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Abstract

The dynamics and collective properties of feedback networks with spiking neurons are
investigated. Special emphasis is given to the potential computational role of subthreshold
oscillations. It is shown that model systems with integrate-and-fire neurons can function
as associative memories on two distinct levels. On the first level, binary patterns are
represented by the spike activity — “to fire or not to fire.” On the second level, analog
patterns are encoded in the relative firing times between individual spikes or between spikes
and an underlying subthreshold oscillation. Both coding schemes may coexist within the
same network. The results suggest that cortical neurons may perform a broad spectrum of
associative computations far beyond the scope of the traditional firing-rate picture.

Introduction

A significant fraction of the communication between single neurons is based on action
potentials, short pulses of electrochemical activity. The biological relevance of the exact
temporal organization of action potentials has been demonstrated in many systems, includ-
ing the sonar system of bats [1], the auditory system of owls [2], the olfactory system of
locusts [4], and the visual system of cats [5, 6] and monkeys [7].

Most traditional neural network models, in contrast, neglect the exact timing of action
potentials and describe the output of a cell as a continuous variable which is usually in-
terpreted as a “firing rate” — the time-averaged rate of action potentials generated. This
output variable is slowly varying in time relative to the interval between action potentials
of a single cell. There are instances where such a simplified approach might be justified on
a phenomenological network level [8, 9]. However, the above experimental results strongly
suggest models where computations are based on the timing of individual action potentials.

There are also various theoretical reasons for studying such models. First, consider
the information content of a train of action potentials. Even complex cognitive tasks are
often accomplished within a few hundred milliseconds [10] although they involve multiple
cortical regions typically operating at firing frequencies below 50 Hertz — which means that
each subnetwork has to complete its computation within a small number of firing cycles.
However, it will take about 100 cycles to convey a firing rate accurate to 10% if we assume
a firing-rate code with Poisson-distributed interspike intervals; in contrast, the interval
between two spikes (of the same or different neurons), or between a spike and a background
oscillation, is a real number that can be identified, using neurobiological mechanisms, to a
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precision better than a millisecond. Such real numbers could be conveyed once every cycle
of a background oscillation, that is, every 20 milliseconds for gamma-oscillations and every
100—150 milliseconds for theta-oscillations. Certainly enough, distributed population codes
may greatly improve the accuracy of a firing-rate scheme, but they improve the precision of
a spike-time code at least equally well. It thus seems plausible that information processing
schemes that use spike timings to represent continuous quantities could be many times more
efficient than traditional schemes based on firing rates.

Second, a system using a spike-time code might allow useful computations to be per-
formed more naturally than a rate-coding network. Hopfield [11] has proposed a model of
pattern recognition in which stimulus intensities are recoded into time advances of spikes
relative to a background oscillation. This is done as follows: Consider a neuron subject
to a subthreshold oscillation. If, in addition, the neuron receives a constant excitatory
input current the subthreshold oscillation will be moved towards more depolarized values
of the membrane potential. For large enough current the oscillating membrane potential
crosses the firing threshold and the neuron will fire. The larger the input current — i.e. the
stronger the stimulus — the earlier the neuron fires. This means that an analog pattern of
stimulus intensities can be represented by an analog pattern of relative spike times.

Such a spike pattern could be recognized by a downstream coincidence detector with a
short integration time constant and appropriate firing threshold. This cell will fire if the
action potentials of the spike-encoding neurons arrive simultaneously. It will therefore be
capable of recognizing the pattern if appropriate time delays between the spike-encoding
cells and the coincidence detector compensate the relative timing of the action potentials.
A memorized pattern is thus stored in the time delays — not in the synaptic weights
as in traditional networks — and read out by a coincidence detector which functions as
a “grandmother neuron” for the specific pattern. The synaptic weights do not have to
be precise any more. A whole set of patterns can be processed if there exist multiple
grandmother cells, each dedicated to a particular pattern.

The entire scheme has some advantages which are difficult to achieve in a network
with rate coding. For example, in the special case where the time advance of a spike is
given by the logarithm of the stimulus intensity, the pattern of relative firing times will be
unchanged if the intensities of all stimuli are increased by a constant factor — the entire
firing pattern will simply occur earlier relative to the background oscillation. So, on the one
hand, the recognition of the pattern will be intensity invariant, while on the other hand,
the information about the intensity will still be retained in the timing of the grandmother
cell’s response. Furthermore, all components of the input pattern are equally important
for the recognition, independent of the absolute size of the components. Additionally, a
pattern can be broken into smaller sub-parts to be processed in parallel. The scheme also
allows a response to be built up hierarchically: a super-pattern (a combination of patterns
in particular ratios) can be detected by a super-grandmother cell which receives inputs from
the corresponding grandmother cells with appropriate time delays.

