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Abstract

Shannon’s calculation of the number of crosswords assumed that the
rows and columns of crosswords contain typical strings from the language.

However, in most languages, most crosswords will have rows and columns
that are atypical. This atypicality modifies the way in which we count
the number of crosswords.

I 1 Introduction

Shannon (1948) observed that large numbers of large crosswords can be con-
structed if a language has sufficiently low redundancy: large two–dimensional
crosswords are possible, he said, if the entropy per character HW of the language
consisting of words separated by spaces satisfies

HW >
1

2
Hmax, (1)

where Hmax is the maximum achievable entropy per character.
This observation of Shannon’s was elaborated by Wolf and Siegel (1998).

They interpreted Shannon’s assertion that ‘large two–dimensional crosswords
are possible’ as meaning that ‘the number of valid crosswords grows exponen-
tially with the number of squares S in the grid’. They counted the number of
valid crosswords in a language by counting the number of typical ways of filling
in the rows of a grid, then evaluating the probability that one such filling-in
also has valid and typical columns. They reproduced Shannon’s results, and
augmented them by supplying a tighter condition, applicable to languages in
which letters are not used with equal frequency.

The problem with Shannon’s result (1), you see, is that if we switch language
from English (in which we know two-dimensional crosswords are possible) to
‘English plus a few foreign words that use new characters not included in the
original English alphabet’, then certainly all the crosswords we made in English
are still valid crosswords in the new language, but the inequality (1) may well
be violated, since adding extra characters to the alphabet increases Hmax on
the right hand side.

1



S

D

L

I

G

D

U

T

S

F

F

U

D

U

E

I

D

A

O

T

I

T

R

A

F

A

R

E

D

I

R

V

A

L

O

O

T

O

T

E

S

O

O

G

R

E

H

T

O

M

H

S

A

T

L

U

C

S

L

I

V

E

S

A

B

E

L

O

S

S

S

E

R

T

S

T

O

R

R

E

T

T

U

S

E

T

I

C

E

R

O

C

R

E

E

N

S

R

I

E

H

E

T

T

A

M

S

A

L

T

A

M

U

M

P

A

H

S

I

M

L

U

A

P

E

P

O

E

T

R

A

C

C

I

P

E

H

A

R

Y

N

N

E

K

R

E

T

S

I

S

E

E

R

T

N

O

R

I

A

H

O

L

A

L

R

A

E

E

T

A

L

S

E

R

I

S

M

O

T

A

R

E

S

Y

E

R

B

A

S

B

P

D

J

V

P

B

R

E

H

S

U

E

H

C

N

A

L

A

V

A

I

I

E

N

A

L

R

N

S

E

L

T

T

E

N

N

O

E

L

L

A

G

T

W

I

O

N

I

E

L

E

B

O

N

F

E

E

B

T

S

A

O

R

E

A

U

E

I

M

S

E

T

A

T

O

R

R

E

N

M

E

R

B

T

C

H

E

N

A

A

I

L

A

R

T

S

U

A

S

E

T

I

K

U

E

A

T

P

L

E

S

E

S

U

C

X

E

S

T

E

K

C

O

R

T

T

K

P

O

T

A

I

E

T

A

R

E

P

S

E

D

N

O

T

L

E

N

R

R

Y

A

S

S

Figure 1. Crosswords of types A (American) and B (British).
In a ‘type A’ (or American) crossword, every row and column consists

of a succession of words of length 2 or more separated by one or more
spaces. In a ‘type B’ (or British) crossword, each row and column consists
of a mixture of words and single characters, separated by one or more
spaces, and every character lies in at least one word (horizontal or vertical).
Whereas in a type A crossword every letter lies in a horizontal word and a
vertical word, in a typical type B crossword only about half of the letters
do so; the other half lie in one word only.

Type A crosswords are harder to create than type B because of the
constraint that no single characters are permitted. Type B crosswords are
generally harder to solve because there are fewer constraints per character.

