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Abstract

Gallager codes with large block length and low rate (e.g., N ~
10,000-40,000, R ~ 0.25-0.5) have been shown to have record-
breaking performance for low signal-to-noise applications. In this
paper we study Gallager codes at the other end of the spectrum. We
first explore the theoretical properties of binary Gallager codes with
very high rates and observe that Gallager codes of any rate offer
runlength-limiting properties at no additional cost.

We then report the empirical performance of high rate binary
and non-binary Gallager codes on three channels: the binary input
Gaussian channel, the binary symmetric channel, and the 16-ary
symmetric channel.

We find that Gallager codes with rate R = 8/9 and block length
N = 1998 bits outperform comparable BCH and Reed-Solomon
codes (decoded by a hard input decoder) by more than a decibel
on the Gaussian channel.

Keywords:  Error-correcting codes, Sum-product algo-
rithm, Magnetic recording,.

1 Introduction

1.1 Definition of Gallager codes

A regular Gallager code (Gallager, 1962) has a parity check matrix with
uniform column weight j and uniform row weight k, both of which are very
small compared to the blocklength. If the code has transmitted blocklength
N and rate R then the parity check matrix H has N columns and M rows,
where M > N(1—R). [Normally parity check matrices have M = N(1—R),
but the matrices we construct may have a few redundant rows so that their
rate could be a little higher than 1 — M/N ]

In this paper we explore whether Gallager codes are useful for high rates
(R > 2/3) and small block lengths (N < 5000).
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1.2 High-rate codes

Reed-Solomon codes are the industry standard error-correcting codes for
high rate, low block length applications such as magnetic disc drives and
compact discs. They have good distance properties and they have an effi-
cient bounded-distance decoder.

When we proposed evaluating Gallager codes with high rate and small
block length for disc drive applications, a common response was ‘why
bother? You’ll never beat Reed-Solomon codes.” But there are several
reasons for checking the performance of Gallager codes.

1. Gallager codes with large block length N have good distance prop-
erties, with high probability (Gallager, 1963; MacKay, 1999¢). Given
an optimal decoder, Gallager codes can get arbitrarily close to the
Shannon limit of a wide variety of channels (MacKay, 1999c).

2. There is a practical sum-product decoder for Gallager codes which
works well for codes with block lengths of order N = 10,000 and
rates of order R = 1/4-2/3 (MacKay and Neal, 1996).

At rates of R = 1/2 and R = 1/4, regular binary Gallager codes
decoded using this algorithm have near-Shannon limit performance.
Irregular binary and non-binary Gallager codes with these rates per-
form better on the binary Gaussian channel than all known practical
codes, including turbo codes (Davey and MacKay, 1998a; Urbanke
et al., 1999).

This decoder has three important features:

(a) It is better than a bounded-distance decoder — it works well
at noise levels significantly larger than the Gilbert noise level
(that is, the noise level at which typical error events have weight
greater than half the minimum distance of a code at the Gilbert
bound).

(b) It is a soft-input decoder, able to make use of likelihood informa-
tion from the channel output. Such decoders can have consider-
able advantages over decoders that take hard inputs (Gallager,
1963).

(¢) The decoder can be generalized to infer bursts if the channel is
believed to be a bursty channel (Worthen and Stark, 1998).

3. According to Berlekamp (1968), one reason that high rate Reed-
Solomon codes are used is that lower rate Reed-Solomon codes are
more costly to encode and decode — the complexity increases with
increasing redundancy.

In contrast, the encoding and decoding complexity for Gallager codes
hardly depend on rate. Furthermore, Gallager codes of any desired
rate and block length can easily be constructed.
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If Reed-Solomon codes can be surpassed, the disc drive industry could
benefit in various ways. A higher rate code with the same probability
of error would allow a small increase in the storage capacity of a drive.
Alternatively, a code that can cope with larger raw error rates would make
the system more tolerant to tracking errors, and the disc could be spun
faster, offering a higher data rate.