Third, the use of time to represent continuous quantities liberates the firing rate to
serve a new purpose. If for example, in olfaction, the spike timing of a grandmother cell
represents the intensity of an odor, the firing rate might represent the probability that the
odor is really there.

Overview of this article: Although Hopfield’s scheme offers a number of fascinating
computational capabilities, it is based on a purely feedforward network architecture where
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quasi-stationary stimuli are processed by a first layer of spike-encoding cells and a second,
downstream layer of grandmother cells which do the read-out. In the present article, this
scheme is extended to feedback networks where the spiking neurons also provide recurrent
input to each other. In the next section we first describe the dynamics of integrate-and-fire
neurons and traditional firing-rate models. In the two subsequent sections we then show
how networks of integrate-and-fire neurons can function as autoassociative memories for
binary and analog patterns, respectively. In the first case, a binary spike-activity code
results on the network level, in the second the exact timing of action potentials is used to
process time-encoded analog information. We close our considerations with a discussion of
the results and some further ideas.

Neuron models

Various brain regions have been hypothesized to function as autoassociative memories, for
example the CA3 region in the hippocampus, or locally connected systems of pyramidal
cells in neocortical association areas [12, 13, 14, 15|. Traditionally, these systems have
been modeled using neurons whose output is described by a short-time averaged firing rate
[16, 17, 18, 19, 20, 21].

Autoassociative memories are capable of storing a set of patterns in the sense that
they complete or correct a pattern when presented with an incomplete or noisy input. To
do so, the networks store correlations within the patterns in the synaptic weights. The
weights are determined by learning rules such as the Hebb rule. By this procedure, learned
patterns are implemented as fixed-point attractors of the network dynamics. Starting from
an incomplete or noisy initial state, the system relaxes to a nearby fixed point — the
retrieval of the memory.

Extensive theoretical results have been derived regarding the convergence properties
and storage capacity of such models. However, by definition there are no action potentials
in firing-rate models and thus there is no possibility for temporal codes in the millisecond
range. From the arguments given in the Introduction, the biological relevance of these
models therefore appears to be questionable, at least as far as rapid information processing
is concerned. It is thus important to investigate biologically more realistic networks with
spiking neurons which may support a temporal code based on the firing of individual action
potentials [11, 22, 23, 24, 25, 26].

Biological neurons fire an action potential when their membrane potential u reaches a
threshold value upreshoia- The action potential then propagates along the axon to synapses
on the dendritic trees of postsynaptic neurons. When the action potential arrives at a
synapse after some axonal delay time it initiates the release of neurotransmitters which lead
to a flow of ionic currents that depolarize (excitatory synapse) or hyperpolarize (inhibitory
synapse) the postsynaptic cell. Depending on the integrated inputs from many thousands
presynaptic cells a neuron is typically connected with, the postsynaptic cell will in turn fire
an action potential at some time and thus influence further neurons.

Formal neural networks are constructed to capture important features of these intricate
dynamical processes. In order to allow for an analysis of the collective dynamics in large
feedback networks, the microscopic dynamics have to be simplified. For example, individ-
ual neurons are often considered to be electrotonically compact and described by a single
dynamical variable, the membrane potential at the soma of the neuron. Models differ in the
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way how they represent both neural activity and the response to input from other neurons.
Integrate-and-fire neurons: Integrate-and-fire model neurons operate as leaky integrators
as long as the membrane potential u; is below the firing threshold usreshora,

C’%ui(t) - —%(ui ()= o) + Ty PSC ) + 110, (1)

Here C denotes the capacitance, R the resistance, PSC; a unitary postsynaptic current
which, when multiplied by the synaptic weight T;;, describes the effect of the firing of neuron
j on i’s membrane potential. In equation (1) active dendritic processes are neglected so that
the input can be approximately described by a linear summation of the individual synaptic
terms, together with an input I#*(¢) from outside the network. When the membrane
potential of cell 7 reaches Uspresnod, the cell instantaneously produces a uniform d§-shaped
action potential and resets its membrane potential to u,.s;. The output of an integrate-
and-fire neuron is thus a sequence of d-pulses.

