Reinforcement Sailing

Philip Sterne
Department of Computer Science
Rhodes University

Gillian Hayes
Institue of Perception, Action and Behaviour
School of Informatics
University of Edinburgh

October 25, 2006

Abstract

This article examines applying reinforcement learning to sailing. We
give a model of a simple sailing boat. Standard tabular reinforcement
learning is shown to be ineffective in controlling this naturally continuous
model. We examine a method [Smith, 2001b] which adaptively quantises
both the state and action spaces and show that it has similar performance
to the tabular case but requires only a fraction of the resources. Finally
we examine the continuous method of wire-fitting [Baird and Klopf, 1993]
combined with advantage learning [Baird, 1995].

Our findings suggest that for tasks which require smooth actions in
response to slowly-changing states (such as sailing) the best results are
obtained by using a continuous method. Wire-fitting was found to have
a slower convergence rate, but might form a good starting point for a
yacht’s autopilot.

Keywords: [Reinforcement Learning, Sailing, Wire-fitting, Self-organizing
Feature Maps]|

1 Introduction

Sailing is a complex interaction of forces generated by moving through both
wind and water. Machine learning is the automated process of trying to see
patterns inherent in data. This article looks at using sailing as a test problem
and applying several reinforcement learning algorithms to it and is a shortened
version of [Sterne, 2004].

The sailing is modelled using a computer simulation, and it is not claimed
that the final solutions found would be applicable to a real-world yacht. More-
over current sailing regulations forbid the use of automated systems in setting
the sails, however there is still scope in creating an autopilot for a yacht.

In [Adriaans, 2003] a description of such an autopilot is given. This system
has a hybrid architecture in which various sailing rules are provided by an expert.
The system then learns the optimal parameters for these rules. Adriaans claimed
that the task of sailing is a difficult one, with a vast array of sensor information
making convergence of learning algorithms very slow.

This article argues that Adriaans discarded reinforcement learning prema-
turely. Instead of approaching the problem as a monolithic reinforcement learn-
ing problem, it should have been subdivided into behaviours corresponding to
Adriaans’ agents, several for each different time-scale. Reinforcement learning
could then be applied to those behaviours which would benefit from such an
approach!. It would have then been possible to learn each problem in a rea-
sonable amount of time. Moreover a computer simulation could provide a good
first approximation of the policy to be learnt.

This article aims to explore one such layer in the architecture - the basic
sailing layer. In this layer, we avoid complications such as obstacle avoidance,
and obtain a starting point for adding other layers onto this architecture.

However sailing is a task which naturally requires continuous actions, and
reinforcement learning for continuous states and actions only has weak guar-
antees for convergence. Moreover the rate of convergence is normally much
slower than tabular reinforcement learning. This article explores the trade-offs
in several methods while gradually increasing the complexity of the solution.

1.1 Structure of this article

The following section provides some of the related work in the field of continuous
state and action reinforcement learning, as well as examining Adriaans’ system
in slightly more detail. Section 3 provides a brief introduction to sailing and
presents a model of a sailing boat, along with a hand-coded strategy. Section
4 examines the performance of the standard discrete methods of reinforcement
learning when applied to the model and discusses their limitations. In section 5
we present a method of adaptively quantising the state and action space using
two separate self-organising feature maps. In section 6 the final method of using
a neural network to predict the reinforcement received. Finally in section 7 we
provide a conclusion and discuss the findings of this research.

We are not claiming that all such behaviours are appropriate candidates for reinforcement
learning, for example the rules for determining right of way would be better encoded in a
symbolic form, this would give one more confidence that all possible variations would be
correctly obeyed.

2 Related Work

In this section we review the relevant work done on the RoboSail project which

looks at applying different machine learning techniques to sailing. This article

assumes the reader is familiar with Reinforcement Learning, if not [Sutton and Barto, 1998§]
or [Kaelbling et al., 1996] are both excellent introductions to the subject.

2.1 The RoboSail project

Machine learning techniques have been applied in the domain of sailing already.
In [Adriaans, 2003] the application of reinforcement learning to sailing was ex-
amined, however they reported very slow training times in [van Aartrijk et al., 2002].
Adriaans also argued that different aspects of sailing required different time
scales of evaluation. As an example: while steering the boat requires sub-second
reaction times, other tasks such as navigation only need to be evaluated hourly.
This discouraged the authors and they instead pursued a hybrid approach.

In their approach, basic knowledge of sailing was used to form rule sets, each
operating on a different time-scale. The rules were of the form:

If the apparent wind angle? is between x and y then the sail
should be set at z.

where z, y and z were defined by fuzzy rules. The initial estimates for z, y and
z were supplied by expert knowledge and then fine-tuned through experience
which took the form of a large database containing actual sailing episodes.