1.3 Outline of paper

In section 2, we explore four theoretical issues. First, we ask how good
is the ensemble of random, high-rate, regular Gallager codes, if we do not
constrain the overlap between the columns? We find that the expected
distance properties of these codes are not good. Second, we ask what
are the highest possible rates that regular Gallager codes could have if we
do constrain the overlap between columns — these codes correspond to
‘Steiner systems’ — and could these codes have good distance properties?
We prove that such codes, with j = 3, have bad distance, and we give a
conjecture that, for larger 7, the codes might be good. Third, we prove
that a particular construction of Gallager codes in terms of permutation
matrices leads to bad codes. Fourth, we show that Gallager codes can be
constructed to have fortuitous runlength-limiting properties.

In section 3, we describe the empirical performance of high-rate binary
regular Gallager codes with j = 4 and of a high-rate non-binary regular
Gallager code with j = 3. We compare these Gallager codes with codes
similar to those used in discdrives and show that their performance is good.

In section 4, we discuss difference-set cyclic codes, which are codes sim-
ilar to Gallager codes, but having the special property that they satisfy
many more than M low-weight parity constraints. They outperform equiv-
alent Gallager codes by a significant margin (Tanner, 1981; Lucas et al.,
1999). If we could find more codes like these, they could be very useful.

2 Theory of high rate Gallager codes

2.1 Distance properties of random Gallager codes

The expectation of the weight enumerator function of a random Gallager
code with M x N parity check matrix can be computed for two ensembles.

Ensemble G: In Gallager’s (1963) ensemble, a row weight k is selected,
and a blocklength N. We find the weight enumerator function A(w;1)
of the following submatrix with column weight 1 (illustrated for the



case k = 4):

1111000000000000
0000111100000000 (1)
0000000011110000 )
0000000000001111...

HO =

As shown by Gallager (1963), A(w;1) is given by convolving (%) to-
gether N/k copies of the function

«w={ g Lo @
Aw;1) = a(w) xa(w) x ... *a(w). (3)

We define an ensemble of random Gallager codes with column weight
j by stacking j copies of H(") vertically above each other, each in-
dividual copy having its columns randomly permuted. We can then
find the expected weight enumerator function A(w; j) of the resulting
(N, M, j,k) code with M = 1N using:

(A(w; 7)) = Ac(w; j) = A(w; 1)

Alw; 1) ] a )

()

Ensemble M: An alternative ensemble of matrices that have column weight
at most j, and arbitrary M and N, but do not have fixed row weight
k, was used by MacKay (1999c). Each column of the matrix H is
created by flipping j not-necessarily-distinct entries. With high prob-
ability, any particular column has weight j, but it may, with smaller
probability, have weight j — 2, etc. The expected weight enumerator
function is

(s ) = Aw(wss) = () )os? 6)

o) = Z—Mé () (i-Z) ©)

These ensembles are not the best ensembles for making good Gallager
codes, but they are convenient for estimating weight enumerator functions
and getting a feel for the dependence on block length and rate. Figure 1
shows the expected weight enumerator functions for a sequence of codes
with block length 540 bits and rate increasing from 1/3 to 8/9.

It seems that for small block lengths and large rates such as R = 8/9,
codes constructed by this random construction will almost certainly be bad
codes, in that their distance will be nowhere near the Gilbert distance.
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Figure 1: Expected weight enumerator functions computed using ensemble
M. [The results for ensemble G are similar.] Block length is 540 bits in all
cases. Top figure shows the expected weight enumerator function for codes
with rate 1/3 having j = 3, 4 and 5. The lowest line shows the expected

weight enumerator function of a random linear code with the same N and
M. This line crosses the horizontal line A(w) = 1 at the Gilbert distance.

The neighbouring figure shows detail from the first figure.

Subsequent

figures show the corresponding graphs for rates 2/3 and 8/9. It is evident
that the typical distance of a Gallager code is becoming an increasingly
small fraction of the Gilbert distance as the rate increases.
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Figure 2: Parameters (N, M, j) that can be built without violating the
constraint on column overlaps. Horizontal axis: N; vertical axis: M; the
labels ‘3’ and ‘4’ show examples of parameters that have been built by
random construction methods, including codes presented in this paper.
The 45-degree lines are lines of constant rate R = (N — M)/N. The near-
horizontal lines show the curves (N, M) defined by Steiner systems for
various j (equation (8)). Points (N, M, j) below the Steiner curve S(j) are
not buildable. For low rates such as 1/2 or 1/3, very small blocklengths
are buildable but as the rate is increased, the smallest possible blocklength
becomes quite large.