Graded-response neurons: Model neurons whose membrane potential changes according
to the differential equation

O Si(t) = 1 (0(8) — ) + ST Vi) + 170 ®)

are called “graded-response neurons.” The output of a neuron j is now represented by a
short-time averaged firing rate V;. To specify the dynamics one has to define an activation
function that describes the graded response of the firing rate to changes of the membrane
potential. The neural response to long, constant current pulses injected into the cell body
has been recorded in vitro. The current-to-frequency curves describe the adapted firing
rate as a function of the injected current and exhibit a sigmoid shape which is usually used
for the activation function V' = g(u).

Neurons with discrete-time dynamics: Within an even more simplified approach, time
advances in steps of fixed length A¢ which may represent the total duration of a single
action potential, roughly 1 millisecond. The output of a neuron is “updated” at these
discrete times, and the evolution equations become discrete-time iterations,

Vit + At) = g(3_ TiVi(t) + I (2)). (3)

Such networks are also known as “iterated-map networks” [20]. In the extreme case of a
threshold function which vanishes for negative u and is unity for positive u, the output of
a neuron reduces to a two-state variable S = 0/1,

Si(t+ At) = ©(3_T5;8; () + ;™ (1)). (4)

In the Little model [16], the updating rule (4) is done in parallel on the network level, in
the Hopfield model [17], the neurons are updated sequentially, i.e. one-by-one.
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Associative storage of binary patterns

In this section we show that under certain conditions networks with integrate-and-fire neu-
rons are capable of storing binary patterns — on the attractor of the dynamics, single
neurons either fire periodically (the “on”-state) or remain completely quiescent (the “off”-
state). The result demonstrates that although the underlying time evolution strongly differs
from that of graded-response neurons or binary neurons, on the level of firing rates, the
collective network properties may again be quite similar. Our theoretical analysis also
provides a connection to early simulation studies which revealed associative capabilities in
networks with biologically more realistic spiking neurons [27].

Model with constant background activity: Consider a network of N integrate-and-fire
neurons which are coupled via synaptic weights 7;;. An action potential of one cell arrives
at a postsynaptic neuron after a fixed and uniform axonal time delay 7,. In addition, let us
assume that neurons receive a constant input current slightly less than R(uspreshota — Urest)
so that their membrane potential is raised to a value just below firing threshold. Within a
biological context, this input can be thought of an approximation to randomly impinging
inputs that put the cell in an “alert” state as it has been hypothesized for cortical neurons
[28, 29]. Neurons will thus not fire without additional excitatory recurrent input from other
cells within the network. The postsynaptic current is approximated by a d-pulse which is
justified if the time constants of the ion channels involved are very short.

At time %, the system is presented a binary pattern of input currents such that the
membrane potentials of a group Gy of neurons are raised above firing threshold whereas all
other neurons receive no input. Subsequently the network exhibits the following dynamics.

After the firing of the initial spikes, the membrane potentials of the group G, are
reset to U, After the delay 7,, the action potentials generated at time ¢, arrive at the
postsynaptic neurons. By that time, neurons which fired at time ¢y, have fully integrated the
constant input current if the membrane time constant 7zc = RC is much smaller than the
time delay 7,. Thus the membrane potentials of all neurons are again just below threshold.
Upon arrival the action potential fired by neuron j at time %, triggers a postsynaptic current
which instantaneously raises the membrane potential of neuron 4 by the amount 7;;. Neuron
¢ will therefore fire at time ¢, + 7, if > e, 7i; > 0 and will stay quiescent if the sum is
negative.

The above reasoning implies that at time ¢, + k7,, where k£ is a positive integer, a
certain group Gy of neurons fires. This group is the same group of neurons that is in the
on-state (S = 1) in the k-th iteration of the Little model [16] started with the same initial
conditions (same group Gy of neurons with S = 1 at time ¢;) and the same couplings 7T;;
which store a set of patterns. This implies that both networks retrieve the same pattern
and that after typically 5 times the delay 7, (5 iterations for the Little model), the group of
neurons which fire (have S = 1) remains unchanged. There is only one though important
difference between both scenarios. The Little model literally reaches a fixed point, i.e. the
S; remain unchanged, whereas in the present network the binary pattern is represented by
a 7,-periodic firing pattern. Note that a short membrane time constant 7zc is necessary
to guarantee that i) the constant input current is integrated after the time 7, for a neuron
which fired and reset to u,es at time to + k7,, and 4) that the recurrent input e Lij
has decayed to zero after the time 7, for a neuron which did not fire at time ¢y + k7,. If one
allows for larger 7 the dynamics will still be qualitatively similar to the dynamics of the
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Little model. Independent of the value 7zc the dynamics will be identical if one arranges
several networks in a staggered loop structure. In such a loop the output of one network
serves as input to the subsequent network and there are no recurrent connections within
one network. The number of networks needed to close the loop (the last network in the
loop projects back to the first network) depends on 7, and 7gc.

