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Introduction
� This talk is about ad-hoc information retrieval.

� In other words, we are given...

– A collection of documents, � � ��� � � � � �
	 	 	 � .
– A query, � .

� Our task is to sort the collection in order of relevance to � .

� The exact definition of relevance is open to interpretation.
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Approaches To Information Retrieval
� There are a number of different approaches:

– Vector space methods
– ‘Traditional’ probabilistic models
– Language modelling

� Uses a statistical language model derived from the query and/or the
document.

� Relevance is defined based on the probability of the query / document
under the model, or by comparing models.

� This work extends the language modelling framework.
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‘Traditional’ And Vector Space Approaches
� A wide variety of different models, the most successful being BM25.

� Features common to many of the models in this category include:

– tf.idf like weighting—terms appearing often in the document are more
heavily weighted. Terms appearing in many documents are considered
less important.

– Document length normalisation—longer documents are more likely to
contain query terms by chance.
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Language Modelling Approaches
� Probabilistic models define a probability distribution over the set of all

possible texts.

� The majority of methods use bag of terms models—The terms in the
document are generated independently:

�� ��� � �
�

�� �
�� ��� � �

� Bayes’ theorem can be used to invert the distributions.
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Language Modelling Approaches
� There are three main approaches

– One language model based on the query, used to construct documents.
– One language model based on each document, used to construct the

query.
– Language models for both the query and the document, relevance

defined by comparing the two (KL Divergence)

� Here we train using the documents rather than the queries—more data
available.
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Smoothing
� Training a language model on a single document/query gives poor

performance. Models are smoothed by combining with a collection wide
model:

� � ��� ��� � � � �� �� � � �� �� ��� �	� 
 � �� �� � � � � �� �

� Smoothing techniques include Jelineck-Mercer, absolute discounting, and
(non-hierarchical) Dirichlet priors.

� � � ��� � is usually either the collection term frequency, or the document
frequency. It must be specified ab initio.
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The Dirichlet Distribution
� The collection model employed in this work will make use of the

hierarchical Dirichlet process. But we’ll begin by introducing a close
relative, the Dirichlet distribution.

� The Dirichlet distribution is a probability distribution over probability
distributions (conjugate to the multinomial).

� Samples are finite, discrete distributions, � � �� � � � � �	 	 	 � .
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The Dirichlet Distribution
� The distribution is given by:

�� � � � �

�� �� � � ���
�

�� � �
�	� 
�� �

� 
 If �
�� � � � � �

� Otherwise

� � � ��� � � � � �	 	 	 � is a normalised base measure, defining the mean of the
distribution.

� � is a concentration parameter—larger � values give samples more tightly
clustered around the mean.
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Draws From A Dirichlet Distribution
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Pòlya Urns
� We can sample explicitly from a Dirichlet distribution. Alternatively a

sample can be obtained implicitly using a Pòlya urn scheme.

� Samples are obtained by drawing from an urn containing � � � balls of
colour 1, � � � balls of colour 2 and so on...

� After each sample, the ball is returned, and a new ball is added of the
same colour.

� The resulting set of samples are distributed according to a single sample
from the Dirichlet distribution.
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The Hierarchical Dirichlet Distribution

u

m

m1 m2 m3 m4 m5

Each sample location has a
label, � � , giving the multinomial
from which it is drawn:

� � � � �� ��� �	 � 
� ��� 
 
 �

� 
 � � �� � �� � � � ��� � � �

� � � �� � �� � � � ��� ��� �
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Oracle Formulation
� The hierarchical version of the Pòlya Urn scheme is the Oracle framework

(otherwise known as a Chinese Restaurant Franchise).

� With some probability, new samples are generated using a Pòlya urn local
to the related multinomial.

� The remainder of the time, the oracle is asked, which has its own urn.

� The oracle is shared between all multinomials.
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Oracle Formulation
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The Infinite Limit
� The hierarchical Dirichlet process can be viewed as the infinite limit of the

hierarchical Dirichlet distribution.

� Importantly, distributions are still discrete, but now over a countably infinite
set of states. This allows (approximately) infinite vocabularies to be
modelled.

� You can’t sample directly from a hierarchical Dirichlet process, but indirect
samples can still be obtained using the oracle formulation.

� (In fact, it makes very little difference whether we use the finite or infinite
model, but the infinite model avoids the need to set the vocabulary size).
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The Collection Model
� The hierarchical Dirichlet process allows us to specify a generative model

of the collection.

� A ‘parent’ distribution over terms is first generated from a Dirichlet process
with a uniform base measure and concentration parameter� � .

� A distribution is then created for each document in the collection, using the
parent distribution as the base measure. and concentration parameter� � .

� Finally, documents are constructed by drawing terms from the
corresponding distribution.
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The Collection Model
� This is intuitively appealing, as it is reasonable to assume there is a

common distribution (e.g. ‘English’), about which the distributions for
individual documents can vary to some extent.

