
Opengazer: headtracker installation guide

Emli-Mari Nel
Cavendish Laboratory

University of Cambridge
Cambridge
CB30HE

en256@cam.ac.uk

25 May 2010

1 Introduction

This is the installation guide for the head-localisation component of Opengazer (see Figure 1).
Research has been done on each of the components depicted in Figure 1. We hope to make
more frequent software releases in the future. Note that at present, I am the sole researcher and
software developer on this project - feedback on emails may be somewhat slow depending on
demand.

2 Algorithm overview

The goal of this head tracker is to locate the largest face in the video stream (captured from a
file/camera) as fast as possible, on a frame-by-frame basis. The xy-coordinates from tracking can
already be used to type using Dasher. This can be done in 1D mode (e.g., from tracking just the
y-coordinates), or in 2D mode. Although much better results can be expected after the release of
our head-pose software, this software is already useful for fast face localisation.

The head-localisation algorithm described in this document is an elementary algorithm, based
on the Viola-Jones face detector [1]. We make extensive use of the OpenCV library [2]. Our
algorithm applies a simple autoregressive lowpass filter on the xy-coordinates and scale of the
detection results from the Viola-Jones face detector, and also restricts the region of interest from
frame to frame. The detection parameters have been determined according to our specific appli-
cation. The algorithm detects and tracks faces at 30 frames/s on 320x240 images, and can handle
rotations of up to 30 degrees (pitch, roll and yaw).

1

http://www.aegis-project.eu/


GAZE TRACKING 

xy screen coordinates)
(Compute mapping from eye images to

HEAD LOCALISATION

(Resize, filtering, image conversion functions etc.) 

LOW LEVEL IMAGE PROCESSING

POSE ESTIMATION

(Refine localisation and estimate pose)

FACIAL GESTURE SWITCH
(Compute yes/no events

from e.g., smiling)

CAPTURING 

(Capture from file/camera)

(A quick estimate of where the head is)

COMMUNICATION

Nomon, or Ticker)

(E.g., Dasher in button mode,

 Switch events

xy coordinates

EYE TRACKING

(Compute location of eyes)

xy coordinates COMMUNICATION

(1D or 2D)

xy coordinates

Dasher in continuous mode

COMMUNICATION

(1D or 2D)

Dasher in continuous mode

COMMUNICATION

(1D or 2D)

Dasher in continuous mode

Figure 1. Schematic diagram of Opengazer.

The algorithm has been tested on Ubuntu Hardy, Jaunty and Lucid using a Logitech QuickCam
4000 Pro USB webcam. The main dependencies include OpenCV (with python wrappers), Qt
(with Python wrappers), and Python. These are all crossplatform libraries. Hence, the software
should work on Windows, Mac, and Linux. This guide only includes installation instructions on

2



Linux. Any comments on successful installation on other platforms will be more than welcome
and added to our howto guide.

3 Capturing unit

Dependencies which need to be installed (tested on Ubuntu 10.04 (Lucid Lynx)):

• Python version 2.6.5-0ubuntu1

• Numerical Python version 1:1.2.1-1ubuntu1: apt-get install python-numpy.

• Python binding for OpenCV version 2.0.0-3ubuntu2: apt-get install libcv4, python-opencv.
(We had to install earlier versions of OpenCV from source, and fixed a few bugs before all
the necessary functionalities worked - this was specifically on Ubuntu Jaunty. This is not
necessary for version 2.0.0, as tested on Ubuntu Lucid Lynx).

• Python binding for qt4 version 4.7.2-0ubuntu1: apt-get install python-qt4.

Make sure that the Video4Linux driver is compatible with your camera (OpenCV relies on these
drivers), and make sure that your camera can capture at least at 30 frames/s. One way to verify
this is to

• use ekiga and selecting the V4L drivers (after apt-get install ekiga). Adjust the camera
settings, to make sure the image quality is as good as possible. Close ekiga and then,

• use the command setpwc -f 30 to capture at 30 frames/s (after apt-get install setpwc). The
images on my camera are then automatically resized to 320 × 240 to be able to capture at
this framerate.

