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Abstract

We introduce a class of iteratively decodable trellis-constrained codes as a gener-
alization of turbocodes, low-density parity-check codes, serially-concatenated con-
volutional codes, and product codes. In a trellis-constrained code, multiple trellises
interact to define the allowed set of codewords. As a result of these interactions, the
minimum-complexity single trellis for the code can have a state space that grows
exponentially with block length. However, as with turbocodes and low-density
parity-check codes, a decoder can approximate bit-wise maximum a posteriori de-
coding by using the sum-product algorithm on the factor graph that describes the
code. We present two new families of codes, homogenous trellis-constrained codes
and ring-connected trellis-constrained codes, and give results that show these codes
perform in the same regime as do turbo-codes and low-density parity-check codes.

1 Introduction

Recent interest in the impressive performances of turbocodes and low-density parity-
check codes has led to several attempts at generalizing these codes in ways that lead
to efficient iterative decoders. In one view that is now quickly propagating across the
research network a code is described by graphical constraints on a system of variables,
and the iterative decoder is based on a decade-old expert systems algorithm applied to the
graph which describes the constraints [1-7]. This probability propagation algorithm [8,9] is
exact only in cycle-free graphs. However, as evidenced by the excellent error-correcting
capabilities of the iterative decoders for turbocodes [10] and low-density parity-check
codes [4], the algorithm works impressively well in the graphs that describe these codes,
even though they contain many cycles. See [3] and [5] for extensive dissertations on this
subject.



YAVAYAIR

R :3/4, no =1

(e) Ry =3/4,n: =2/3,t=1,2,3

Figure 1: A codeword in a trellis-constrained code must simultaneously be a codeword
of all the constituent trellises, with the codeword bits reordered. The factor graphs are
shown for (a) a single convolutional code; (b) a turbocode, where each parity bit is a
codeword bit of only one trellis; (c) a low-density parity-check code; (d) a homogenous
trellis-constrained code; and (e) a ring-connected trellis-constrained code. The small
unfilled discs represent codeword bits.

Fig. 1a shows the factor graph (see [11] in these proceedings) for a trellis. Unlike in a
trellis, in a factor graph the values that each state variable (large white discs) can take
on are not explicitly shown. Any two adjacent state variables and the corresponding
codeword bits (small white discs) must satisfy a linear set of equations (represented by
the small black discs with a “+” inside). This representation is called a “factor graph”
because it shows how the indicator function for allowed trellis behaviors factors into a
product of local functions. Associated with each black disc is a local function of its
neighboring variables. Each function evaluates to 1 if its neighboring variables satisfy
the local set of linear equations, and to 0 otherwise. The global function is equal to the
product of the local functions. A given configuration of the codeword bits is a codeword if
the global function evaluates to 1 for some configuration of the state variables. In general,
the local functions may be nonlinear, the factor graph variables may be real-valued, and
the local functions may evaluate to elements of a semi-ring.

Although factor graphs are less explicit about local relationships than are trellises,
factor graphs allow us to represent a richer set of systems. Fig. 1b shows the factor graph
for a simple turbocode. A single trellis for the same turbocode would have an unwieldly
large number of states. More important than representation, a factor graph provides
a framework for iterative decoding via message passing on the graph. The probability
propagation algorithm [8,9], a.k.a. the sum-product algorithm [1,2], can be applied to
a factor graph to approximate bit-wise maximum a posteriori (MAP) decoding. (In the



special case of a turbocode, this general algorithm reduces to turbodecoding [6,7].) Two
different factor graphs for the same code may give decoders with different performances.

As another example, Fig. 1c shows the factor graph for a simple low-density parity-
check code. Each of the six trellises is a simple parity-check trellis that enforces even
parity on its six codeword bits [12].