� � � governs the extent to which document distributions can vary from the
base.

� By making the base distribution a random variable, rather than fixing it from
the start, information can be exchanged between documents.

� (This is very similar technique to that used in many smoothed � -gram
language models).
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Information Retrieval
� To perform information retrieval, we assume that the query was generated

from the same distribution as one of the documents.

� Relevance is defined as the probability that the distribution used belonged
to the corresponding document:

� � � � � � � � � � � �� � � � � �� � � � � � � � � � � �

� We can use the collection model to find this via Bayes’ rule:

�� � � � � �� � � � � � � � � � ��� �� � � � � � � � � � � � � � � � ��� �� � � � � �� � � � � � � �
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Prior Distributions
� Note that we need to specify a prior over documents:

�� � � � � � � � � � � � � �

� In this work the prior is uniform—all documents are a priori equally likely
to produce the query.

� However, it is possible to specify an arbitrary prior, for example to
incorporate additional knowledge about the collection or the user.
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An Important Approximation
� Using the oracle formulation is fine if you know how many times the oracle

was asked when producing the data we have already seen.

� Unfortunately we don’t know this—we need to marginalise over all
possibilities, which is prohibitively expensive.

� To solve this problem, we assume that the oracle was asked the first time
that each term is seen in each document, and never asked subsequently.

� (This is essentially the same approximation as ‘update exclusion’ in
traditional language modelling).
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A Few Minor Points
� We make the assumption that the query terms are independent given the

collection and the query label.

� In other words, we ignore query terms which have been already seen. As
the query is typically much shorter than the documents in the collection,
this is fairly justified.

� The model was implemented using the LEMUR language modelling and
information retrieval toolkit.
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The Score Function
� Putting it all together...

�� � �
� � �� � � � 
 �

tf � �
� � �� � � � 


� 
 � � � �� �� �

Internal

�

� �

� 
 � � � �

df � �
� � �� 


�	� df ���
 ��� � �� �� �

Oracle

� �
� 
 �� � � � tf � �

� � �� � � � 
 � � �
� �� � �
� � �� 
 


in which the modified document frequency is defined as

� �� �� ���
df ��� �

�� df ����
 � � � �
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The Score Function
� Rearranging a bit, and taking logs

� � � � �� � �
� � �� � � � 
 
 � � � �

�
� 
 � � � �

� � � �� � �

tf � �
� � �� � � � 


� �� �� � �
� � �� 


� � const.

� Ignoring the constant, and summing over all query terms,

� � � � � � �

�
� � �� � �

tf � �
� � �� � � � 


� �� �� � �
� � �� 


� � � � � � �

�
� 
 � � � �
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Interpretation Of Individual Terms
� The individual terms in the score function can easily be interpreted

�� � � � �
tf

�
� � 
 �� � 
 �

�

� � mdf

�
� � 
 ��

�

Logarithmic tf.idf-like term weighting.

� � � � � �
�

�
� �� � � 
 Overall document length normalisation

� Both of these are commonly found in other methods, and arise naturally
from the hierarchical Dirichlet model.

� (Note that this can be regarded as a vector space model with an additional
‘global’ term).
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Experimental Tests
� Performance was compared with other methods on TREC-7 and -8 ad-hoc

tasks

� (50 queries, 528155 documents, binary relevance judgements)

� Other methods used were:

– BM-25
– Twenty-One (Per document language model)
– KL Divergence (Document and query language models)
– Hierarchical Dirichlet model
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Experimental Tests
� Full query text (title, description and narrative) was used.

� The Dirichlet parameters were set to� � � � � � � and� � � � � � .

� Preprocessing was limited to:

– Basic stop word removal
– Porter stemming
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Results

Method TREC-7 TREC-8
KL-Divergence 21.1% 25.7%
BM-25 21.5% 24.8%
Twenty-One 22.2% 26.2%
Dirichlet 23.3% 27.0%

Average non-interpolated precision over top 1000 documents.

The Inference Group 26 of 31



Phil Cowans Information Retrieval With Hierarchical Dirichlet Processes

Results
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Further Work
� Relaxing the bag of terms assumption ( � -gram models).

� Introducing collection structure (paragraph level, multiple collections etc.)

� Avoiding the oracle frequency approximation.

� Mixtures of hierarchies.

� Pitman-Yor processes.
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Conclusions
� The hierarchical Dirichlet process can be successfully applied to whole

collection modelling for information retrieval.

� By providing a generative model, the assumptions made by the model are
made explicit.

� Whilst making minimal assumptions, the model can recover tf.idf like term
weighting and document length normalisation.
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That’s All...

pjc51@cam.ac.uk

http://www.inference.phy.cam.ac.uk/pjc51/
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