We therefore use constrained random constructions. The constraint
used by Gallager (1963) and MacKay and Neal (1996), which we also use
here, constrains the maximum overlap between any two columns in the
matrix to be one. We will call this the overlap constraint.

2.2 Steiner systems and Gallager codes
2.2.1 Existence of high rate codes.

If we insist on the constraint that the overlap between any two columns in
the parity check matrix should be at most one, then it is not possible to
build Gallager codes with arbitrary values of (N, M, j); in particular, we
cannot make the blocklength N arbitrarily large for fixed number of rows
M. The blocklength N of such a code with column weight j and M rows
is bounded above by the size of a Steiner system S(M, 7,2).

A Steiner system S(M, j,t) is a set M of M points, and a collection N
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of subsets of M of size j, called blocks, such that any subset of ¢t points of
M are in exactly one of the blocks. The size of the Steiner system, N, is
defined to be the number of blocks N = |A/|. The special case j =3, ¢ =2
is called a Steiner triple system.

The number of subsets of size t in M is (Af ) and the number of subsets

of size t in a block is (4), so the size of an (M, j,t) Steiner system is

wsozio = () / (2) )

In the case of interest, t = 2, we obtain:

The row weight of H, &, is

Ns(M,j) _ (M—1)
b= =G ©

Any (M, j,2) Steiner system defines an (N, M, j) Gallager code with N =
Ng(M,j). If N exceeds Ng(M, j), it is impossible to make a regular Gal-
lager code with parameters N, M, j that satisfies the overlap constraint. So
for any chosen M and j the overlap constraint implies a maximum possi-
ble rate, and for any rate R and column weight j, it implies a minimum
possible blocklength.

These constraints are illustrated in figure 2, which shows Ng(M, j) as
a function of M for various values of j. This figure also shows some actual
values of (N, M,j) that have been constructed by the random construc-
tions mentioned above. Fortunately, codes with column weight ¢ = 4,
blocklength N ~ 2000 and rate R ~ 0.9 are just buildable. Considerable
computer time was spent searching for the highest rate codes that appear
in later sections.

2.2.2 Weakness of Steiner system codes with j = 3.

Having established that certain high rate, small blocklength codes can be
constructed, we now ask whether we expect these codes to be good codes.
Randomly chosen Gallager codes with large enough blocklength N have
good distance properties (Gallager, 1963; MacKay, 1999c), but for small
N, some of these properties deteriorate. In the case j = 3, there is bad
news.

Theorem 1 Any Gallager code defined by a Steiner system with j = 3 has
minimum distance less than or equal to 10.



n M2 M3 N4 N5
a 1 1
b1 1 1
by 1 1
bs 1 1
ba 1 1
C1 1 1
ca 1 1
d 1

Figure 3: Construction of a (5,1) near-codeword (or a weight 4 codeword)
in a Steiner system code.

Proof: We define a (w,v) near-codeword of a code with parity check matrix
H to be a vector x with weight w whose syndrome z(x) = Hx has weight
v.

We prove that the Gallager code derived from a Steiner triple system
has words of weight 10 by counting how many (5,1) near-codewords it has.
If a code with M x N parity check matrix H has more than M distinct
(w, 1) near-codewords, then its minimum distance is at most 2w, because,
by the pigeonhole principle, there must be at least two of them whose
syndromes are identical; the sum of these two near-codewords must be a
codeword of weight at most 2w.

