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Abstract

Gaussian processes are a promising non-linear interpolation tool (Williams 1995; Williams and
Rasmussen 1996), but it is not straightforward to solve classification problems with them. In this
paper the variational methods of Jaakkola and Jordan (1996) are applied to Gaussian processes to

produce an efficient Bayesian binary classifier.

1 Introduction

Assume that we have some data D which consists of inputs {x,})_, in some space, real or discrete,
and corresponding targets ¢, which are binary categorical variables. We shall model this data using a

Bayesian conditional classifier which predicts ¢ conditional on x. We assume the existence of a function
P(t=1]x)
P(i=0x)

a(x) which models the ‘logit’ log as a function of x. Thus

1
= T exp(—a) M

To complete the model we place a prior distribution over the unknown function a(x). There are two

P(t = 1]x, a(x))

approaches to this. In the standard parametric approach, a(x) is a parameterized function a(x;w) where
the parameters w might be, say, the weights of a neural network or the coeflicients of a linear expansion
a(x;w) = Y, wpon(x). We place a prior probability distribution P(w) over the parameters which is
traditionally taken to be Gaussian (MacKay 1995b).

In the alternative Gaussian process approach (Williams 1995; Williams and Rasmussen 1996; Williams
1998; Neal 1997), we model a(x) directly using a Gaussian process. This involves modelling the joint

distribution of {a(x,)} with a Gaussian distribution.

1 1
Play|®) = ——exp <——a]TVC]_\,1aN) (2)
Zap 2
where ay = (a(x1), a(x2),---,a(xy)) and Cy is an appropriate positive definite covariance matrix that

is a function of the inputs {x,} and a set of hyperparameters ©. Most parametric models are in fact
special cases of Gaussian processes, with the covariance matrix depending on the details of the choice
of basis functions ¢;(x) and the prior P(w) (Neal 1995). Efficient methods for implementing Gaussian
processes are described in Gibbs and MacKay (1996).

*Corresponding author



For classification models there are two well-established approaches to Bayesian inference: Gaussian
approximations centred on the posterior modes (MacKay 1992a) and Monte Carlo methods (Neal 1995).
Barber and Williams (1997) have implemented classifiers based on Gaussian process priors using Laplace
approximations. Neal (1997) has implemented a Monte Carlo approach to implementing a Gaussian
process classifier.

In this paper another approach is suggested based on the methods of Jaakkola and Jordan (Jaakkola
and Jordan 1996). We obtain tractable upper and lower bounds for the unnormalized posterior density
P({t}|a)P(a). These bounds are parameterized by variational parameters which are adjusted in order to
obtain the tightest possible fit. Using the normalized versions of the optimized bounds we then compute
approximations to the predictive distributions. This is similiar to an ensemble learning approach (Hinton
and van Camp 1993; MacKay 1995a) in that we are adapting approximations to the posterior distribution

of unknown variables.

2 Variational Gaussian Process Model

Let us look at the Gaussian process approach in more detail. We wish to make predictions at new points
given the data, i.e. we want to find the predictive distribution P(ty41|Xn41, D) where xn41 ¢ D. This

can be written

Ptny1 = 1xn41, D) = /P(tN+1 = la(xn+1)) Pla(xn41)[xn41, D) da(xn41) (3)

The first term in the integrand is a sigmoid (see equation 1). The second term can found by integrating

out the dependence on {a(x,)} (for n = 1, N) in the joint posterior distribution P(ant1|xn+1,D)

Pla(xrs)xns1.D) = [ Plavsilxvsr, D)dVay. (4)

where ayy1 = (a,a(xn41)). We can write the joint posterior distribution as a product over the data

points and a prior on the function a(x).

N
Plansilxer, D) = ZPlavs) [T Pltalatx,) (5)

where Z is an appropriate normalizing constant. The prior on ay 41 shall be assumed to be a Gaussian

process prior of the form
1 1 7 1
Planti|xn+1{x2}0) = ——exp | —gan 1 Cypanv+ (6)
9p

where Cyl; is the (N 4 1) x (N + 1) covariance matrix for ay4; and (Cyy1)

mn

covariance function C; has the form

1& (95
Cs(Xpm,x,) = 01 exp —52—2 4 0 + O (7)

()

where © = (61, 03, ¢,{r;}) are appropriate hyperparameters and z,, is the I*" component of the vector

Xy,. Unlike the regression covariance function (Gibbs and MacKay 1996) we assume a(x) to be noise
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free. However we do introduce a “jitter” term &,,,J (Neal 1997) to make the matrix computations
well-conditioned. We choose the magnitude of .J is small in comparison to 6;.