In a sense, whereas the trellis assisted in the design of low-complexity codes and ex-
act linear-time probabilistic decoders (the Viterbi algorithm and the forward-backward
algorithm), the factor graph assists in the design of high-complexity codes and approx-
imate linear-time probabilistic decoders. In this paper, we present a general class of
high-complexity, linear-time decodable codes that retain the chain-type structure of trel-
lises locally, as do turbocodes and to a lesser degree low-density parity-check codes. A
codeword in a trellis-constrained code (TCC) must simultaneously be a codeword of mul-
tiple constituent trellises. So, if f;(x) is the constituent codeword indicator function for
trellis ¢t € {1,...,T}, the global codeword indicator function is

Fx) =] fx). (1)

i=1

Each constituent indicator function is given by a product of the local functions within the
corresponding trellis. Usually, the codeword bits interact with the constituent trellises
through permuters that rearrange the order of the codeword bits.

For the turbocode in Fig. 1b, there are two constituent functions, fi(-) and fa(-).
f1(+) indicates that the upper row of codeword bits are valid output from a convolutional
encoder with the middle row of codeword bits as input. fi(-) does not directly place any
restrictions on the lower row of codeword bits, so it effectively only checks 3/4 of the
codeword bits. fy(-) indicates that the lower row of codeword bits are valid output from
a convolutional encoder with the middle row of codeword bits as input. In contrast to
f1(+), f2(+) does not place any restrictions on the upper row of codeword bits.

The rate R of a TCC is related to the rates of the constituent trellises R;, t =
1,...,T in a simple way. If n; is the fraction of codeword bits that trellis ¢ checks, then
trellis ¢t removes at most (1 — R;)n; N binary degrees of freedom from the code. It may
remove a small number less if some of its constraint equations are linearly dependent on
those given by other constituent trellises. For large, randomly generated permuters this
effect is quite small, so we will ignore it when computing rates in the remainder of this
paper. (As a result, the actual rates may be slightly higher than the given rates.) The
total number of binary degrees of freedom left after all trellis constraints are satisfied is
N —YT . (1= R)mN, so the rate of the TCC is

R=1-

t

T
=1

From this equation, it is easy to verify that the turbocode in Fig. 1b has rate 1/2 and
that the low-density parity-check code in Fig. 1c also has rate 1/2. (Note that a k-bit

parity-check trellis has rate (k — 1)/k.)

Unlike encoding turbocodes and serially-concatenated convolutional codes, encoding
a general TCC takes quadratic time in N. In a general TCC, we can designate a subset
of the codeword bits as the systematic bits of the entire code and then use Gaussian
elimination to compute a generator matrix (once only). Using such a systematic generator
matrix for encoding requires R(1 — R)N? binary operations.
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Decoding a TCC involves performing the forward-backward algorithm for each trellis
and exchanging information between trellises in the fashion specified by the sum-product
algorithm. The constituent trellises may be processed in parallel or sequentially.

In the following two sections, we present two new families of TCC’s and show that
they perform in the same regime as do turbocodes and low-density parity-check codes.

2 Homogenous Trellis-Constrained Codes

In a turbocode, the constituent trellises share only a systematic subset of their codeword
bits. The other parity bits of each constituent encoder are not constrained by the other
encoders. Fig. 1d shows the factor graph for a simple homogenous TCC with T = 2, in
which all of the bits are constrained by each constituent trellises. From the general rate
formula in (2), we see that the rate for a homegenous turbocode is

R=1- T(l - Ravg)7 (3)

where R,y, = (Zthl Ry)/T.

One difference between the homogenous TCC and the turbocode is that the rate of
a homogenous TCC decreases directly with the number of trellises 7. In the simulations
discussed below, we used 7' = 2 and Ry = Ry = R,y; = 3/4 to get R = 1/2. To obtain
the same rate with 7' = 3 would require R,y = 5/6. In contrast, the rate for a turbocode
varies roughly inversely with 7. A rate 1/2 turbocode with 7"= 3 can be obtained with
R; = Ry = R3 = 3/4. Another difference is that the permuter length of a homogenous
TCC is N, whereas for a turbocode, the permuter length is RN.

2.1 Encoding and Decoding

The trellises in a homogenous TCC share all their bits, so we can’t simply encode by
dividing the bits in each constituent trellis into a systematic set and a parity set and
running a linear-time encoding method for each trellis, as is possible in a turbocode.
Instead, we apply a previously computed generator matrix to a previously selected sys-
tematic subset of codeword bits, which takes R(1 — R)N? binary operations.