So Wolf and Siegel derived a tighter condition for large two-dimensional
crosswords to be possible,

HW >
1

2
H0, (2)

where H0 is the entropy of the monogram distribution of the language.
Wolf and Siegel’s calculations were modified in (MacKay, 2003, Section 18.1)

so as to give conditions not only for the ‘A’ type of crossword but also for
the ‘B’ type (figure 1). MacKay weakened Wolf and Siegel’s calculations by
assuming the language consisted of W words all of the same length L. Using
typicality arguments similar to those of Wolf and Siegel, the conditions for large
crosswords of the two types to be possible were found to be as follows, where
H0 is the entropy of the monogram distribution for non-space characters, and
the entropy of the language consisting of arbitrary strings of words is

HW ≡
log2 W

L + 1
. (3)

Crossword type A B

Condition for crosswords HW > 1
2

L
L+1H0 HW > 1

4
L

L+1H0

If we set H0 = 4.2 bits and L = 5 then we can estimate how big a vocabulary
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is required for crosswords of the two types to be numerous: for type A, W �
2LH0/2 ' 1500; and for type B, W � 2LH0/4 ' 40.

These figures seem consistent with experience: we can easily write children’s
crosswords of type B, but most crosswords of type A contain more obscure
words.

However, these calculations of the number of valid crosswords underestimate
this number by counting only ‘typical’ crosswords. It is likely that atypical

fillings-in of the crossword dominate the true count.
We now give an example illustrating the inaccuracy of the condition (2),

then give a new calculation of the number of crosswords, assuming a simple
language model.

We will use the following notation:

W Number of words in dictionary
L typical word length
p monogram distribution for non-space characters (letters)
S number of squares in crossword

f1S number of letter squares
fwS number of words in the crossword

S1 number of letter squares whose letters appear in one word only
S2 number of letter squares whose letters appear in two words

Note f1S = S1 + S2

In crosswords of type A in which the typical word length is L, typical values of
fw, f1, S1, and S2 are as follows:

A B

fw
2

L + 1

1

L + 1

f1
L

L + 1

3

4

L

L + 1

S1 0
1

2

L

L + 1
S

S2
L

L + 1
S

1

4

L

L + 1
S

I 2 A counterexample to condition (2)

Consider a language with 514 characters, of which two, ‘0’ and ‘1’, have proba-
bility 1/4 each, and the other 512 characters have probability 1/1024 each. The
entropy of this monogram distribution is H0 = 6 bits. If the dictionary of the
language contains W = 212 ' 4000 words all of length L = 5 then the entropy
per character of the language is HW = 2 bits. Given this letter entropy H0

and language entropy HW , our conditions for crosswords expect neither type
of crossword to be possible. But in fact, the Wenglish dictionary will almost
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certainly contain almost all the thirty-two possible five-letter binary strings,
00000, 00001, 00010, . . ., 11111 (since each had a probability of 2−10 of occur-
ring when a new word was added to the dictionary, and there are 212 words).
So all the 2f1S atypical crosswords that contain exclusively the characters 0 and
1 are almost certainly valid croswords. Thus an exponentially large number of
crosswords do exist for this language, albeit atypical crosswords dominated by
just 32 crossword-friendly words from the dictionary.

Now, Shannon could defend his calculation by saying ‘I’m not interested in
atypical crosswords, I only want to count crosswords in which the rows and
columns are typical of the language – here, crosswords that use the full dictio-
nary in a balanced manner’. However, we suspect that in real life, crosswords
are indeed populated by an atypical distribution that favours crossword-friendly
words. We therefore offer a new calculation that allows the words that succeed
in making crosswords to be atypical.

I 3 A new calculation

Imagine that a language is made by creating a dictionary of W words, all of
length L, from a monogram distribution p. We count the number of two-
dimensional crosswords of S squares by assuming that an appropriate grid of
black and white squares has been made, and evaluating the probability that
each possible in-filling is valid.