The product of sigmoid functions in equation 5 generally makes the integral in equation 4 analytically
intractable. Barber and Williams (1997) use a Laplace approximation in order to evaluate this integral.
Neal (1997) uses Markov chains Monte Carlo methods. Instead we introduce an upper and lower bound
to the sigmoid function in order find analytic approximations to the posterior P(ayyi|xy+1,DP) and
therefore find approximations to the posterior probability P(tn4+1 = 1|xn41, D).

We can define upper and lower bounds on the sigmoid, i.e. on P(t = 1]a(x)), (Jaakkola and Jordan
1996) as follows:
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where a,, = a(x,) and

1
1+ exp(—ay,)
[9(vn) —1/2] /2. (11)

g(an) (10)

Avn)

fr, and v, are variational parameters with y, in the interval [0, 1] and Hz () is the binary entropy function

Ha(z) = —zloge — (1 — z)log(l — z) (12)
Note that the bounds on P(t, = 0la(x,,)) follow directly from the above as

1 1
T T exp(—afe)) 1+ expla(x)
We can use the two distributions () and R to bound each factor P(t,|a(x,)) in equation 5 by introducing

P(t, = 0ja(x,)) = 1 — P(t, = 1]a(x,)) = 1 (13)

two variational parameters p, and v, for each data point. Note we do not introduce any variational
parameters for the point xy41 (we shall introduce a seperate approximation when extracting the pre-
diction later). We can then use these bounds on the sigmoid to approximate the posterior probability
P(tN-H = 1|XN_|_1,D).

3 Making Predictions

3.1 Predictions based on the lower bound

We can write down the following approximation for P(ayy1|xy41,D).

1 N
Planyi|xn41, D) =~ Polan+1[xnv+1, D, {vn}, ©) = EP(3N+1|XN+17 {xn},0) [[ Qtnla(xn),vn) (14)
n=1

where Z' is the appropriate normalising constant. Now using the previous definition of Q(t = 1|a,v) we

can write



N

H Q(tnla(xy,), vn) x exp {a]TVANaN - dTaN} (15)
n=1
where Ay is a diagonal matrix with diagonal elements (A(vq1), A(v2), -+, A(vn)), A, being defined in

equation 11. The summation over n is from 1 to N as there are no variational parameters associated
with the input vector xx41. The vector d reflects whether the training input vector x,, is a member of
class 0 or class 1 and has components d,, = %(—1)”‘"“. In the above equation we have ignored any terms
that are independent of ay and a(xy4+1). Such terms simply contribute to a normalising constant which
we shall not need to evaluate when making predictions.

Introducing the Gaussian process prior we can write

1 _
Polan+i1|xn+1, D, {vn}, ©) x exp _§a%+1(CN1+1 + 2AN+1)an+1 + dTaN (16)

where An4q = diag(A(11), A(ve), - -+, A(vn), 0) We can see that the marginal distribution over a(xn41) is
a Gaussian. Using the block form of the inverse of a matrix, we can express the inverse of Cx 1 in terms

of C]_\,1 and then find the mean a{wp and variance s of Pg(a(xn+41)|xn+1, Dy {vn}, 0),

apr = kJTv+1HJ_vld (17)
st = k4 2kh Hy' Avky i (18)

where
Hy =1+ 2AnCy (19)

and
knvyi = (Cp(x1,xn41) -, Cr(xn, XN+1)) (20)
£ = Cr(XN41,XN+1) (21)

Thus substituting the Gaussian lower bound approximation Pg(a(xn+1)|xn+1, D, {vn}, ©) into equa-

tion 3 we find

Plin+1 = Lxns1, D) = g(r(si)a'™) (22)

using the approximation for the integral of the product of a Gaussian and a sigmoid (MacKay 1992b),

/dx g(z)Gaussian(a}M, s7) ~ g(7(s))a}MT) (23)

where 7(s) = 1//1 + 7s2/8.

We should note that, although we have been using the lower bound on P(t, = 1|a(xy)), we have
not generated a lower bound on the probability P(ty4+; = 1|D) but an approximation to it. Looking
back at equation 14 we see that Pg(ayy1|xn+1, D, {vn}, ©) is an approximation to P(ant1|xn+1, D)
rather than a lower bound. The normalising constant Z’ (a lower bound to P(D|©)) is in the de-
nominator of equation 14 and the factors Q(¢,|a(xy,),v,) (lower bounds to P(t,|a(x,))) are in the nu-
merator. Hence the conflicting bounds introduced by these two terms mean any solution derived from

Polan+1|xn+1, D, {vn}) are be an approximation not a lower bound.