The iterative decoder processes each constituent trellis using the forward-backward
algorithm, and passes “extrinsic information” between the trellises in the manner spec-
ified by the sum-product algorithm. For two trellises, the decoding schedule is straight-
forward. For 7" > 2, different decoding schedules are possible. The trellises may be
processed sequentially, in which case the current trellis uses the most recently computed
probabilities produced by the other trellises. Alternatively, the trellises may be processed
in parallel, in which case the current trellis uses the probabilities produced by the other
trellises in the previous decoding iteration.

For the sake of gaining insight into these new compound codes and the behavior of
their iterative decoders, we prefer to decode until a codeword is found or we are sure
the iterative decoder has failed to find a codeword. After each decoding iteration, the
current bit-wise MAP estimates are used to determine whether a valid codeword has
been found, in which case the iterative procedure is terminated. If 100 iterations are
completed without finding a codeword, we label the block a decoding failure. Notice that
given the factor graph of a code, determining that a codeword is valid is simply a matter
of checking that all the local functions evaluate to 1.
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2.2 Performance on an AWGN Channel

Using Monte Carlo, we estimated the performance of an N = 131,072, T = 2 homogenous
TCC with Ry = Ry = 3/4, giving R = 1/2. (See App. A for a description of how the BER
confidence intervals were computed.) Each rate 3/4 trellis was obtained by shortening
every fifth bit of a rate 4/5 nonsystematic convolutional code with maximum dp,;,. (The
generator polynomials for this code are given in [13] and are (32,4, 22,15, 17)octar.) Fig. 2
shows the performance of this homogenous TCC, relative to the turbocode introduced
by Berrou et. al. [14] and the best rate 1/2, N = 65,389 low-density parity-check code
published to date [4]. Although it does not perform as well as the turbocode, it performs
significantly better than the low-density parity-check code. We believe there is room for
improvement here, since we chose the set of generator polynomials that gave maximum
dmin and this is quite likely not the best choice. (Keep in mind, however, that the
performance of a homogenous TCC is not necessarily governed by the same constituent
trellis properties that govern the performance of a turbocode.) Of significant importance
compared to turbocodes, we have observed that this homogenous TCC does not have
low-weight codewords.
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Figure 2: The performances of a homogenous TCC and a ring-connected TCC compared
to the best rate 1/2 turbocode and low-density parity-check code performances published
to date [4,10].

3 Ring-Connected Trellis-Constrained Codes

Fig. 1e shows the factor graph for a simple ring-connected TCC with T = 3. This code
can be viewed as a serially-concatenated convolutional code [15,16] in which some of the



output bits are constrained to be equal to some of the input bits. The factor graph thus
forms a ring of connected trellises. In the ring-connected TCC shown, each constituent
trellis checks exactly 2/T of the codeword bits. From the general rate formula in (2), the
rate for such a ring-connected turbocode is

R =2(Rag — 1/2). (4)

Unlike turbocodes and homogenous TCC'’s, for such a ring-connected TCC the rate does
not depend on the number of constituent trellises 7. However, the permuter lengths are
1/T relative to the block length.

3.1 Encoding and Decoding

For ring-connected TCC’s, we cannot use the same type of encoding procedure that is
used for serially-concatenated convolutional codes, since some of the “output” bits must
match some of the “input” bits. As with the homogenous TCC, we can encode with ap-
proximately R(1— R)N? binary operations by applying a previously computed generator
matrix to a previously selected systematic subset of codeword bits. However, if R; = 3/4,
t=1,...,T (giving R = 1/2), encoding computations can be saved in the following way.
First, we pick 3N/2T systematic bits for trellis 1 and generate the corresponding N/2T
parity bits, using a number of computations that is linear in N. Then, we work around
the ring and for each trellis pick N/2T systematic bits and generate the corresponding
N/2T parity bits. When all but two trellises have been encoded, the last two trellises are
used to form a binary vector that when multiplied by a previously computed N/T x N/T
binary matrix yields the final set of N/T parity bits. The computations for the last
step dominate and require approximately N*/T? binary operations. For R, = 3/4,
R =1/2, T = 3, the first method described above takes N?/4 operations, whereas the
second method takes N?/9 operations.