Model with subthreshold oscillation: So far, we have not taken into account subthreshold
oscillations such as the hippocampal theta rhythm — the original motivation for this study.
Let us now turn to such networks. If the input current I(¢) to an integrate-and-fire neuron
contains an oscillatory component I,.(t) = I* cos(wt) one can simply solve (1) without this
oscillatory input component and afterwards add an oscillatory membrane potential term
Upse(t) = A cos(wt+ @) to the solution. Here A = f(Trcw)RI*, ¢ = g(Trcw) and Trc = RC.
Without loss of generality, one may set ¢ = 0 since ¢ can be absorbed in ¢,. We therefore
drop the term I,s(¢) in the input current I(¢) and just add wues.(t) to the solution.

Let us again assume a constant input current I(t) = I. The membrane potential exhibits
a subthreshold oscillation if  vanishes and A is not too large. An increasing input current
I shifts the subthreshold oscillation to more depolarized values of the membrane potential.
If I exceeds some critical value, the oscillating membrane potential will cross uspreshord and
the neuron will fire. The firing of neuron j triggers a rectangular postsynaptic current pulse
with amplitude 7T;; and duration 7pgc which is added to the input current I; of neuron ¢
after a time delay 7.

Given a subthreshold oscillation with amplitude A and frequency f = 1/P we want to
store binary patterns in a network of N neurons which receive a constant input current 1
slightly less than R(uspreshold — Urest — A) so that the maximum of the membrane potential
oscillation is just below Uspresnoia as explained for the previous model. A binary pattern
consists of the neurons ¢ which fire (S; = 1 in the Little model) or do not fire (S; = 0) in
the time interval 7y;. before the maximum of an oscillation cycle.

To store p uncorrelated patterns in the Little model using the Hebb rule one sets

p

- 1 u "
Ty = S - (g - 1), 6

u=1

The retrieval properties of the Little model will not change if the synaptic weights Tij are
replaced by T;; = nf}j, 0<k<1.

The present system will operate properly as an associative memory if 7) in a given cycle,
neurons do not fire earlier than 7;,, before the maximum, and %) 7. does not exceed
P/4. For appropriate 7y, the first condition can be satisfied if & is chosen small enough
so that max;(>; |Tj;|) = nA, where n = sin(w7y.). This is because the recurrent input

raises the membrane potential by at most max;(3"; |Tj;|) = nA. We then choose

® 7, = 27}ire S0 that neurons do not receive any recurrent input in the time interval 74;.
after the maxima of the oscillation. Since the membrane potential decreases after the
maxima, the neurons cannot fire in the interval 7y;,. after the maxima.

e Tps¢ = P — 7yire so that all PSCs last at least until the maximum of the present
oscillation cycle — the first PSC may be triggered as early as 7y, after the maximum
of the previous oscillation.
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of the present oscillation cycle (the last PSC may not arrive till 7, = 27y;, after

the maximum of the previous oscillation cycle). Here “integrated” is defined as (1 —

o Tpe < —P;(Tf)ﬂ so that all PSCs are “integrated” until 7, before the maximum

exp(—%éﬂ)) > 1 — € where € denotes the relative accuracy to which the actual
membrane potential change due to a single PSC is required to have relaxed towards

the asymptotic value.

With the above choice of parameters the network will exhibit the following dynamics
if initialized with a binary pattern of input currents such that the membrane potentials of
a group Gy of neurons are raised above upresnoiqg at or slightly before the maximum of an
oscillation cycle. After the firing of the initial spikes, the membrane potentials of group G
are reset to u,.s. After the delay 7,, the action potentials arrive at the postsynaptic neurons
and trigger rectangular current pulses PSC with duration 7pgc. By the time 7y, before
the maximum of the next oscillation cycle all the PSCs will be integrated. A postsynaptic
neuron 4 will fire if 3-,c, Ti; > 0 and will stay quiescent if the sum is negative.