(In contrast to the calculation in (MacKay, 2003, Section 18.1), we do not
restrict attention to ‘typical’ in-fillings.)

We denote the dictionary by {d(w)}W
w=1; w runs over the words in the order

that they were created; the lth letter of the wth word is d
(w)
l .

We denote a candidate crossword by the vector X whose components are xs,
with s running from 1 to f1S. From the vector X we can extract the tentative
words x(n), where n runs from 1 to N = fwS. Each word x(n) consists of L
components from X.

To understand our calculation, imagine that all possible in-fillings X are
created before the dictionary is generated; we then ask, ‘what is the probability
that in-filling X will turn out to be valid?’ To help us answer this question, we
introduce a key, w(n), which is a putative mapping from words in the grid n to
words in the dictionary w. If an in-filling is valid, then there exists a key w(n)
such that, for each n

x
(n)
l = d

(w(n))
l , for all l. (4)

We denote the key by W . The number of possible keys for a grid containing N
words is WN . We can then count the expected number of valid crosswords, Ω,
as follows.

Ω '
∑

X

∑

W

∏

n

∏

l

P (d
(w(n))
l =x

(n)
l ) (5)
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This count is approximate because we are overcounting in cases where there are
multiple valid keys (e.g., a particular word appears twice in the dictionary) and
the calculation is inaccurate if any particular dictionary word is used twice in
the grid, because it treats as independent events that are not.

The probability
∏

l P (d
(w(n))
l =x

(n)
l ) is the probability, when the dictionary

comes to be generated, that the word d(w(n)) will exactly match the word x(n)

defined by the in-filling, X.
OK so far?
Since the dictionary is being generated from a monogram distribution p,

P (d
(w(n))
l =x

(n)
l ) = p

x
(n)
l

. (6)

Now, in the monster sum-product (5), each component xn of X is mentioned in

an expression of the form P (d
(w(n))
l =x

(n)
l ) either twice or once, if it appears in

two words or just one, respectively.
Our sum-product is about to simplify. For components that appear in just

one word, the simplification involves a factorization (
∑

x
(n)
l

p
x
(n)
l

) =
∑

i pi =

1. For components that appear in two words, the two events of the form

P (d
(w(n))
l = · · ·) must involve the random dictionary producing the same char-

acter in two distinct words; we thus obtain a factor

∑

i

p2
i . (7)

We sum over X first, for fixed W . Let’s call a key W non-colliding if all n map
to distinct w under w(n). We focus attention on non-colliding keys. Because the
dictionary words are generated independently and identically, all non-colliding
keys W yield exactly the same answer for the quantity

∑

X

∏

n

∏

l

P (d
(w(n))
l =x

(n)
l ) =

(

∑

i

p2
i

)S2

, (8)

where S2 is the number of intersection characters.
Assuming W � N , the number of non-colliding keys is approximately the

number of keys, WN , so the expected number of valid crosswords is:

Ω ' WN

(

∑

i

p2
i

)S2

= W fwS

(

∑

i

p2
i

)S2

.

(Strictly, we want to be free to send N to infinity, so the assumption that
W � N looks like it produces problems; what we could do here is try to
introduce a better definition of ‘non-colliding’.) Let’s massage this into a form
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that we can compare with the Wolf–Siegel expression for the number of valid
crosswords,

ΩWS ' 2(2HW −H0)S . (9)

We’ll see that the factor W fwS is analogous to 22HW S , and the curious factor
(
∑

i p2
i

)

is analogous to 2−H0 .
Before we carry out the massage, let’s focus on the curious factor. The sum

of squares
(
∑

i p2
i

)

is masquerading as a replacement for the inverse-exponential-
entropy,

∏

i ppi

i ; this approximation,

∏

i

ppi

i '
∑

i

p2
i , (10)

is a surprisingly good one – for any 20–dimensional probability vector, for ex-
ample, the approximation is accurate to within a factor of 2.5! To teachers of
information theory, this approximation may be familiar, because it arises from
a common error made when solving entropy inequalities.