As with homogenous TCC’s, when T" > 2 ring-connected TCC’s can be iteratively
decoded using a variety of schedules. In our simulations, we process the trellises sequen-
tially while passing probabilities around the ring in one direction. Iterative decoding
continues until a valid codeword is found or until 100 iterations are completed.

3.2 Performance on an AWGN Channel

We estimated the performance of an N = 131,070, 7" = 3 ring-connected TCC with
ny =ng =ng = 2/3 and Ry = Ry = R3 = 3/4, giving R = 1/2. Each rate 3/4 trellis
used the generator polynomials (12,4, 17, 11)octa;, Which we found by trial and error. The
constituent codeword bits were shared alternately with the two neighboring trellises.
Fig. 2 shows the performance of this ring-connected TCC. It performs signficantly better
than the homogenous TCC and the low-density parity-check code and only 0.2 dB worse
than the turbocde.

4 Discussion

There is some literature on the properties of the constituent trellises that make good tur-
bocodes [10,17,18] and serially-concatenated convolutional codes [19]. We are currently
exploring similar arguments for choosing the properties of the constituent trellises that



will make good homogenous TCC’s and ring-connected TCC’s. The behavior of these
two new families of TCC’s is quite different from that of turbocodes, so we expect dif-
ferent properties to be relevant. For example, in order to avoid low-weight codewords in
a turbocode, we try to avoid permuters that keep a pair of bits the same distance apart
in the two constituent trellises [10]. This degenerate effect is “broken” by the ring of a
ring-connected TCC, which requires not only that two neighboring trellises have an equal
set of shared “input” bits, but also that their “output” bits must satisfy the constraints
given by the ramainder of the ring. However, in a ring-connected TCC low-weight code-
words are introduced by permuters that preserve a degenerate pattern around the entire
ring. Another important question is what properties of a TCC lead to the initial drop
(say down to a BER of 0.01)7 These properties may very well be independent, (or even
contrary to) those properties that give high minimum distance.

We believe that the general class of “trellis-constrained codes” presented in this paper
is a fruitful generalization of several other iteratively decodable codes. If we think of entire
trellises as nodes in a graph whose edges represent bundles of codeword bits, it is evident
that there are a variety of other interesting new TCC'’s aside from those shown in Fig. 1
that have yet to be explored.
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Appendix A: Computing BER Confidence Intervals

When analytic methods are not available for computing bit error rates in error-correcting
coding systems, we must resort to simulation. Estimated BER’s can vary significantly
from experiment to experiment, and so it is often desirable to include confidence intervals.
This is especially important for the long block length codes discussed in this paper, since
significant variability can be introduced by our inability to simulate enough blocks to
pin down the word error rate. Also, for low bit error rates (e.g., 107%) we may not be
able to measure the distribution of bit errors within erroneously decoded words. In this
section, we present a Monte Carlo approach for estimating the median and a 2.5% / 97.5%
confidence interval for the BER, based on errors measured by Monte Carlo simulation.

The error model contains two parameters: the probability p, of word error, and the
probability p, of bit error within erroneous words. This is a rather crude approximation,
since in practice we expect there to be more than one failure mode, i.e., there ought to
be several p,’s corresponding to different failure modes.

Let M be the number of words transmitted and let n,, be the number of measured
word errors. Let K be the number of information bits per word, and let n, be the
total number of bit errors measured while transmitting all M blocks. We will refer to
the measured values as the data, D = {n,,n,}. From the Bayesian perspective, before
observing D, we place a prior distribution p(py, ps) on the error model parameters. After
observing D, we draw conclusions (e.g., compute a confidence interval) from the posterior
distribution p(py, ps|D), where

P(Pw, Po| D) < p(Pw, Pb) P(D|puy> b)- (5)



In this equation, the constant of proportionality does not depend on p,, or py. The last
factor P(D|py, py) is called the likelihood.