We can generate a (5,1) near-codeword using the Steiner system prop-
erty as follows. First, pick a row of H; we call this row a. (M choices.)
Second, pick two columns n1,n, satisfying Hyn = 1. ((¥) choices.) These
two columns define a (2,4) near-codeword. Call the rows in which the
syndrome of this word is non-zero rows by, bz, bs and by. Third, add two
more columns ng,ns to make either a (4,2) near-codeword or a weight 4
codeword. There are two choices for ng,n4, one of which is illustrated
diagrammatically in figure 3. Either, as shown in the figure, ng is the col-
umn in which points b; and b3z appear and column n4 contains bs and bg;
or n3 contains b; and by and ny4 contains by and bz. Call the new rows
introduced by columns nsg and n4 rows ¢; and ca2. These rows might be
the same as each other, in which case we have found a weight 4 codeword
(n1,n9,n3,n4). Otherwise, rows ¢; and ¢, take us to a unique fifth column
ns which contains points ¢; and ¢2. Adding this column, we have a (5,1)
near-codeword. The final row d is distinct from rows b.—c,. but might be
identical to row a.

We can create such (5,1) near-codewords in M x (¥) x 2 ways. We will
assume that none of these constructions generated a weight 4 codeword
— if one did, then we already have the desired result that the minimum



distance d < 10. Now, are all these

2M(’;) =Mk(k—1)=M(M —-1)(M - 3)/4 (10)
(5,1) near-codewords distinct, or have we created duplicates? If rows a
and d are different, then they are all distinct, because we can hang each
subgraph defined by a (5,1) near-codeword from row d; the nearest neigh-
bours of row d are rows ¢; and cs; the next nearest neighbours are the rows
b«; and the furthest row in the subgraph from d is row a. Thus we can
recover the 2M (’2“) choices that produced the word. If a and d are equal in
one (5, 1) near-codeword, however, then the above procedure will generate
the same near-codeword in three ways (starting from (ny,ns), (n1,ns), and
(ng,ms)). So the number of (5,1) near-codewords is at least

C=M(M—-1)(M—3)/(4x3). (11)

If M exceeds 7, then C exceeds M, so, by the pigeonhole principle, the
code has minimum distance at most 10. O

This negative result for binary Gallager codes with j = 3 gives a reason
for concentrating on larger values of j when dealing with high rate binary
codes.

2.2.3 Properties of high rate codes with small blocklength and
j> 4

Do the codes derived from Steiner systems with j7 > 4 have better distance
properties? We do not have a theorem, but using similar pigeonhole argu-
ments to those used above, we conjecture that the best codes corresponding
to Steiner systems have minimum distance satisfying the following scaling
laws:

j=4: dZlogM (12)
j=5: dZMY?
j—4
j>5: dZMi eg,{ j=6: d=MY/? (13)
j=8: dZM?*3

2.3 Weakness of any Gallager codes built from com-
muting permutations.

Some Steiner systems and other constructions of Gallager codes have the
property that the parity check matrix contains a grid of non-overlapping
permutation matrices. For example, the matrix

Rii Ri2 Riz Ry
H=| Ryy Rz Rss Ry |, (14)
R3; R332 Rsz Ray
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where {R;} are permutation matrices, defines a rate 1/4 Gallager code with
J =3 and k = 4. If the permutations commute, that is, R;;Rr = Ry R
— which need not be the case for random constructions, but is the case for
some algebraic constructions (John Fan, personal communication) — then
the distance properties of the code are limited by the following theorem.

Theorem 2 If a parity check matriz of height M contains a submatriz of
height M and width (j+1)M/j containing j(j+1) non-overlapping permu-
tation matrices that all commute with each other, then the corresponding
code has minimum distance less than or equal to (j + 1)!.

This result applies to Gallager codes of any rate, not just high rate codes.
For example, a code with j = 3 built from commuting permutations has
distance at most 24, and a similar code with j = 4 has distance at most
120.

Proof: We call the vertical and horizontal divisions of the matrix of size
M/j ‘blocks’. We will construct a codeword of a matrix H whose size is
j row-blocks x (j+1) column-blocks, for example, if j = 3, the matrix in
equation (14). This matrix is in general a sub-matrix of the parity check
matrix from which we started. In each of the column-blocks 1,2, ..., (j+1)
we will set j! bits to 1 as follows. Define the operator dj associated with
column-block h (h = 1...(5 + 1)) to be the ‘determinant’ (modulo 2)
obtained from the j x j matrix given by deleting column-block A from the
matrix H. For example, for the case j = 3,

d» = RiiRssRss +Ri1R24R33 + RisRo1Ras + (15)
Ri3R24R31 + RisRo1R33 + RisRosRa;

