Electronic Notes in Theoretical Computer Science 74 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume74.html 8 pages

Performance of
Low Density Parity Check Codes
as a Function of Actual and Assumed
Noise Levels

David J.C. MacKay ! and Christopher P. Hesketh

Cavendish Laboratory,
Cambridge, CB3 O0HE, United Kingdom.

Abstract

We investigate how sensitive Gallager’s codes are, when decoded by the sum-product
algorithm, to the assumed noise level. We have found a remarkably simple function
that fits the empirical results as a function of the actual noise level at both high
and low noise levels.

A linear code may be described in terms of a generator matrix G or in
terms of a parity check matrix H, which satisfies Hx = 0 for all codewords x.
In 1962, Gallager reported work on binary codes defined in terms of low density
parity check matrices [2,3]. The matrix H is defined in a non-systematic form;
each column of H has the same small predetermined weight (e.g., 3) and the
weight per row is also uniform; the matrix H is constructed at random subject
to these constraints. When these codes are decoded using Gallager’s iterative
probabilistic decoding method, also known as the sum-product algorithm or
belief propagation, their empirical performance is found to be excellent [4,5].

In this paper, we investigate the dependence of the performance of a low
density parity check code on both the assumed and actual noise levels of a
binary symmetric channel and a Gaussian channel. All the experiments make
use of binary codes whose parity check matrices are randomly generated with
weight per column ¢ = 3 using construction methods 1A and 1B of [4].

The present work has four motivations. First, since the decoding algo-
rithm (reviewed in detail in [4,5]) is somewhat ad hoc, it seems an interesting
experiment to ‘tweak’ it, checking to see whether any of its control parameters
can be set to better values than their standard values; specifically, we tweak
the assumed noise level to see if setting it to higher or lower values improves
the performance of the sum-product algorithm. Second, this project sheds

! Email: mackay@mrao.cam.ac.uk

(©2003 Published by Elsevier Science B. V.

MAacKAY AND HESKETH

light on the nature of the errors made by low density parity check codes. Are
decoding errors associated solely with unusually high noise levels, or are there
particular noise patterns which are associated with decoding errors? Third,
in practical situations, we are unlikely to know the channel’s characteristics
exactly, and it will be helpful if our decoder is robust to mismatches between
the assumed channel model and the true channel statistics. Fourth, the mea-
surements we make here give an indication of how much computer time can
be saved, when simulating these codes, by using biased sampling methods.
An unexpected spin-off of this work is an empirical formula which accurately
describes the iterative decoder’s error probability as a function of signal to
noise ratio at both high and low noise levels.

Method

Our first experiments used a small low density parity check code with rate
1/2 and block length N = 2000 over a binary symmetric channel that flips
a fraction n of the bits. We will call n the ‘actual crossover probability’.
We used the probability-based representation for belief propagation decoding
described in [5]. [Results in another representation such as the log-likelihood
representation would have been identical, apart from differences produced by
rounding error.| In each decoding run we ran the decoder until it either found
a valid codeword or timed out after a maximum of 200 iterations. If the
maximum number of iterations was reached then the decoding was considered
a failure. In all the simulations reported in this paper, whenever a valid
codeword was found, it was the correct one. (Unlike turbo codes [1], low
density parity check codes are never found to make undetected errors, because
they have good distance properties [4,5].) The noise vectors were generated to
have weight exactly n/V, where n was the ‘actual noise level’, which we varied
from experiment to experiment (note that we did not draw the noise vector
from a Bernoulli distribution, as would be appropriate if we were discussing
the binary symmetric channel with independent identically distributed noise;
the results for this case can be obtained by convolving the results we find here,
as a function of n, with the probability of the flipped fraction n given the flip
probability). The decoder assumed a crossover probability of f.

We performed two types of experiments. First, with the actual noise level
n fixed, we varied the assumed noise level f and observed the failure prob-
ability. Second, we varied the actual noise level n while the assumed noise
level remained fixed at f. The results of these two experiments are shown in
figure 1.

Interestingly, neither an increase nor a decrease in the assumed noise level
gives significantly better performance than does leaving it set to the actual
noise level. The block error probability is not a very sensitive function of the
assumed noise level. To the left of the optimum, the graph of log(block error
probability) versus log(f) appears to have slope about —1, indicating that

2

MAacKAY AND HESKETH

0.1 0.1]
001]
0.01]
0.001 |
0.001 |
0.0001 ‘
0.01 f 0.1
0.0001

0.065 0.07 %075 0.08 0.085
Fig. 1. Low density parity check code’s block error probability (a) as a function of
assumed noise level when the actual noise level was fixed; (b) as a function of actual
noise level for fixed assumed noise level. These results are for a code of block length
N = 2000 and a binary symmetric channel. The error bars show approximate 95%
confidence intervals.

ey

0.065 0.07 n 0.075 0.08 0.085

Fig. 2. Probability distribution, P(nl|fail), of weight of noise vectors that cause
failures given that the distribution of noise vector weights P(n) is binomial with
mean 7 = 0.068, and assuming f = 0.068. A piecewise linear approximation to
the graph of log P(failln) given in figure 1(b) was used to deduce the posterior
probability P(nl|fail). These results are for a code of block length N = 2000 and a
binary symmetric channel.

if f is too small by a factor of two, we suffer a doubling of the block error
probability. To the right of the minimum the slope appears to be even smaller,
so that a doubling of the assumed f increases the block error probability by
less than a factor of two. When the assumed noise level is far too large (well
beyond the Shannon limit of 0.11 for a rate 1/2 code) there is a catastrophic
increase in the error probability. This corresponds to the decoding algorithm’s
always settling down in a non-committal state.

