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Abstract

In the analysis of neuronal spike trains in response to experimental stimuli, the
question of whether there is ‘cooperativity’ in the coding of information in the spike
trains has been widely addressed by the practice of data shuffling: a measure of
mutual information between stimulus and the spike trains is computed using the
real data, then the data is shuffled so as to destroy cooperative coding, if it is there,
and the same mutual information measure is computed for the shuffled data.

In this note we apply this procedure to a simple model in which it is question-
able whether the encoding should be termed ‘cooperative’, and show that the test
nevertheless gives a positive result.

Stimulus S. Cell responses A and B. Cells might also be responding to other stimuli
not part of the experiment, N. The question is whether the cells’s encoding of the
stimulus is ‘cooperative’ or not.

1  First, describe the method:

Assuming that we can gather plenty of data so as to estimate P(a,b|s) for all values of
a, b, and s, we compute the mutual information between [A and B] and [S].

Ip(A,B;S) = Hp(A, B) — Hp(A, B|S). (1)
Here, )
Hp(A,B) =Y P(a,b)log Pa.b) (2)
and

He(4,BIS) = L () L P ab|)logm. (3)

The data-shuffling procedure is equivalent to defining a distribution @) as follows: we
compute the marginal probabilities P(a|s) and P(b|s) for all ¢ and b and define:

Q(a,b[s) = P(als)P(b]s) (4)



and

ZP Q(a,b|s) (5)

We then compute the mutual information between [A and B] and S using the shuffled
distribution:

Io(A, B; S) = Ho(A, B) — Ho(A, B|S). (6)
Here,
Ho(A,B) = Z;Q(a, b) log Q(olc, ) (7)
and
Hp(A,B|S) = ZP ZQa bls) log (1b\ 7 (8)

We compare the quantities Ip(A, B;S) and Ig(A, B; S). If they are equal, or differ
negligibly (compared to Ip(A, B;S)), the encoding is declared to be ‘not cooperative’; if
Ip(A, B; S) is significantly greater than Ig(A, B; S) then the encoding is declared to be
‘cooperative’.

2 Second, show a case where the method gives a sen-
sible result:

If there are no other stimuli driving the cell and S has independent influences on A and
B then P(a,b|s) is separable, so P and @ are identical, and the estimator

1S zero.

3 Third, make a simple case where one might hope
it is zero

The method is still meant to be useful even if the cells are occasionally driven by other
stimuli unrelated to S, so that the distribution P(a,bls) is not separable. Let’s make a
simple example and see if this is so.

Let S and N be independent stimuli for the cells. Let the cells respond independently
to S and N, with a ‘noisy-or’ dependence. [There are other ways of defining independent
responses of A and B to S and N. We believe that the present example is representative
of all of them.|

For cell A,
Pla=1ls=0,n=0) = 0
P(a=1\s=1,n:0) = Dals
Pla=1s=0,n=1) = pgn (10
P(azl\Szl,nzl) = 1_(1_pa\s)(1_pa|n)



P(a=0|s=0,n=0) = 1

Pla=0ls=1,n=0) = 1-py; (11)
Pla=0ls=0,n=1) = 1—papn

P(a:0|5‘: 1,n= 1) = (1_pa|s)(1_pa\n)

and similarly for cell B. Let the probability of n, which is not observed, be
Pn=1)=p, Pn=0)=1-p, (12)
and let the probability of s, which the experimenter controls, be
P(s=1)=p, P(s=0)=1-p;,. (13)

3.1 Example 1

We give values to these parameters: Let

pn = 0.01 (14)
Pqs = 0.01 (16)
pa|n =1 (18)
Then
099 0 0.9703 0.0098
P(AB|S =0) = 0 0.01 P(AB|S =1) = 0.0098 0.0101 (20)
and

Ip(AB;S) = 0.0099 bits (21)
Io(AB;S) = 0.0024 bits. (22)

In bits per spike, these numbers are:
Ip(AB; S)/firing rate = 0.33 (23)
Io(AB; S) /firing rate = 0.082. (24)

Here, the data shuffling has reduced the mutual information by a factor of four.

It is easy to understand why the information conveyed by A and B about the stimulus
is in this case reduced by shuffling. Before shuffling, any a = 1 accompanied by a b =1
was most likely caused by the other stimuli n = 1, and any lone ¢ = 1 or b = 1 was
certainly caused by s = 1; so the lone events convey concrete information about S and the
coincident events can be ignored. After shuffling, most of the events that were coincident
events are turned into lone events; there are very few coincident events. Any lone event
now gives only weak information about S because lone events could have been caused by
s=lorn=1.



3.2 Example 2

We give values to the parameters corresponding to a pair of cells both of which are very
reliably driven by a moderately rare stimulus S and another stimulus N: Let

p, = 0.1 (25)
ps = 0.1 (26)
Pas = 0.9 (27)
pos = 0.9 (28)
Pajn = 0.9 (29)
Pom = 0.9. (30)
Then
0.901 0.009 0.00901 0.082
PABIS=0)=1 0009 0081 | FUBIS=1=]"0g ogo7| GV
and
Ip(AB;S) = 0.27bits (32)
Io(AB;S) = 0.35bits. (33)
In bits per spike, these numbers are:
Ip(AB; S)/firing rate = 0.79 (34)
Io(AB; S)/firing rate = 1.0. (35)

Here, the data shuffling has increased the mutual information by 28%.

Again, this result has an intuitive explanation. In the raw data, neurons A and B
fire rarely, and, when they do fire, they fire together reliably in response to the events
s = 1 and n = 1, making it hard to distinguish which of the two stimuli caused the
firing events. When the data has been shuffled, however, the correlated events (a = 1,
b = 1) produced by the noise become separated from each other, while the corresponding
events caused by the stimulus remain aligned. We can now detect the stimulus events
with higher reliability.

4 Conclusion

The results of data shuffling should be treated with caution. Would one really call an
system in which A and B respond completely independently to the stimuli a cooperative
coding? True, the optimal decoder for inferring s from a and b in the above problem is a
decoder that looks jointly at a and b, so the optimal decoder might be termed cooperative.
But does that mean that we should call the spikes’ code cooperative?

Perhaps a better approach to the task of inferring how spike trains encode information
about stimuli might be to make Bayesian models and compare them.



4.1 Other information measures

For these two examples we can also evaluate another entropy-based statistic that is
sometimes used to measure the supposed ‘synergy’ or ‘redundancy’ between the spike
trains A and B. We define

D = I(AB; S) — (I(4; S) + I(B; 8)). (36)

For example 1, in which the joint events ¢ = 1, b = 1 could be filtered out as being
caused by n =1, I(A4;S) + I(B;S) = 0.0024 so D = 0.0074.

For example 2, I(A;S) + I(B;S) = 0.45 so D = —0.18.

These two examples thus show that the meaning of the statistic D is not straight-
forward. A conventional interpretation of these two results would be that in the first
case, the two neurons encode information about S ‘synergistically’, and in the second
case they encode information about S ‘redundantly’. Yet in both cases the responses of
the neurons to S are causally independent.