3.2 Predictions based on the upper bound

Now let us consider the approximation to P(ay1|xy+1, D) found using the upper bound. We can write

N

1
Playt1|xn41, D) ~ Pranti1[xni1, Dy {pn}, ©) = ﬁp(aN+1|XN+17 {x},0) [ R(tnla(xn), un) (24)
n=1
Using the previous definition of R(t = 1|a, 1) we can write
N
[T R(tala(xn), ) o< exp [bTa] (25)
n=1

where b; = p;(—1)%*! again reflecting which class the training data is in. As in the lower bound case, we
have ignored terms that are independent of ay and a(xy41) as they simply contribute to a normalising
constant that we shall not need to evaluate when making predictions.

Introducing the Gaussian process prior we write

1 _
Pr(an+1|xny+1, D, {ptn}, ©) x exp —Ea%_HCNIHaN_H +bla (26)

As with the lower bound, we can use the block form of the inverse to calculate the mean ¢™” and the

variance s2 of the approximate marginal distribution Pr(a(xn+1)|D, {ttn}, O).

P = —s2ki,Cy'b (27)
-1
2 = (k—kh Ci'kni) (28)

We use equation 23 again to calculate the approximation
P(tnt1 = 1xn41, D) = g(r(s)al!"). (29)

4 Determining the Parameters

We can now derive two approximations to P({y+1 = 1|Xn41,D) using our upper and lower bounds for
the sigmoid function. In order to make use of these approximations we need to find appropriate values
for the variational parameters and the hyperparameters of the covariance function.

Consider the upper and lower bounds on P(D|0).

7' < P(D|®) < 2" (30)

where

N

7 = /dNaNQ(tn = 1a(x), va) [ Plan|©) (31)
nRI

7" = / VayR(t, = 1a(x,), 1) ][ Plan|©) (32)

Note that Z’ and Z" are the normalising constants from equations 14 and 24 respectively.



We wish to set the variational parameters {v,,} and {u,} so that Z’ and Z” are as tight bounds on
P(D|O®) possible. We can do this by maximizing 7' with respect to {v,,} and minimizing Z” with respect
to {1, }. We would also like to set the hyperparameters of the covariance function to their most probable
values given the data (a Monte Carlo approach could also be used (Barber and Williams 1997)). This is
not possible as we do not have an analytic expression for P(D|0). However we can maximize Z' and 7"
with respect to © to obtain approximations to the most probable © given the data.

We now calculate the derivatives of the lower and upper bound on P(D|©) with respect to the
variational parameters and the hyperparameters of the covariance function. Given these derivatives we

can then use a gradient based optimization algorithm such as conjugate gradients to optimize the bounds.

4.1 The Lower Bound

We can write Z’ in the following manner

= Hg(yn) exp {— (I/n/Q — /\(Vn)l/z)} /dNaNZL exp [—%aJTv(CJ_Vl + 2AN)ay 4+ dTay (33)

ar

The integral in Z’ is tractable as the bound on the sigmoid function is a Gaussian function. Hence

log(2') = 3" (log(g(vn)) — vn/2+ Ava)V?) + %dT (CR*+2An)d - %log det(I+2ANCy)  (34)

n

We can show that for symmetric Cy

8log A _ 1 T OAN 1 1 ( OHN)
oo = 1 (14 29 (1 — gr)vi — 1)] —d"CyHY aTCNHN d— S Hy' EOR (35)
8logZ’ B 1 1N\ T OCN _1 ( OHN)

where ¢ = ¢g(v) and 0 € © is some generic hyperparameter of the covariance function. We should note
that in order to calculate either of these derivatives we need only perform one inversion, i.e. find H]_\,1

for any given {vy} and ©.

4.2 The Upper Bound

Let us now consider the upper bound Z”.
1
= exp [ Z?—lg ) ] /dNaN— exp <—§aNC ay + bTaN) (37)
Again the integral in Z” is tractable.

1
log Z" = =" Ha(pn) + 5loTcho (38)

We can calculate the derivatives of Z”,



P "
Qlog 27 _ 1 (2) + (0% X (i b (39)

O — [k
a log Z// - 1 T aCN
a0 = 3P 00 b (40)

The evaluation of these derivatives is trivial as no inversion is required.