Consider a student tasked with proving that the entropy H(p) of an I–
dimensional vector p is bounded above by log I. He uses Jensen’s inequality:

∑

i

pi log
1

pi
= −

∑

i

pi log pi = −〈log pi〉 ≥ − log〈pi〉 = − log

(

∑

i

p2
i

)

. (11)

Oops! He has not proved that the entropy is bounded above by anything; instead
he has proved that it is bounded below by a quantity known as the order-two
Rényi entropy,

H(2)(p) ≡ − log

(

∑

i

p2
i

)

. (12)

[The order-r Rényi entropy is

H(r)(p) =
1

1 − r
log

(

∑

i

pr
i

)

.

]

(13)

So, to conclude our calculation, let’s define the Rényi monogram entropy per
character (including spaces) by

H
(2)
Mono ≡

L

L + 1
H(2)(p). (14)

Then, using HW ≡ log2 W
L+1 and the figures from the table at the end of section

1, we can rewrite our result (9) as two results, one for each type of crossword:

ΩA ' 2(2HW −H
(2)
Mono)S (15)

ΩB ' 2(HW −
1
4 H

(2)
Mono)S . (16)

Thus the conditions for there to be exponentially many crosswords become:
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Crossword type A B

Condition for crosswords HW > 1
2H

(2)
Mono HW > 1

4H
(2)
Mono.

These conditions are pleasingly similar to Wolf and Siegel’s, with the simple
replacement of the entropy by the Rényi entropy.

I 3.1 Three-dimensional crosswords

The condition for d-dimensional American-style crosswords (in which every let-
ter participates in d words) can be derived in the same way. The number of
crosswords is

Ω ' WN

(

∑

i

pd
i

)Sd

= W fw(d)S

(

∑

i

pd
i

)Sd

.

We assume fw(d) = d
L+1 and Sd = L

L+1S. We note that the order–d Rényi
entropy has appeared:

log

(

∑

i

pd
i

)

= −(d − 1)H(d)(p) (17)

We define the order–d Rényi monogram entropy per character (including spaces)
by

H
(d)
Mono ≡

L

L + 1
H(d)(p). (18)

Then
ΩA ' 2(dHW −(d−1)H

(d)
Mono)S (19)

Thus the condition for there to be exponentially many d-dimensional type-A
crosswords is:

Condition for crosswords HW > d−1
d H

(d)
Mono .

This result is identical to Shannon’s (‘the redundancy must be less than 1/d’) if
the Rényi monogram entropy is equal to the entropy of the uniform distribution.

I 4 A prediction

A spin-off of our calculation is a prediction about atypicality of words in cross-
words, assuming crosswords are selected at random from the set of all valid
crosswords, without human intervention. The prediction only applies to lan-
guages modelled by our ‘random dictionary’ model, and it’s best tested in
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type–B crosswords in which there are characters of both types, intersecting
and non-intersecting.

The prediction is that whereas the letters in non-intersecting squares are
expected to have the same distribution as the source p that generated the dic-
tionary, the letters at intersections of words are expected to come from the
distribution

qi ≡
p2

i
∑

i′ p2
i′

. (20)

It would be nice to test this prediction on a corpus of real crosswords; profes-
sional crossword authors, however, are familiar with this tendency of the more
common letters to appear in the intersections of lazily-constructed crosswords,
and take special effort to counteract it.

I 5 Application to two-dimensional (d, k) constraints

Wolf (2001) discusses the capacity C2(d, k) of two-dimensional binary arrays
whose rows and columns satisfy the (d, k) constraint: after every 1 there must
be at least d and at most k 0s.