4 The algorithm

The head-tracker interface is depicted in Figure 2.

• To start the program, type python tracker.py in a terminal.

• The program will automatically start to track the head. (Experiment to obtain the largest
range of motion).

• To activate cursor control, check the Activate cursor control check box (see Figure 2). Note
that the program takes control of the mouse - press Escape to quit this mode of operation.
Vary the x and y gain scrollbars to control how much influence the x and y translations will
have. For example, to control only the y mouse coordinate, set the x gain to zero. Doing
so, one can easily type in Dasher in 1D mode. Note that even though the cursor coordinate
results are noisy - it is already good enough to type in Dasher (where more sophisticated
smoothing occurs).

• Data can be recorded by pressing on the Record button (see Figure 2).

• The algorithm can be tested on pre-recorded data by clicking on the Display .avi button
and selecting an appropriate .AVI file. The algorithm will then operate on the selected file.

3



Figure 2. The head tracker interface.

• The rate at which the application is processing frames is displayed above the image (see
Figure 2). If this rate is significantly lower than the frame rate you have set on the camera,
then the program is not able to process images of the selected size rapidly enough on your
processor. So, to increase the frame rate of the application, you need to reduce the image
scale. Please note that the algorithm works best on 320× 240 images, at a frame rate of 30
fps, and reasonable lighting conditions (e.g., as shown in Figure 2).

• If you would like to test another camera, e.g., your laptop’s built-in camera produces low
quality images, and you would like to use a better webcam like the Logitech QuickCam,
select the appropriate device number . This device number can be found by connecting the
external camera to the usb port and reading the result from dmesg. The output from dmesg,
where the camera corresponds to device number 1, will look something like this:

[40869.993187] pwc: Logitech QuickCam 4000 Pro USB webcam detected.
[40869.993289] pwc: Registered as /dev/video1.

4



5 Current work, and upcoming releases

Project Description Status
Head tracking from sin-
gle frame

Tracking small motions when the Viola-Jones
tracker does not work. The user selects a re-
gion of interest to track (e.g., if the Viola-Jones
face detector doesn’t work the user can select a
rectangle around the user’s face/eyes to indicate
the region of interest). This is useful, for ex-
ample, if the user wears a head-band, or sits in
a wheel chair that covers the neck. This algo-
rithm will then track the region of interest from
frame to frame. This algorithm is prone to drift
as it is based on data from only one frame (the
selected region of interest). However, it is good
for tracking small motions.

Algorithm complete, prepar-
ing release code.

Facial gesture switch An algorithm has been developed to detect fa-
cial gestures after a quick training phase.

Algorithm complete, prepar-
ing release code.

Ticker An audio keyboard interface that can be used to
communicate through the facial gesture switch.
This program can accommodate noisy clicks
(e.g., false positives/negatives from the ges-
ture switch device), and is especially suited to
visually-impaired single-switch users.

Algorithm complete, prepar-
ing release code.

Head tracking larger
motions

Extending our current head trackers to detect
faces for larger pose variations (between 15 and
45 rotations).

Current research

Accurate pose estima-
tion

Refining the pose estimation after head locali-
sation - eye tracking is part of this research.

Current research.

Gaze tracking Tracking the direction of the gaze from images
of the eyes (i.e., after eye localisation).

Initial prototype by Piotr
Zielinski is available [3]. Re-
search on this topic will re-
sume at the end of June/July.

References

[1] P. Viola, M. Jones, Robust real-time face detection, International Journal of Computer Vision
57 (2) (2004) 137–154.

[2] G. Bradski, A. Kaehler, Learning OpenCV:Computer Vision with the OpenCV Library,
O’Reilly Media, Inc, 2008.

[3] P. Zielinski, Opengazer: open-source gaze tracker for ordinary webcams,
http://www.inference.phy.cam.ac.uk/opengazer/ (2007).

5


	Introduction
	Algorithm overview
	Capturing unit
	The algorithm
	Current work, and upcoming releases

