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Abstract

A note on recognition of decomposable objects with uncertainty about intensity.
I apologise this note is rather rough! I trust it will convey the basic idea.
This unpublished work was motivated by the original work of John Hopfield.

1 Concepts

JJH’s odoriforous paper emphasised these concepts: intensity of components could be rep-
resented by a time advance; and ‘smell phonemes’ could be recognized by neurons receiving
appropriate conjunctions of inputs with appropriate time delays. This has the consequence
that the phoneme detectors will give a response whose timing retains intensity informa-
tion. And the number of spikes will represent in some rough sense the probability that the
phoneme is actually there. Thus the scheme can be continued hierarchically with a ‘smell
word’ recognizer being composed by an appropriate conjoining of outputs of phoneme rec-
ognizers.

This note explores the probabilistic issue in a bit more depth. Let us denote an nth

level phoneme hypothesis by H,(,n); this hypothesis states ‘smell phoneme (n,p) is present’

but does not state the intensity of the phoneme, which we could denote a](,n). (n is a label
for the level of the hierarchy, with n = 1 being raw sensor components, n = 2 being simple
phonemes, n = 3 being compound phonemes, etc.; p is the ID of the particular phoneme in
question.)

Let us retain the idea that timings represent intensity on a log scale, and aim for a
model in which the number of action potentials has a precise probabilistic meaning, and the
distribution of those action potentials in time represents the uncertainty about the intensity.
Uncertainty about intensity will be represented by a variety of timings, and poor fit to data
by the model in question is represented by a small number of spikes.

Let us proceed by induction, looking at a two level system.

1.1 The ideal computations

In an ideal Bayesian approach we can describe the probability of the data with a latent

variable model. Let’s look at a two level system, and assume that the as are defined such
that if one phoneme alone is present at intensity a]s,?) then its children {g} must all be

(1) (2)

present with intensities ag ' = ' + 7pq. Note that there may be other hypotheses p’ which
have the same children {¢} and which would predict other intensities agl) = g) +7prg- The

matrix 7y, stores the fingerprints of all these phonemes.



1.1.1 What we want to know

In order to compare competing hypotheses p and p' in the light of data D, we want to know
the relative values of P(D|Hp); and when communicating on to the next level the intensity
that we think we have observed, we want to compute P(ap|D,Hp). These are the ‘two
levels of inference’ and Bayes theorem says:

P(D|ay, Hp) P(ap|Hp)

P(oy|D, Hp) = P(D[H,)

(1)
where the normalizing constant is:
P(DIHy) = [ dayP(Dlay, Hy) Plas Py). e

Ideally, we want to communicate to our superiors these two objects: the probability density
P(op|D,Hp) and the ‘evidence’ P(D|H,). In fact, on second thoughts — maybe our supe-
riors don’t want us to go putting in any prior over a,. What they would like to hear from
us is simply the likelihood function P(D|ay,Hp). How does this likelihood function relate
to the quantities inferred at the previous level of our hierarchy? OK, let’s assume that
our detectors at level 1 are diligent sub-Bayesians who know that their duty is to compute

P(dq|agl)). Then, thinking of the data D as the set of {d,} for all relevant children,

P(D|a? 1P = [] P(dglel? = ofP) + 7). (3)
q

2 Monte Carlo computation

Let us proceed by induction, as I said before. Assume that Mr. ¢ produces spikes as a

(1)

Poisson process over the time variable ag’) with density proportional to the likelihood

function P(dq|a((11)). Assume that Mr. p has spines which compute the conjunction (to
some precision in time) of spikes with appropriate time delays, so that Mr. p only fires if
he receives simultaneous spikes from Messrs. {¢} down delay lines with delays {7p4}. Then
what is the density of firing of Mr. p? Clearly, the probability of the conjunction occurring
will be proportional to the product of the densities, so the spikes produced by Mr. p will have
a density proportional to the likelihood P(D|a§,2),7-[§,2)). The constant of proportionality
may be different from the one assumed at the preceding level, but within any given level,
two models who share the same children will be able to compare their evidences, as defined
in equation (2) simply by counting up the number of spikes! Whether the constant of
proportionality gets bigger or smaller will depend on how many events are conjoined at one
spine and what the time resolution of the conjunction detector is.

In conclusion, the decomposed representation computes precisely the desired quantities
and represents them in a Monte Carlo fashion.

2.1 Possible refinement

A hypothesis doesn’t really just predict the occurrence of events with appropriate inten-
sities. It also predicts the non-occurrence of other events. These relationships could be
implemented by adding to the list of conjoined events at spines a list of other non-events
which must also match. These would be inhibitory connections, in hardware terms.

I haven’t figured out if the Monte Carlo implementation could pull off this aspect of the
computation of P(D|H,, ap) faithfully, however.