He observes that Shannon’s condition for crosswords fails to predict correctly

in all cases whether C
(d,k)
2 > 0. In particular, it is known that C

(2,4)
2 > 0

and C
(1,2)
2 = 0; but Shannon’s condition predicts that crosswords with neither

(d, k) = (2, 4) nor (1, 2) exist. (Shannon’s condition makes identical predictions
for these two cases, because his condition depends only on a language’s one-

dimensional capacity, C
(d,k)
1 ; these two capacities happen to satisfy C

(2,4)
1 =

C
(1,2)
1 ' 0.4057.) This conundrum is not solved by Wolf’s analysis.

So, does our observation that most crosswords will have rows and columns
that are atypical help resolve this conundrum?

The answer is ‘almost’.
For each one-dimensional channel, we can introduce parameters p that con-

trol the transition probabilities between states. We can compute how the frac-
tion of 1s emitted depends on p, p1(p); and compute the dependence of the

one-dimensional capacity C
(d,k)
1 on p. [We here extend the definition of ca-

pacity to allow dependence on p; the true capacity is the maximum over p of

C
(d,k)
1 (p).]

Now, imagine generating grids randomly filled with the fraction of 1s in the
grid being p1. The number of such grids scales as

2SH2(p1), (21)

where H2 is the binary entropy function. The probability that all the rows of
the grid are (a) valid according to the (d, k) constraint, and (b) typical of the
parameters p that we introduced above, is

f =
2SC

(d,k)
1 (p)

2SH2(p1(p))
. (22)
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Figure 2. Graphs of the exponents C
(2,4)
2 (p2, p3) and C

(1,2)
2 (p) as the arguments p,

p2, and p3 vary. For C
(2,4)
2 (p2, p3), the horizontal axis is p2 and p3 takes

the values 0.375, 0.5, 0.535, 0.625, 0.75, which bracket the optimum. The
maximum value of the exponent C

(2,4)
2 (p2, p3) is −0.014. For C

(1,2)
2 (p),

the horizontal axis is p, the probability of emitting a 1 after a run of one
zero.

The probability that all the columns are also valid and typical is also f . So,
neglecting inter-column correlation (in the spirit of Shannon), we obtain the
number of crosswords with parameters p by multiplying (21) by f2.

Ω(p) '
22SC

(d,k)
1 (p)

2SH2(p1(p))
=

(

22C1(p)

2H2(p1(p))

)S

(23)

which is an increasing or decreasing function of S with exponent

C
(d,k)
2 (p) = 2C

(d,k)
1 (p) − H2(p1(p)). (24)

[Perhaps for clarity we should name this exponent E
(d,k)
2 (p) rather than C

(d,k)
2 (p),

since it seems reasonable to reserve C
(d,k)
2 for the true, unknown two-dimensional

capacity? Furthermore, this exponent is not even a genuine bound on the ca-
pacity, since it depends on the assumption that inter-column correlations can
be neglected.]

When we compute the maximum value of this exponent, we find completely

different values for the cases (d, k) = (1, 2) and (2, 4), and the exponent C
(d,k)
2 (p)

is greater in the latter case. So we almost solve the conundrum. But only ‘al-
most’, because the maximum exponent found for (d, k) = (2, 4) is still negative.

I 5.1 Details

We parameterize the one-dimensional (2, 4) sequence generator by parameters
p2 and p3, which are the probabilities of emitting a 1 after a run of two zeroes
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and three zeroes respectively. At equilibrium, the fraction of 1s emitted is

p1(p2, p3) = 1.0/(4 − p2 + (1 − p2)(1 − p3)). (25)

The one-dimensional capacity is

C
(2,4)
1 (p2, p3) = p1(p2, p3)H2(p2) + f3(p2, p3)H(p3) (26)

where
f3(p2, p3) = (1 − p2)/(4 − p2 + (1 − p2)(1 − p3)) (27)

The exponent

C
(2,4)
2 (p2, p3) = 2C

(2,4)
1 (p2, p3) − H2(p1(p2, p3)) (28)

is plotted in figure 2 for a range of values of p2 and p3, alongside the corre-

sponding exponent C
(1,2)
2 (p) for the (1, 2) channel.