Each of these operators has weight j!, that is, if we hit a weight-one vector
of length M/j with dp, we get a vector of weight at most j!. We can now
make a codeword w starting from any weight-one vector of length M/j, x,
thus:

W = (dlx, dQX, d3X,.. .dj+1X). (16)

Here, the commas correspond to the block boundaries. That this is a
codeword can be seen by computing the syndrome in each row. In the top
row-block, for example, the syndrome is:

Riidix+ Riadox + Ryzdsx + ... + Rl(j+1)dj+1x (17)

which is equal to the product of x and the determinant of the square matrix:

Rii Riz - Rygy
Rii Riz - Rygy
R2a1 Rax -+ R2(j+1) , (18)
Rji Rjpz -+ Ry
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which is zero, since the top two rows are equal. Similarly, the syndrome
in any row-block h is the product of a determinant that is equal to zero
with x. Thus w is a codeword, and the distance is at most the weight of
w, which is at most (j + 1)!. O

2.4 Gallager codes are fortuitous runlength-limiting
codes

A potential benefit of Gallager codes is that they can be constructed to
have a runlength-limiting property.

Optimal runlength-limiting codes for noiseless channels are nonlinear.
But if we are using an error correcting code for a noisy channel, it would be
nice if we could get the runlength-limiting property for free, as part of the
error-correcting code. The standard procedure in discdrives is to use a small
inner runlength-limiting code, for example, a nonlinear (N, K) = (16,15)
code, and an outer code such as a Reed-Solomon code. This method has
the disadvantage that the outer code cannot be given detailed likelihood
information from the noisy channel; the errors introduced by the decoder
of the inner code are complex.

2.4.1 Getting runlength constraints for free.

If a Gallager code has row weight k and there are N/k rows in the parity
check matrix like this (if k¥ = 5):

11111000000000000000
00000111110000000000

00000000001111100000 (19)
00000000000000011111...
or this (if & = 4):
1111000000000000
0000111100000000 (20)

0000000011110000
0000000000001111...

then these constraints enforce local properties that we can use.

o If k is odd (as in (19)), then these constraints force each block of
k successive transmitted bits to have even parity. Since k is odd,
this means that there must be at least one 0 in every block of &
bits. Thus a Gallager code with odd k is automatically a runlength-
limiting code with maximum runlength of 1s equal to 2(k—1). There
is no constraint on the maximum runlength of 0s.
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o If k is even, then the original Gallager code is not necessarily a
runlength-limiting code, but we can modify the code by adding a
constant vector to all codewords in the code. For example, if k = 4,
we could add the vector

[100010001000---1000] (21)

to all codewords, modifying the decoder appropriately. Now, the
number of 1s in any block of k bits is odd, and so is the number of
0s. So there must be at least one 1 and one 0 in each of these blocks.
So the maximum runlength for 1s is 2(k — 1), and the maximum
runlength for 0s is 2(k — 1).

One could also construct a Gallager code, without impairing its error-
correcting capabilities (at least if the channel is a memoryless channel),
so that its top rows look like this:

11111000000000000
00001111100000000
00000000111110000 ’
00000000000011111...

(22)

in which case the maximum runlength would be 2k — 3.

For practical purposes, Gallager codes have to have a column weight
roughly equal to j = 3 or 4. A code with rate R = (N — M)/N and column
weight j has a row weight £ ~ jN/M = j/(1 — R). So examples of the
fortuitous runlength limits that can be obtained with Gallager codes are
as follows:

R ji=3 j=4
2k-1) 2k-3  20k-1) 2k—3
0.25 6 5 9 8
0.50 10 9 14 13
0.75 22 21 30 29
0.90 58 57 78 77

If the rate is about 0.9 then these runlengths are not of much use — the
maximum runlength used in current discdrives is about 15 — but perhaps
as technology advances, this idea will become useful, especially if lower
rate codes are used. The benefits could be substantial: not only would
there be an increase of about 6% in the storage capacity if the inner code
were removed, but the outer code could be provided with better likelihood
information, which, as we will see below, can give a great improvement in
performance for codes with appropriate decoders.