4.3 Optimization Procedure

We have calculated the derivatives of the upper and lower bounds with respect to their variational
parameters and with respect to the hyperparameters of the covariance function. However we have not
vet addressed the question of how we should go about the optimization.

The lower bound case is simple as we can simultaneously optimize Z’ with respect to the variational
parameters {v, } and the hyperparameters of the covariance function © using a gradient based optimiza-
tion algorithm. The upper bound presents us with a slightly more difficult problem. Minimization of Z”
with respect to the variational parameters {u,, } is straightforward. However maximizing Z” with respect
the hyperparameters of the Gaussian process is problematic. For example Z” increases to infinity as 6,
increases and hence no finite maximum exists.

An alternative approach to the optimization of Z” is to to fix the hyperparameters © at the values
determined by the optimization of Z’ and optimize Z” with respect to the variational parameters {u, }
alone. The justification for this comes from the likely relative quality of the upper and lower bounds.
Consider Figure 1. This shows a sigmoid function and two bounds on it of the form used in our approxi-
mations. We can see that the lower bound is good across a wide range of values whereas the upper bound
is poor except for the linear region at + = 0. This is due to the fact that the lower bound is constructed
to touch the sigmoid in two places whereas the upper bound only touches the sigmoid once.

Thus we use an optimization procedure in which Z’ is maximized with respect to the variational
parameters {v,} and the hyperparameters ©® and then Z” is minimized with respect to the variational

parameters {iu,} using the hyperparameters © generated by the maximization of Z’.

5 Examples

5.1 1D Toy Example

In order to illustrate various features of the Variational Gaussian process Classifier (VGC), we generated a
one dimensional toy problem (see Figure 2(a)). We ran the optimization procedure described in Section 4.3
using conjugate gradients from 20 different sets of initial conditions to guard against the presence of
multiple minima in hyperparameter space. It is the authors’ experience that, given sensible priors on the
hyperparameters (gamma distributions were used in this case to limit the length scales {r;} to moderate
values), such multiple minima rarely occur and did not occur in this case. The average of the predictions
made by each of the 20 runs (which were almost identical) can be seen in Figure 2(b).

The results are much as expected. The VGC identifies the regions which belong to class 1 and class 0
and models the transitions between these regions smoothly with no over-fitting. The VGC also behaves
well where there is no training data. On either side of the training data, the classifier’s predictions for
P(tn41 = 1|D) tend to 0.5. It should be noted that the lower bound gives more confident predictions
than the upper bound. This is expected as the lower bound is generally tighter than the upper bound.

-~
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(a) shows the training data used in this binary toy example. The data

were chosen specifically so that there would be a sharp transition from class 1 to class 0 (z ~ 13) and
a more gentle transition from class 0 to class 1 (29 < 2 < 43). (b) shows the upper bound and lower
bound approximations of P(ty4+1 = 1|D). There are some interesting features to note. Firstly the lower
bound makes more confident predictions than the upper bound. This is expected as the lower bound
is generally tighter than the upper bound. Secondly the classifier makes sensible predictions in regions
where it has little data, i.e. P(tn41 = 1|D) tends to 0.5. Thirdly P({n41 = 1|D) does not swing rapidly
from 0 to 1 on each data point on the boundary between classes but instead gives a smooth transition,
i.e. there is no over-fitting. Finally, even in the regions where there are a significant number of 0’s and

1’s, the classifier does not over-fit the data and make wildly over-confident predictions.



Crab Pima

Method

Error | % Error | Error % Error
Neural Network (1) 3+£1.7125+14 - -
Neural Network (2) 5+21]42+£18 - -
Neural Network (3) - - 75 22.6

Linear Discriminant 8+27 167236773 ]20.2+L22

MARS (degree = 1) 8+27]67£23|754+7.6]|226%23

2 Gaussian Mixture - - 64+ 721193 +£22

HMC Gaussian process | 3 £ 1.7 | 25 £ 1.4 | 68 £ 7.4 | 20.5 + 2.2

VGC 44+2 |33£16|704+£74]21.1422

Table 1: Pima and Crabs Results : The table shows the performance of a range of different clas-
sification models on the Pima and Crabs problems (Ripley (1994) and Ripley (1996)). The number of
classification errors and the percentage of errors both refer to the test set. The error bars given are
calculated using binomial statistics. The results quoted for the VGC are those obtained using the ap-

proximations from the lower bound. The HMC Gaussian process is the classifier described in Barber and
Williams (1997).

