the corresponding codeword satisfies the forced bits,
or, in the rare cases where no such codeword exists, to find a codeword that
violates the smallest number of them.

Table 2. Examples of the expected number of forced pad bits, 28(M + K,).

r 14 16 20
8 8x10712x 1074 2x%x107°

Ke+ M 316 316 316

28(M + K;) 0.5 0.15 0.01

1.1 Probability of failure

The probability that this scheme will fail to find a satisfactory codeword depends
on the details of the outer code. We first make an estimate for the case of a
low-density parity-check code; later, we will confirm this estimate by numerical
experiments on actual codes.

Let the columns of the parity-check matrix corresponding to the K, + M
pad bits form a submatrix F. In the case of a regular low-density parity-check
code, this binary matrix will be sparse, having column weight 4, say, or about 8
in the case of a code originally defined over GF'(16). If the code is an irregular
low-density parity-check code, these columns might be chosen to be the higher
weight columns; we will see that this would reduce the probability of error.

Consider one row of F of weight w. If the w corresponding pad bits are
all constrained, then there is a probability of 1/2 that the parity constraint
corresponding to this row will be violated. In this situation, we can make a
codeword that violates one of the w runlength constraints and satisfies the others.
The probability of this event happening is (23)™. For every row of F, indeed for
every non-zero codeword of the dual code corresponding to F, there is a similar
event to worry about. The expected number of runlength constraints still violated
by the best available codeword is thus roughly

S 1 Aw(w) (26)", @)
2

where Ap(w) is the weight enumerator function of the code whose generator
matrix is F. For small 3, this expectation is dominated by the low-weight words
of F, so, if there are M words of lowest weight wmin, the expected number of
violations is roughly

S M8 3

Table 3 shows this expected number for wy;, = 4 and 8.

For example, assuming wy;, = 8 (which requires a matrix F whose columns
have weight 8 or greater), for a maximum runlength r of 14 or more, we can get
the probability of failure of this method below 10720,

What the above analysis has not pinned down is the relationship between
the column weight of F and wy;,. We now address this issue, assuming F is
a low-density parity check matrix. If F has a row of weight w, then the dual
code has a word of weight w. Any linear combination of rows also gives a dual

Table 3. The expected number of violations for wmyin = 4 and 8.

T 14 16 20
M 296 296 296

Jé] 8x 107" 2x107* 2x107°
(28)* 1x107? 8 x 1072 3 x 10716
(28

M
M(23)%1x1072° 5 x 1072° 7 x 1073

N =0 =

codeword. Is it likely that the dual code has words of lower weight than the
already sparse rows that make up the parity check matrix? It would be nice to
know it is not likely, because then we could approximate the expected number
of violations (2) by

LS g(w) @), (4)
2

where g(w) is the number of rows of F that have weight w. However, as F
becomes close to square, it becomes certain that linear combinations of those
low-weight rows will be able to make even lower weight dual words. The approx-
imation (4) would then be a severe underestimate.

We now test these ideas empirically.

1.2 Explicit calculation of the probability of conflict

I took a regular low-density parity-check code with blocklength N = 4376 bits
and M = 282 (the true number of independent rows in the parity check ma-
trix was 281). The column weight was j = 4. In four experiments I allocated
K, = 11,21,31,41 of the source bits to be special bits and found experimen-
tally the conditional probability, given w, that a randomly selected set of w
pad bits constrained by the runlength constraints would conflict with the code
constraints.

[Method: given w randomly chosen pad bits, Gaussian elimination was at-
tempted to put the generator matrix into systematic form with respect to the
chosen bits. This was repeated for millions of choices of the pad bits, and the
probability of failure of Gaussian elimination was estimated from the results.
The actual probability of failure will be smaller than this quantity by a fac-
tor between 1 and 2, because it is possible, even though the pad bits are not
independent, that the runlength constraints will be compatible with the code
constraints.|

Under a union-type approximation (like (4)) that only counts the dual code-
words that are rows of F, we would predict this conditional probability to be

’

: ~ / (Z:Zj’)
P(conflict|w) ~ Zg(w) (N) .

()

The empirically-determined conditional probability of failure, as a function of
the weight w of the constraint, is shown in figure 1, along with the approximation
(5), shown by the lines without datapoints.