12



Almost-certainly runlength-limiting codes

Further methods for making high-rate runlength-limited transmissions with-
out using a nonlinear inner code are described in (MacKay, 1999a). The
three key ideas are (a) make the outer code a coset code with the offset
varying pseudorandomly from block to block; (b) space the parity bits of
the outer code uniformly through the block and put aside a small number
of source bits that can be set arbitrarily so that the parity bits take on
the values required to satisfy the runlength constraints; and (c) flip any
remaining bits that need to be changed, and rely on the outer code to cor-
rect them. By combining these methods, we can remove the need for any
complicated inner code.

3 Empirical results

3.1 Construction of Gallager codes

There are various methods for randomly constructing a parity check matrix
with given j and k. When we make codes with large blocklengths these al-
ternative methods generally give codes with equivalent performance. When
the blocklengths are small, however, good codes become more difficult to
find. We have implemented two construction methods. Both these meth-
ods attempt to constrain the maximum overlap between two columns in
the matrix to be one. We find this constraint to be more important in
codes with small blocklengths than it was with large blocklengths.

Permutation matrix method. This method is similar to Gallager’s (see
the appendix of his book), except that the largest possible sizes of
random permutation matrix are used. This distinction is shown pic-
torially for rate 3/4 codes by the following figures, in which integers
show the number of superposed permutation matrices in each square.

0]0[00/0/0/0/0/0]0[00/00[00]

0/0[0/0/0/0/0/0/0]0/00/00[00]
0000000000000
0000000000000

Small permutation matrices Large permutation matrices

S
CC

Left to right method. This is construction 1A from MacKay and Neal.

We have concentrated on regular constructions with columns weights
j = 3 and j = 4. For high rate codes with small blocklengths, a col-
umn weight j = 3 gives weak codes, having small numbers of low-weight
codewords. We therefore report results for column weight j = 4 only.
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3.2 Binary Gallager codes, Gaussian channel
3.2.1 Method.

A sequence of noise levels was selected. At each noise level, a large number
of block decodings was simulated. The decoding algorithm was run for up to
1000 iterations, halting earlier if the best guess of the decoder corresponded
to a valid codeword. The outcome of each decoding was either a success
(i.e., the algorithm returns the transmitted codeword without any errors)
or a failure. There are two possible types of failures.

Detected errors. The decoding algorithm failed to find a valid codeword.
We could call these failures block erasures.

Undetected errors. The decoding algorithm halts in a valid codeword
that differs from the transmitted codeword. This failure mode is
expected to be very rare in codes that have good distance properties.

3.2.2 Errors observed.

The codes with column weight j = 4 have never made undetected errors
in these experiments. In the graphs, the ‘undetected’ error bars show em-
pirical upper bounds on the probability of undetected error. We might
conjecture that these codes have minimum distance similar to the Gilbert-
Varshamov distance, and that undetected errors only occur when the max-
imum likelihood decoder would also make undetected errors. Using this
conjecture, the probability of undetected error can be bounded above by
the probability of error of the maximum likelihood decoder, which could
probably be computed.

3.2.3 Decoding times.

Figure 4 shows the cumulative distribution of decoding times for the code
52.94.594 at three noise levels. The decoding usually halts in fewer than
ten iterations. Under good conditions three iterations usually suffice.

The number of arithmetical operations per iteration is about four times
the number of 1s in the parity check matrix. That makes 16 operations per
iteration per transmitted bit, or 32000 operations per iteration if N = 2000.