5.2 The CRABS and PIMA examples

We next tried our method on two well known classification problems, the Leptograpsus crabs and Pima
Indian diabetes datasets !. The results for both tasks, together with comparisons with several other
methods (from Barber and Williams (1997), Ripley (1994) and Ripley (1996)) are given in Table 1.

In the Leptograpsus crabs problem we attempted to classify the sex of crabs based upon six charac-
teristics. 200 labelled examples are split into a training set of 80 and a test set of 120. The performance
of the VGC is not significantly different from the best of the other methods. The Pima Indian diabetes
problem involved the prediction of the occurence of diabetes in women of Pima Indian heritage based on
seven characteristics. 532 examples were available and these were split into 200 training examples and
332 test examples. 33% of the population were reported to have diabetes so an error rate of 33% can be
achieved by declaring all examples to be non-diabetic. The VGC achieved an error rate of 21% - again

comparable with the best of the other methods.

5.3 Weld Strength Example

Hot cracking can occur in welds as they cool. The occurence of such cracks depends on the chemical
composition of the weld metal, the cooling rate and the weld geometry. We wish to predict whether

a given weld will crack by examining the dependence of cracking on 13 specific characteristics of a

! Available from http://markov.stats.ox.ac.uk/pub/PREN.



Method Test Error | Log Likelihood

Bayesian Neural Network 8 -23.6

Variational GP Classifier 10/10 -25.73/-31.57

Table 2: Weld Strength Classification Problem : This table shows the test error and log likelihood
scores of the VGC and the Bayesian neural network of Ichikawa et al. (1996). The two results given for

the VGC correspond to the approximations using the lower and upper bound respectively.

weld. In a previous treatment of this problem using Bayesian neural networks (Ichikawa et al. 1996) the
relationship between cracking and carbon content was highlighted and compared with experimental data.
We performed a similar analysis using VGCs.

An initial test was performed using a training set of 77 examples and a test set of 77 examples. The
test error rates and test log likelihoods for the VGC and the Bayesian neural network approach (Ichikawa
et al. 1996) can be seen in Table 2 where the test log likelihood is defined as

Niest
test log likelihood = Z t,log(ty) + (1 —t,) log(1 — i) (41)
n=1
where ¢, is the true test set classification (either 0 or 1) and £, is the prediction P(t, = 1/D). The
performance of the VGC is slightly inferior to that of the Bayesian neural network. However the neural
network result was obtained using a committee of four networks. A large amount of experimentation with
different architectures and parameter settings was performed and the four networks found with the best
test error were used in the committee. The VGC results required no such experimentation. 20 runs of
the VGC with differing initial conditions were performed to guard against multiple minima. The results
quoted in Table 2 are from the first run but all of the runs produced almost identical results.

We then trained the VGC using all 154 examples in order to model the carbon dependence of the
weld strength as in Ichikawa et al. (1996). A plot of the carbon dependence can be seen in Figure 3. The
plot was much as expected. It shows the reduction in the probability of cracking at intermediate carbon
concentrations (as found experimentally) and also shows a tendency for increased strength at low carbon

concentrations. The corresponding results of Ichikawa et al are also shown in Figure 3.

6 Discussion

We have shown that Gaussian processes can be used to produce effective binary classifiers. The results
using the VGC are comparable to the best of current classification models. Using Gaussian processes
we obtain a parameterization of our model that is easily interpretable allowing us to perform automatic
relevance determination where applicable. Another point to note is that VGCs are moderately simple to
implement and use. The very small number of parameters of the model that need to be determined by
hand (generally only the priors on the hyperparameters) makes VGCs a useful tool for automated tasks
where fine tuning for each problem is not possible. However we do not sacrifice any performance for this

simplicity.
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Figure 3: Carbon Dependence of Weld Strength : The two plots shown on this graph are the results
obtained in Ichikawa et al. (1996) and those found using the lower bound approximation of a VGC. Both
have the same large scale features but the VGC makes less confident predictions where the training data

density tails off near zero carbon content.

One obvious problem with any method based upon Gaussian processes is the computational cost as-
sociated with inverting an N X N matrix. The cost of direct methods of inversion may become prohibitive
when the number of data points N is greater than ~ 1000. In Gibbs and MacKay (1996) efficient methods
for matrix inversion (Skilling 1993) are developed that when applied to the Gaussian process framework
allow large data sets to be tackled. Another problem with the variational approach is the profileration
of variational parameters when dealing with large amounts of the data. Reducing the number of these
variational parameters is an important direction for further research. The extension of the method to

multiple classes has been investigated in Gibbs (1997).
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