In the time interval 7. before the maximum of the k-th oscillation cycle, where k is a
positive integer, a certain group Gy of neurons fires. As in the case without subthreshold
oscillation, this group is the same group of neurons that is in the on-state (S = 1) in the
k-th iteration of the Little model [16] that was presented the same initial pattern and has
the same couplings Tj;. This again implies that all results obtained for the Little model
regarding fixed points, convergence, and storage capacity can be directly transfered to the
present model.

The parameters 7,, Tpsc and Trc do not have to be identical for all neurons as long
as the variation from the mean values defined above is not too large. The mean value for
T, may be arbitrary if one arranges several networks in a staggered loop structure with
appropriate phase shifts of the membrane potential oscillation.

Analyzing the correspondence between the present model and the Little model we have
so far not considered any coding in the temporal domain — besides using the oscilla-
tion to generate a global timing mechanism. Binary-valued patterns are expressed in the
firing or not firing of a neuron before the maximum of a given oscillation cycle. But po-
tentially, there is additional information in the time at which a neuron fires relative to
the maximum of the oscillation cycle. If a neuron i reaches upresnoiq it Will fire at time
tzf e — %arccos(% > jer Tij) before the maximum of the oscillation where F denotes the
group of neurons that fired in the previous oscillation cycle. This means that the value of
> jer Tij is encoded in the firing time of neuron <.

To recognize a pattern one could again use a coincidence detector as proposed by Hop-
field [11] within a feedforward scheme. Any such grandmother neuron only receives input
from the n neurons of the network which are active in the pattern the specific grandmother
neuron is coding for. The cell fires when n action potentials arrive simultaneously. In the
previous model where all active neurons fired simultaneously the cell would fire when the
network has reached the fixed point the cell is coding for, as desired. However, the grand-
mother cell would also fire if the network has reached another fixed point in which not only
those n neurons are active but also additional ones. This situation is very unlikely to hap-
pen in the network now described because a certain pattern is not just represented by its
active neurons but also by the relative timing of their action potentials. Additional active
neurons will now contribute to the postsynaptic potential of the n neurons and change their
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relative firing times so that their action potentials do not any more arrive simultaneously
at the grandmother cell which will therefore remain quiescent.

Associative storage of analog patterns

In the previous section a binary pattern was represented by the activity of all neurons just
before the peak of the oscillation — a code of “to fire or not to fire.” The exact time advance
with respect to the oscillation peak was not used to represent the pattern. Analog patterns
can be represented by time advances if one takes elementary biophysics into account. The
size of a postsynaptic current PSC is not constant but depends on the present membrane
potential — and thus in systems with subthreshold oscillations on the time relative to the
underlying oscillation.

As an example, consider excitatory synapses in the central nervous system that use the
neurotransmitter glutamate. Glutamate receptors can be broadly separated into two main
types — those sensitive to NMDA and those that are not. If brief pulses of glutamate
are applied under voltage-clamp conditions the current response of a non-NMDA synapse
reverses near zero millivolt and exhibits a fairly linear relationship with respect to the
membrane potential. This means that the size of a PSC that is mediated exclusively by
non-NMDA receptors decreases with increasing membrane potential. The amplitude of a
PSC triggered by an action potential which arrives on the upward slope of an oscillation
cycle, is thus an increasing function of the time advance of that action potential.

For NMDA synapses, the situation is different for two reasons. First, in hyperpolarized
cells, NMDA channels are blocked by Mg?T-ions and do not pass much current. At more
depolarized levels, the Mg?T-blocks are removed and the size of the PSC increases —
opposite to the case of non-NMDA synapses. This implies that on the upward slope of
the oscillation the amplitude of a PSC is a decreasing function of the presynaptic time
advance, but on the downward slope it is again an increasing function.

Second, NMDA channels have long opening times up to roughly hundred milliseconds.
This means that the ionic current through a synapse will be an average over a significant
fraction of the oscillation cycle and may thus not be used as a precise temporal marker.
Nonlinearities may, however, lead to a better temporal precision than expected from this
argument. Detailed computer simulations are needed to evaluate the potential of NMDA
channels for temporal coding.