We let p,, and p, be independent beta-distributed random variables under the prior:
P(pw,pb) = p(pw)p(pb), where

p(pw) < P (1 = py)? ™", and  p(ps) o< pp* (1 — pp)® (6)

In frequentist terms, o, and 3, have the effect of shrinking our measurements toward
a word error rate of a,, /(o + Bu), where the influence of this shrinkage grows with
ay + Bw. Typically, we choose o, = (3, = 1, which gives a uniform prior over p,, as
shown in Fig. 3a.

As for the prior over py, it should be chosen while keeping in mind the behavior of the
decoder. If the main source of bit errors is a failure to decode, and if we believe that for
failures the decoder will produce a probability of bit error that is roughly equal to the
probability p, of bit error for uncoded transmission, then the prior should place weight
on p, = py. In this case, we choose oy, = 2 and 3, = 1/p,,, which ensures that the mode of
the prior occurs at p, and that the prior is relatively broad. For example, for E,/Ny = 1
dB we have p, = 0.0563, and so We choose o, = 2 and /3, = 1/0.0563 = 17.76, giving
the prior distribution for p, shown in Fig. 3b.
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Figure 3: (a) The prior distribution over the probability of word error p,,. (b) The prior
distribution over the probability of bit error p, within erroneous words. This distribu-
tion is designed so that its median is equal to the probability of bit error for uncoded
transmission.

It is straightforward to show that the likelihood is

P(D|puw, pb) = P (1, M| P, D) X P (1 — pop)™ ™o pp (1 — py) ™t (7)

This distribution is the product of a binomial distribution for the number of word errors
and a binomial distribution for the number of bit errors. Combining this likelihood with
the prior, we obtain the posterior,

Qo — 14Ny

P(Pw, po| D) o py (1 — py)Pe HHM e pro= i (1

— py)Pe K (8)



which is just the product of a beta distribution over p,, and a separate beta distribution
over py. Of course, we are actually interested in the posterior distribution p(p,ps|D) over
the total probability of a bit error p,p,. A sample is obtained from p(p,py|D) by drawing
Pw — Py pairs from the posterior in (8) and taking the product of p,, and py in each pair.
This sample is sorted in ascending order, and the value of p,,p, occuring half-way through
the sorted list is taken as an estimate of the median of p(p,py|D). Similarly, the values
of py,py occuring 2.5% and 97.5% through the sorted list are taken as the 95% confidence
interval.

For the homogenous TCC, we simulated the transmission of M = 332 blocks at
Ey/Ny = 0.95 dB using a block length of N = 131,072. We measured n,, = 14 and
ny = 34,225. Using the prior presented above for the slightly higher value of Ej,/Ny = 1
dB, a sample of 1000 points from the posterior over p,, and p, was obtained and is shown
in Fig. 4a. As described above, for v = 0.025, 0.5 and 0.975, we found the values for p,
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Figure 4: (a) A 1000-point sample from p(py, py|D) for M = 332, n,, = 14, K = 65,536
and ny, = 34, 225, for the prior described in the main text. (b) A 1000-point sample from
P(Pw, pp| D) for M = 10,216, n,, = 0, K = 65,536 and n, = 0, for the same prior.

such that p(p,ps < py|D) = 7, where p is the sample distribution. The corresponding
three curves of the form p,p, = p, are shown in Fig. 4a, and the corresponding values of
p, give a median of 1.7 X 107 and a 95% confidence interval of (9.9 x 107*,2.6 x 107?).
Clearly, in this case it is the values for p,, that determine the p,’s for these curves, whereas
the values for p, are well-determined by the measurements. We could have assumed that
Py took on its measured value instead of sampling from the posterior.

For the homogenous TCC described above, we also simulated the transmission of
M = 10,216 blocks at E,/Ny = 1.0 dB. In this case, we measured n,, = 0 and n, = 0.
Using naive methods, we might conclude that the bit error rate is 0 and that there isn’t
any variation in this value. However, the Bayesian technique gives the sample from the
posterior shown in Fig. 4b. In this case, the values of both p, and p, play a role in
determining the p,’s for the three curves. The median is 5.1 x 107% and the confidence
interval is (1.6 x 1077,4.8 x 107°).
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