Evidently, to compute the true capacity C
(2,4)
2 , which is known to be at

least 1/8 (appendix B), we will have to take into account correlations between
neighbouring rows and columns.

I 5.2 Taking into account correlations

We can use the exact same method on a set of two-by-two tiles that obey the
rules of the (2,4) constraint.

We introduce 15 free parameters, solve for the principal eigenvector, and
find the entropy of the tile distribution and the capacity of the one-dimensional
channel. We then maximize the exponent with respect to the free parameters.
Unfortunately, while we do finally obtain a positive ‘bound’ on the capacity of
the two-dimensional (2,4) array, the results of this effort do not improve on the
known bounds on the capacity. Our optimized two-by-two tiles (described in
appendix A) established that the capacity of the two-dimensional (2,4) array
is ≥ 0.048. It is simple to establish, using four 4-by-4 tiles, a better bound of
1/8 = 0.125 (appendix B) (Kato and Zeger, 1999).

More sophisticated methods are needed to obtain tight bounds on the ca-
pacity of (d, k) arrays.
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I A Two-by-two tiles

Here are the details for the ‘bound’ on capacity of 0.04806. The one-dimensional
20×20 transition matrix maps from runlength states [r1, r2] to runlength states
[r′1, r

′
2], where ri counts the length of the current run of zeros in row i. When

we optimized this transition matrix, we found an equilibrium distribution that
emitted mainly the tiles with weight 1. The distribution over tiles was

(0.000, 0.251, 0.247, 0.251, 0.002, 0.247, 0.002).

0 0

0 0

1 0

0 0

0 1

0 0

0 0

1 0

0 1

1 0

0 0

0 1

1 0

0 1

The non-zero entries in the transition matrix were: T[1,0]→[0,2] = 1, T[0,1]→[2,0] =
1, T[2,0]→[1,2] = 0.535, T[0,2]→[2,1] = 0.535, T[2,0]→[0,2] = 0.465, T[0,2]→[2,0] =
0.465, T[2,0]→[4,2] = 0.0002, T[0,2]→[2,4] = 0.0002, T[3,0]→[1,2] = 0.535, T[0,3]→[2,1] =
0.535, T[3,0]→[0,2] = 0.465, T[0,3]→[2,0] = 0.465, T[4,0]→[1,2] = 1, T[0,4]→[2,1] = 1,
T[2,1]→[1,3] = 0.375, T[1,2]→[3,1] = 0.375, T[2,1]→[0,3] = 0.407, T[1,2]→[3,0] = 0.407,
T[2,1]→[4,0] = 0.218, T[1,2]→[0,4] = 0.218, T[3,1]→[1,0] = 0.0239, T[1,3]→[0,1] =
0.0239, T[3,1]→[1,3] = 0.468, T[1,3]→[3,1] = 0.468, T[3,1]→[0,3] = 0.508, T[1,3]→[3,0] =
0.508, T[4,1]→[1,3] = 1, T[1,4]→[3,1] = 1, T[3,2]→[0,1] = 0.33, T[2,3]→[1,0] = 0.33,
T[3,2]→[1,0] = 0.33, T[2,3]→[0,1] = 0.33, T[3,2]→[0,4] = 0.34, T[2,3]→[4,0] = 0.34,
T[4,2]→[1,4] = 1, T[2,4]→[4,1] = 1, T[4,3]→[1,0] = 1, T[3,4]→[0,1] = 1. The one-
dimensional capacity is 1.1165 bits, and the entropy of tile distribution is 2.0407
bits.

I B Four-by-four tiles

The capacity of the (d, k) = (2, 4) array is at least (log2 4)/16 = 1/8, because the
following four 4-by-4 tiles may be freely intermingled (Kato and Zeger, 1999).

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
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