Inhibitory synapses have reversal potentials below the resting potential of a cell. As
in the case of NMDA synapses — but with the advantage of short time constants — the
size of a PSC is an increasing function of the time advance on the downward slope of the
oscillation.

In the cases discussed above, the amplitude of the PSC is a monotone function f of the
time advance xf of neuron j in the k-th cycle. If we assume that individual contributions

add linearly, the total excitation will be given by a¥*! = > T f (xf—i—Ta). The postsynaptic
neuron will fire the earlier, the stronger the cell is depolarized. Thus xf“

increasing function ¢ of a¥** and we finally obtain

is given by an

it =g (Z Tij.f(x§ + Ta)) . (6)
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Note that the z¥*! on the left-hand side of the equation refer to time advances in the next
cycle.

The axonal time delay 7, may vary for different neurons but has to be chosen appropri-
ately so that the action potentials arrive on the right slope (upward or downward) of the
oscillation. In case they have to arrive on the upward slope, 7, has to be rather long at first
sight. However, the scheme can be readily generalized to “staggered projections” as they
are found in the hippocampus. In this case, the constraints on the axonal time delay are
greatly reduced. If, for example, there is a 90-degree phase shift between two consecutive
subnetworks (as between the dentate gyrus and the CA3 region), the output of one network
can be directly fed into the next network with no or only very small delays.

Another possibility along this line — but within a single network — will arise if there
are multiple subsets of neurons with different time delays. For simplicity let us consider
the case of two subsets A and B. In any given oscillation cycle, neurons in subset A fire
before those in subset B. Subset A receives input from the firings of subset A and B in the
previous cycle, i.e. 7474 and 7574 is long. Subset B receives input due to the firing of )
subset B in the previous cycle, i.e. 7575 is also long, and 44) subset A in the present cycle,
ie. TC;“_’B is short. This means that subset A performs a preliminary signal processing
which is used for the computation done by subset B in the same cycle.

Equation (6) is formally almost identical to the evolution equation of an iterated-map
network [20], the continuous-valued generalization of the Little model [16]. Indeed, in the
most simple case with linear f (which may be justified for excitatory non-NMDA synapses
and action potentials that arrive in the linear part of the upward slope), the dynamics
reduce to the well-known iteration equations

which should be compared with equation (3). The general equation with nonlinear f will
probably result in interesting new computational properties.

Discussion

The present study shows that model systems with integrate-and-fire neurons can operate
as associative memories on (at least) two separate levels. On the first level, binary patterns
are represented by the firing state of individual neurons — “on” or “off.” This dichotomy
is possible because in the systems studied, neurons approach an attractor where they either
fire periodically or are completely quiescent. The relative firing times between individual
spikes or between spikes and the underlying subthreshold membrane oscillation may be
used to encode analog patterns, the second level of associative memory. Furthermore, both
coding schemes can coexist in the same network.

The shape of a postsynaptic potential can also be used to do computations based on a
spike-time code [26]. If for example, by the time the membrane potential of a postsynaptic
neuron reaches firing threshold, all PSPs are still in their rising segment then the earlier
a PSP was triggered the earlier the postsynaptic neuron will fire. Extending this idea to
systems with subthreshold oscillations, an equation similar to equation (6) is obtained.
However, it is an implicit equation for the time advance z5™' because z¥™' also appears

i
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inside the function f on the right-hand side. For linearly increasing PSPs the situation
simplifies since in this case f is a linear function. If the system operates in the linear part
of the upward slope, the function g will also be linear and the iteration equations become

.’Ef+1 = <Z sz.’lff + 01) (8)

where A is some real number.

As shown in the last section, spike-time coding is facilitated in systems where the size
of neural signals is not uniform but depends on the current state of the postsynaptic cell.
In the example presented, the biophysics of synaptic transmission imply postsynaptic po-
tentials whose amplitude directly reflects the present postsynaptic membrane potential. In
any system where an oscillating component is added to the neuronal input current, the de-
pendence on the postsynaptic membrane potential becomes a temporal relation, a potential
basis for a spike-time code to process analog information.

In closing, let us emphasize that the voltage dependence of postsynaptic currents is
just one example for this general coding principle. Any dependence of a parameter of the
single-neuron dynamics on state variables of a cell may potentially serve a computational
role within a temporal code. Other examples include the dependence of the membrane time
“constant” Tgpc on the membrane potential [30] or the dependence of the synaptic weights
T;; on the recent firing history of a neuron [31].
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