3.3 Non-binary Gallager codes, g-ary symmetric chan-
nel

Gallager codes over GF(q) were first reported in (Davey and MacKay,
1998b); improved performance was gained at the expense of a decoding
complexity that scaled as ¢2. This complexity can be reduced using a

Fourier transform of the probabilities (Richardson and Urbanke, 1998).
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Figure 4: Regular Gallager code with rate R = 8/9 and N = 1998. (a)
Dependence of block error rate on signal to noise ratio. Weight per col-
umn ¢t = 4 and transmitted blocklength NV = 1998. Vertical axis: block
error rate. Horizontal axis: Ep/Ng (decibels). Also shown are performance
curves for Reed-Solomon, Reed-Muller and BCH codes with similar rate.
These curves assume that the channel outputs are thresholded to give bi-
nary signals to the decoder. (That is, no soft decoders for the algebraic
codes.) (b) Decoding times, cumulative distribution. (c) Detail from (b).
The parity check matrix of this code, s2.94.594, can be found in the online
archive (MacKay, 1999b).
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Figure 5: Regular Gallager code with blocklength 4376 and rate 0.936. De-
pendence of block error rate on signal to noise ratio. Weight per column
t = 4. Also shown are performance curves for two nearby RS codes and two
BCH codes with similar rate and blocklength 1023. These curves assume
that the RS symbols are transmitted over the binary Gaussian channel
and that the outputs are thresholded to give binary signals to the decoder.
(That is, no soft decoders for the algebraic codes.) The parity check ma-
trix of this code, 4376.282.4.9598, can be found in the online archive
(MacKay, 1999b).

0.1
0.01 .
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0.0001 /7" ZGallager, GF(16) ——
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Figure 6: Gallager code over GF(16) applied to 16-ary symmetric channel.
Weight per column ¢ = 3. Vertical axis: block error rate. Horizontal axis:
symbol error probability. The code is compared with two Reed-Solomon
codes similar to those used in discdrives.
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In the following, we use the notation of (Davey and MacKay, 1998b).
Let N(m) := {n : Hy, # 0} be the set of noise symbols that participate
in check m. The decoder needs to update quantities r2,,,, the probability
of check m being satisfied if symbol n of the message x is considered fixed
at a € GF(q) and the other noise symbols have a separable distribution
given by the probabilities {s® , :n' € N(m)\n}. The new value of r2,, is:

mn’

T?nn = Z d Z HoynTn = 2 H ngj (23)
X:Tn=a n'eN(m) JEN (m)\n

This function of a is a convolution of the quantities s7,;, and so the sum-
mation can be replaced by a product of the Fourier transforms (taken over
the additive group of GF(q)) of sy, ; for j € N'(m)\n, followed by an inverse
Fourier transform. The Fourier transform F' of a function f over GF(2)
is given by F* = f0 + f1 F! = f0 — f! Transforms over GF(2¥) can be
viewed as a sequence of binary transforms in each of k dimensions. Hence
for GF(4) we have

FO = [P+ 1+ + (24)
FUo= [f'= 1+ = F (25)
F* o= [P+ =1+ (26)
Fo= [P === F (27)

The inverse transform is the same, except that we also divide by 2F.
With a slight abuse of notation, let (S?nj, ceey Szl_jl) represent the Fourier
transform of the vector (39,”., ceey s;’n—jl), after permuting the components to

take account of the matrix entry H,,;. Now g, is the ath coordinate of
the inverse transform of

I shl.{ II s&' (28)

JEN(m)\n JEN (m)\n

The update of the quantities s is unchanged.

Each fast Fourier transform takes glog, ¢ additions and ¢ multiplica-
tions. Assuming a column weight j = 3 and taking ¢ = 16, the total cost
per iteration is 96 additions and 72 multiplications per bit. All these op-
erations can be implemented in low precision arithmetic with a small loss
in performance (Richardson and Urbanke, 1998).

Figure 6 shows the performance of a column weight 3 rate 8/9 Gal-
lager code over GF'(16) applied to 16-ary symmetric channel. The code is
compared with two Reed-Solomon codes.
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Figure 7: Difference-set cyclic codes — low—density parity—check codes
satisfying many redundant constraints — outperform equivalent Gallager
codes. (a) The table shows the N, M (the number of independent
rows in the parity check matrix, as opposed to the total number of rows
M), K, distance d, and row weight k of some difference-set cyclic codes,
highlighting the codes that have large d/N, small k, and large N/M. All
DSC codes satisfy N constraints of weight k. (b) In the comparison the
Gallager code had (j,k) = (4,13), and rate identical to the DSC codes.
Vertical axis: block error probability; horizontal axis: Ey/No/dB.