In the second plot, the results for fixed f as a function of the actual noise

3

MAacKAY AND HESKETH

(a))

01l
0.01
01
0.001 |
0.0001 |
0.01 —5—3 0 1 2 09 1 11 12 13 14

Fig. 3. Low density parity check code’s block error probability for a Gaussian
channel (a) as a function of assumed signal to noise ratio when the actual s.n.r.
was fixed; (b) as a function of actual s.n.r. for fixed assumed s.n.r.. Horizontal axis
shows signal to noise ratio E,/Ny in decibels. Vertical axis shows observed block
error probability, with error bars showing approximate 95% confidence intervals.
The vertical line in (a) indicates the fixed actual s.n.r. (1.22dB), and in (b) the
vertical line indicates the fixed assumed s.n.r. (1.22dB). These results are for a code
of block length N = 13298.

level n show a close to linear relationship between log(block error probability)
and n in the low noise regime.

From this curve we can deduce the probability distribution of the weight
of the error-causing noise vectors when the distribution of noise vectors is
binomial with any density of interest, for example n = 0.068, and with the
assumed f = 0.068. The prior probability of the weight w = nN is

(1) P(w)= @7) A (1 —)

(2) ~exp [N (Ha(n) +nlogn + (1 —n)log(l —n))]

where Hy(n) = —nlogn+(1—n)log(l1—n). (All logs are natural logarithms.)
The probability of failure P(failjn) is given in figure 1(b). The posterior
probability of w (equivalently, of n) given that there is a failure, is given by

(3) P(n|fail) oc P(fail|n)P(n)

and is shown, along with P(n), in figure 2. This graph indicates that (at least
for block lengths about 2000) decoding errors are almost all associated with
noise vectors of above-average weight.

Results for a longer blocklength code on a Gaussian channel

Just as in the case of the binary symmetric channel where we distinguished
between the mean error rate of the channel and the actual fraction of bits
flipped, when studying an additive white Gaussian noise channel we distin-
guish between the ‘mean’ signal to noise level (s.n.r.) and the ‘actual’ s.n.r..
In this paper we control the ‘actual’ s.n.r.. Results for a code of block length

4

MAacKAY AND HESKETH

1 - 4 T T T T T T
2 i
0.1+ .
0
0.01 -2 .
-4 i
0.001 |
-6 4
0.0001 - -8 4
1 1 1 1 1 1 _10 1 1 1 1 1 1
0.9 1 1.1 12 13 14 0.9 1 1.1 12 13 14

Fig. 4. Empirical fitting: Low density parity check code’s block error probability
for a Gaussian channel (solid line) as a function of actual s.n.r. for fixed assumed
sn.r.. The dashed line shows the fitted function f(z) = 1/(1 + a¢(®=))1/log(a)
with @ = 1.42, b = 1.109 and ¢ = 28.7. These results are for a code of block length
N = 13298. The lefthand figure shows pp on a logarithmic scale, and the right hand
figure shows pp on a logit scale, log[pg/(1—pp)]. The error bars show approximate
95% confidence intervals.

N = 13298 are shown in figure 3. The horizontal axis shows the s.n.r. £,/Ny.
The broad features of the curves are similar to those found in the case of the
binary symmetric channel. The decoder’s performance is insensitive to an as-
sumed value of E,/Ny that is erroneously small by up to 1dB, but it is quite
sensitive to the assumed value of Ej,/Nj if it is too large. If the assumed value
of E,/Ny is too large by a factor of 1.4, the error probability increases by a
factor of 10.

Empirical model

We found that the results shown in figure 3(b) can be fitted remarkably accu-
rately by a simple function

(4) fx) = 1/(1+ asemt)teste),

where for this code the fitted parameters are found using C. Grammes’s gnufit
to be a = 1.42 £ 0.01, b = 1.109 £ 0.003 and ¢ = 28.7 £ 0.3. This function,
shown in figure 4, can be thought of as a ‘soft min’ of the two functions
fi(z) =1 and fo(z) = e, We can also write this function as

1 @
(5) g(z) = T oxp(@(z = 1))

where a’ = 2.86 +0.06, b = 1.109 4 0.003 ¢/ = 10.0 £ 0.1; this function can be
thought of as the probability of a ‘noisy and’ of a’ probabilities, each varying
as 1/(1 4 exp(c(x — b))). This is a pleasingly compact description of the error
probability which may shed light on the decoding algorithm’s failures. If we
accept this approximation, we can easily obtain the standard graphs of error
probability versus mean signal to noise ratio by a simple integration with

bt

MAacKAY AND HESKETH

respect to the actual noise level, whose probability density is a chi-squared
distribution. This empirical formula may thus allow a saving in simulations,
since the three parameters may be fitted using data from the cheap-to-simulate
‘waterfall’ portion of the curve.