.01

.001

.0001

.00001

.000001

45

Fig. 1. Probability of failure of the linear runlength-limiting method as a function of
number of constrained pad bits, w. The four curves with points and error bars show
empirical results for K, = 11, 21, 31, and 41. The four lines show the approximation
(5). All systems derived from the same regular low-density parity-check code with
M = 281 constraints and column weight j = 4. The runlength limits for these four
cases are 7 = N/(K,+M) = 15, 14.5, 14, and 13.6.

It can be seen that for K, = 11 and 21, the approximation is an underes-
timate, but for K, = 31 and 41, it gives a snug fit in the important area (i.e.,
low w). From the empirical results we can also deduce the probability of failure,
which is

P(conflict) = Z P(w)P(conflict|w) (6)

_ (g) (28)"(1 — 28)N =" P(conflict|w). M)

Plugging in 3 = 8 x 10~ (corresponding to constrained length » = 14), we find
that for K, = 21, 31, and 41, the probability of a conflict is about 10~°. We
will discuss how to cope with these rare failures below.

1.3 Further experiments

I also explored the dependence on column weight by making three codes with
identical parameters N, M, K, but different column weights: j = 3, j = 4, and
Jj =~ M/2 (arandom code). Figure 2 shows that for j = 4, the failure probability,
at small w, is quite close to that of a random code.

]
S -
o1 | -
001 ' -
O x =4 —x
x * Random ------
0001 - [-
4 x” K
.00001 - % 3 .
000001 f okt _
} ?K R
0000001 - ' ' ' '
0 5 10 15 20 25 30

Fig. 2. Probability of failure of the linear runlength-limiting method for various column
weights. The code parameters were K, = 25, M = 220.

1.4 How to make the probability of failure even smaller

We showed above that our runlength-limiting method can have probability of
failure about 10715, What if this probability of failure is too large? And what
should be done in the event of a failure? I can suggest two simple options. First,
in discdrive applications, if the offset vector o is a random function of the sector
number where the block is being written, we could have an emergency strategy:
when the optimally encoded block has runlength violations, leave a pointer in the
current sector and write the file in another sector, where the coset o is different.
This strategy would incur an overhead cost at write-time on the rare occasions
where the writer has to rearrange the blocks on the disc.
The second option is even simpler, as described in the following section.

2 Nonlinear method

If the linear method fails to satisfy all the runlength constraints, a really dumb
option is to modify the corresponding pad bits so that the runlength constraints
are satisfied, and transmit the modified word, which will no longer be a codeword
of the outer error-correcting code. As long as the number of flipped bits is not
too great, the decoder of the outer code will be able to correct these errors. The
average probability of a bit’s being flipped is raised by a very small amount
compared with a typical noise level of 107%. The probability distribution of
the number of flipped bits depends on the details of the code, but for a low-
density parity-check code whose graph has good girth properties, we’d expect
the probability of ¢ flips to scale roughly as

popiila (8)
where py = 1(23)“= and p; = 3(28)"“=»"!, and no worse than
K.+ M _
(.)popﬁ . (9)
which is roughly
K, + M)
(+) (26)1‘,(11),“;,,—1) (10)

t!

For wpin = 4, Ky + M = 316, and t = 6, for example, the probability of ¢
errors would be roughly as shown in table 4. Thus as long as the outer code is

Table 4.

r 14 16 20
UG (95)6%3 9 5 1074 4 x 1074 5 x 10774

capable of correcting substantially more than 6 errors, the probability of failed
transmission using this scheme is very low indeed.

2.1 Use of the nonlinear method alone

For some applications, the dumb nonlinear scheme by itself might suffice. At
least in the case of a low-density parity-check code, it is simple to modify the
decoder to take into account the fact that the pad bits are slightly less reliable
than the user bits. [We could even include in the belief propagation decoding
algorithm the knowledge that the pad bit is least reliable when it sits in the
middle of run.]