(¢) Decomposition of the DSC code’s errors into detected and undetected
errors.

(d) The error rate of the DSC code can be slightly reduced by using a
‘fudge factor’ of 1.25 or 1.37 during the sum-product decoding.
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4 Difference-set cyclic codes

The performance of Gallager codes can be enhanced by making a non-
random code with redundant sparse constraints (Tanner, 1981; Lucas et al.,
1999). There is a difference-set cyclic code, for example, that has N = 273,
and K = 191, but the code satisfies not M = 82 but N, i.e., 273, low-
weight constraints (figure 7). It is impossible to make random Gallager
codes that have anywhere near this much redundancy among their checks.
The redundant checks allow the sum-product algorithm to work substan-
tially better, as shown in figure 7, in which a DSC code outperforms a
comparable regular binary Gallager code by about 0.7dB. The (73,45)
DSC code has been implemented on a chip by Karplus and Krit (1991)
following a design of Tanner (1981). Product codes are another family
of codes with redundant constraints. For example, the product with it-
self of a (n,k) = (64,57) Hamming code satisfying m = 7 constraints is
a (N,K) = (n%,k?) = (4096,3249) code. The number of independent
constraints is M = 847, but the sum-product decoder can make use of
2nm = 896 equivalent constraints. Such codes have recently been named
‘turbo product codes’, but we think they should be called ‘Tanner product
codes’, since they were first investigated by Tanner (1981). Product codes
have the disadvantage, however, that their distance does not scale well with
blocklength; the distance of a product code with blocklength n?, built from
two codes with distance d, is only d?, so the ratio of distance to blocklength
falls.

An open problem is to discover codes sharing the remarkable properties
of the difference-set cyclic codes but with larger blocklengths and arbitrary
rates. I call this task the Tanner challenge, in honour of Michael Tanner,
who recognised the importance of such codes twenty years ago.

4.1 Notes on DSC codes
Do the extra checks help?

To confirm that the extra 191 redundant parity checks are responsible for
the good performance of the DSC code, we tried decoding the code using
only 82 of the parity checks. In case 82h, we took the first 82 rows of the
cyclic parity check matrix; in case 82r we picked 82 random non-redundant
rows from the matrix. This choice appears to make little difference. Either
way, the performance is much worse than that of the code using the full
M = 273 checks (figure 7(b)). The random Gallager code with j = 4
performs slightly better than either of the crippled DSC codes.

Undetected errors.

The (273,191) DSC code makes undetected errors. The frequency of these
errors is shown in figure 7(c).
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Rescaling the log-probability messages.

An ad hoc procedure found helpful by Tanner (personal communication)
involves scaling down the log-probabilities by a ‘fudge factor’ f at the end
1

. . . (1) _
of each iteration. We seize the message an, = log 222 on its way from
q

bit n to check m, and replace it by ./ f. Experimgﬁting with a range
of values of f, we find that values slightly greater than 1 reduce the error
probability a little at large Ep/Np. Figure 7(d) shows graphs for f = 1,
f =125 f =137 f =150, and f = 2. This fudge appears to reduce
the frequency of detected errors and has little effect on the frequency of
undetected errors, so that the error probability is dominated by undetected
errors. We speculate that the fudged algorithm is indistinguishable from
the optimal decoder for this DSC code, and the performance is only limited
by the code’s distance properties.

5 Discussion

Comparisons of Gallager codes with Reed-Solomon codes have been made
before by Worthen and Stark (1998). They made a belief propagation
decoder appropriate for bursty channels and achieved 3 dB performance
gain over the Reed-Solomon code for rate 1/2 and block size of about
10000. Worthen and Stark attributed 2 dB of the gain to the use of soft
decisions rather than hard decisions and 1 dB to code improvement. Using
that reasoning, the gain of the shorter-blocklength Gallager codes over
Reed-Solomon codes in our paper can be attributed entirely to using soft
decisions. Our work makes a case for finding good short length codes
that use soft decisions. Gallager codes over GF(16) appear to be good
candidates for this role.

The task of constructing Gallager codes with very short block lengths
remains an interesting area for further research.
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