Is there any simple structure in the ensemble of noise vectors that cause de-
coding errors?

Among the set of noise vectors with some given weight, some cause decoding
errors and some do not. It would be nice to understand what it is about
the error-causing noise vectors that makes them problematic. We might hope
that simple statistics such as the mean error-causing noise vector might show
significant differences from the uniform mean noise vector, i.e., that the code is
more susceptible to bit errors at particular bit positions that others (although
in the case of convolutional codes, this is not the case; the first order statistics
contain no information). To investigate this idea, we counted how many times
r, each of the 13,298 bits was in error in a sample of one hundred error-causing
noise vectors and tested these 13,298 numbers {r, } against the null hypothesis,
that all bits are equally likely to be 1 in an error-causing noise vector. [Here,
n is an integer running over the transmitted bits n € {1,..., N}.]

Results for the Gaussian channel are shown in figure 5. Let r,, denote the
number of times bit n is equal to one in the 100 error-causing noise vectors.
The figure shows a histogram of the values of the numbers numbers 7, ...ry.
Under the null hypothesis we expect the histogram of r to be generated from
a binomial distribution. If, however, there are some noise bits which are more
likely to be 1 in error-causing noise vectors then we expect this histogram
to have a broader shape than a binomial distribution, with larger values and
smaller values of both occurring more frequently than predicted by the null
hypothesis. The histograms in figure 5 show no such effects: a chi-squared
test, described below, gave x? = 23.7 where the number of degrees of freedom
(which is the expectation of x?) was v = 25.

The chi-squared test.

We grouped the bins in the histogram together into new bins such that the
expected count ¢, in any new bin was greater than 5 (this being the condition
for the test we used to be valid (B.D. Ripley, personal communication)); we
then computed x* = Y (r, — ¢,)?/var,, where var, = ¢,(1 — ¢,/N); the
expectation of y?2, v, is the number of new bins minus one.

Conclusion

The sum-product decoder for low density parity check codes appears to be
robust to incorrect assumptions about the noise level, if one errs towards
assuming a larger noise level than actually exists; if one assumes too small a
noise level, there may be an appreciable deterioration in performance.

6

MAacKAY AND HESKETH

1600 T T T T 1600 T T T T T
1400 F & data ~— 1400 | 585 data — |
1200 . 1200 2| e -
1000 f - 1000 2 %] -
800 - . 800 - T .
600 - . 600 | .
400 . 400 - .
200 . 200 - .
0 L L ! 0 1 1 1 1 4

0 20 40 60 80 100 10 15 20 25 30

Fig. 5. Statistics of the empirical mean noise vector compared with those predicted
by the null hypothesis. These results are for a code of block length N = 13298 and a
binary symmetric channel, based on 100 block errors. The noise level was adjusted
to give a block error rate of about 10~2. The figures compare the histogram of the
numbers {r,} defined in the text with the predictions of the null hypothesis. The
right figure shows detail from the left figure.

We have not detected any significant first order pattern in the noise vectors
that cause decoding errors. The nature of these error-causing noise vectors
remains an interesting topic for further research.

We have found a remarkably compact formula that describes the error
probability as a function of noise level in the case of a Gaussian channel,
giving a good fit in both the high probability of error and low probability of
error regimes.

Acknowledgements

DJCM thanks G.D. Forney for helpful discussions. DJCM was supported in
part by the Royal Society Smithson research fellowship and by a grant from
the Gatsby charitable foundation. CPH thanks Cambridge central computing
service and lan Farrer for generous provision of computing resources, and
Andy Lupini for helpful discussions.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: Turbo-codes. In Proc. 1993 IEEE International
Conference on Communications, Geneva, Switzerland, pages 1064-1070, 1993.

[2] R. G. Gallager. Low density parity check codes. IRE Trans. Info. Theory, IT-
8:21-28, Jan 1962.

[38] R. G. Gallager. Low Density Parity Check Codes. Number 21 in Research
monograph series. MIT Press, Cambridge, Mass., 1963.

7

MAacKAY AND HESKETH

[4] D. J. C. MacKay. Good error correcting codes based on very sparse matrices.
IEEE Transactions on Information Theory, 45(2):399-431, 1999.

[5] D. J. C. MacKay and R. M. Neal. Near Shannon limit performance of low
density parity check codes. FElectronics Letters, 32(18):1645-1646, August 1996.
Reprinted Electronics Letters, 33(6):457-458, March 1997.