Let the pad bits be the parity bits, i.e., let K, = 0, use a random offset
vector o, and flip whichever pad bits need to be flipped to satisfy the runlength
constraints. The probability of a pad bit’s being flipped is (3, which was given
in table 2. If the ambient noise level is a bit-flip probability of 1072, then for
runlength constraints r greater than or equal to 16, the increase in noise level
for the pad bits (from 1072 to 1072 + 3) is small enough that the average effect
on performance will be small. For a t-error-correcting code, this dumb method
would suffer an absolutely uncorrectable error (i.e., one that cannot be corrected
at any noise level) with probability about M (¢+1) (41 /(¢ 4 1)1, For r = 16 and
M = 316, this probability is shown in table 5.

Table 5. Probability of an absolutely uncorrectable error for the nonlinear method
and a t-error-correcting code with » = 16 and M = 316.

t 5 9 19

% 2% 107102 % 10718 2 x 104!

Thus, the dumb method appears to be feasible, in that it can deliver a failure
probability smaller than 10~1° with a t=9-error-correcting code. If it is coupled
with the trick of having the offset o vary from sector to sector, then it appears
to offer a cheap and watertight runlength limiting method, even with a weaker
outer code: on the rare occasions when more than, say, 5 bits need to be flipped,
we move the data to another sector; this emergency procedure would be used
of order once in every billion writes. The only cost of this method is a slight
increase in the effective noise level at the decoder.

3 Discussion

In an actual implementation it would be a good idea to compute the weight
enumerator function of the dual code defined by F and ensure that it has the
largest possible minimum distance.

The ideas in this paper can be glued together in several ways.

— Special bits: various values of K, can be used, including K, = 0 (i.e., use the
nonlinear method alone). The experiments suggest that increasing beyond
K, = 20 or 30 gives negligible decrease in the probability of conflict.

— Nonlinear bitflipping. This feature could be on or off.

— Variable offset vector o. If the offset vector can be pseudorandomly altered,
it is very easy to cope with rare cases where either of the above methods
fails.

If the variable offset vector is available, then either of the two ideas — the lin-
ear method or the nonlinear method — should work fine by itself. Otherwise, a

belt-and-braces approach may be best, using the linear and nonlinear methods
together.

Acknowledgements

This work was supported by the Gatsby Foundation and by a partnership award
from IBM Ziirich research laboratory. I thank Brian Marcus, Steven McLaughlin,
Paul Siegel, Jack Wolf, Andreas Loeliger, Kees Immink, and Bane Vasic for
helpful discussions, and Evangelos Eleftheriou of IBM Ziirich for inviting me to
the 1999 IBM Workshop on Magnetic Recording.

References

o

. John Byers, Michael Luby, Michael Mitzenmacher, and Ashu Rege. A digital foun-

tain approach to reliable distribution of bulk data. In Proceedings of ACM SIG-
COMM °98, September 2-4, 1998, 1998.

R. H. Deng and M. A. Herro. DC-free coset codes. IEEE Trans. Inf. Th., 34:786-792,
1988.

R. G. Gallager. Low Density Parity Check Codes. Number 21 in Research mono-
graph series. MIT Press, Cambridge, Mass., 1963.

. K. A. S. Immink. Constructions of almost block-decodable runlength-limited codes.

IEEE Transactions on Information Theory, 41(1), January 1995.

K. A. S. Immink. A practical method for approaching the channel capacity of
constrained channels. IEEE Trans. Inform. Theory, 43(5):1389-1399, Sept 1997.
K. A. S. Immink. Weakly constrained codes. Electronics Letters, 33(23), Nov. 1997.
D. J. C. MacKay and M. C. Davey. Evaluation of Gallager codes for short block
length and high rate applications. In B. Marcus and J. Rosenthal, editors, Codes,
Systems and Graphical Models, volume 123 of IMA Volumes in Mathematics and its
Applications, pages 113—-130. Springer-Verlag, New York, 2000.

B. H. Marcus, P. H. Siegel, and J. K. Wolf. Finite-state modulation codes for data
storage. IEEE Journal on Selected Areas in Communication, 10(1):5-38, January
1992.

G. S. Markarian, M. Naderi, B. Honary, A. Popplewell, and J. J. O’Reilly. Max-
imum likelihood decoding of RLL-FEC array codes on partial response channels.
Electronics Letters, 29(16):1406-1408, 1993.