[Adriaans, 2003] split the task into four main agents, each operating on a
different time-scale. They are as follows:

e Skipper - This agent is responsible for tactical decisions, it examines
weather maps and tidal information to establish a goal way point. (This
process is only partly automated, and requires input from the human skip-
per as well.) The Skipper makes decisions roughly every 3-6 hours.

e Nawigator - This agent takes the goal way point set by the Skipper and
the boat’s current position, it then decides on a compass heading that is
to be followed to best obtain this way point. Decisions at this level are
made every 15-30 minutes.

o Watchman - The Watchman uses the compass heading it is given as well as
the current heading to determine a rudder target. This decision also takes
into account other factors such as the current wind speed, and sailtrim?®.
At this level a decision is made every second.

e Helmsman - The Helmsman accepts the rudder target and the current
speed of the boat. It outputs the force to be exerted by the motors. To
achieve smooth control this is run ten times a second.

This article explores using reinforcement learning in what would be the
Watchman layer. We use only a simple state description under the assumption

2The apparent wind is the difference between the true wind and the boat’s velocity and is
the wind experienced on the moving boat.
3The sailtrim refers to how the sails are set

that other layers could be added in a subsumption-style manner [Mahadevan and Connell, 1992]
to modify the original behaviour when necessary. In this manner it is possible
to use reinforcement-learning in an incremental fashion.

3 The Sailing model

In this section we briefly introduce the basics of sailing. We go on to describe
in detail the model of a sailing boat which is used in the reinforcement, learning
algorithms. We describe the state representation and the performance of a
hand-coded controller.

3.1 Introduction to sailing

For our model only two parts of a boat are relevant: the sail, and the keel
(see Figure 3.1). Both the sail and the keel can be viewed as wings in different
media. Due to wind (or tides) these two media are moving relative to each
other and this creates flow over both of the wings. If controlled correctly this
enables a boat to be maneuverable and travel in a given direction, as long as
the direction is not directly into the wind. For a longer description, as well as
details of another sailing model please see [Sterne, 2004].

Figure 1: A symbolic view of a boat from above.

Sailing is a non-holonomic control problem, as we are unable to turn on the
spot. This makes it a difficult problem to learn how to approach a target. In this
article we ignore the problem of approaching a target and instead concentrate
on sailing in a given direction.*

3.1.1 Continuous states and actions?

As a control problem, sailing warrants continuous states and actions. There are
several reasons for this:

e In an ideal solution the rudder is to be used as little as possible; every
time the rudder is used, it acts as a brake, slowing the boat down.

e The lift generated by the sail is very sensitive to the angle of attack.
Changes of less than 5° can result in a significant loss of lift (see figure
3(a)), and the boat will sail a lot slower. If the variables were to be discrete
and have sufficient resolution the space requirements would be huge.

While both the rudder and sail require fairly sensitive control, we can still hope
to learn the correct actions in a given context. This is because the performance
varies smoothly; as we approach the optimal action the reward increases in a
fairly linear manner. However we will still have to deal with the problem of
delayed reward; for example in both of our models if we are currently sailing
slowly away from the target then the best action is to build up speed so that
the rudder becomes effective, and we are then able to turn and sail directly
towards the target. A short term solution would rather use the rudder as much
as possible to slow down the boat, so that we sail away from the target as slowly
as possible.

41t is later shown, if the controller is sufficiently good at sailing in a target direction, then
it is able to sail a course, which involves approaching several targets.

3.2 Timin’s Model

The model was designed by Mitchell Timin for use in research into evolving
a neural network controller[Timin, 2006]. Originally the sailing model had to
learn to sail around a circular island, however we modified the task so that
it had to sail in a given direction. The AnnEvolve group was able to evolve
a controller which sailed around the island in 90% of the trials. The original
model also had a shifting wind, which made the task more complex. We chose
to use a steady wind model, since we can rotate the boat and target direction
until the wind is aligned to north.

Figure 2: The AnnEvolve Model. ay and «; stand for the angle of attack in the
sail and rudder respectively.

As shown in Figure 2 the heading of the boat is derived from the direction of
the velocity of the boat (i.e. the boat’s drection is found by adding the velocity
vector to the keel angle). The boat changes its heading through the use of of
the sails and keel, which both generate forces parallel and perpendicular to the
path of the boat. The forces change the velocity, which in turn changes the
heading of the boat. An unrealistic side-effect of this is that the boat is easily
maneuvered at low speeds (since the direction of the velocity can change quite
drastically if there is only a small amount of momentum). The state and action
variables are as follows (with the ranges given in brackets) :

State Action

Speed [0,0.5] [Rudder [-Z,Z]
Relative wind [—7, 7] | Sail [-Z,2]
Directional error [—, 7]

The Speed is the euclidean norm of the velocity. The Relative wind is the
difference in angles between the target direction and the relative wind measured
in radians. The directional error is the difference between the heading and the
target direction. The state representation is realistic in the sense that this
information would be readily available on a sailing boat.

The Rudder is measured as the angle of attack (i.e. an angle relative to
the moving water). The sail’s angle of attack is specified with respect to the
apparent wind, however with a larger range.

The angles of attack are converted into forces parallel (drag) and perpendic-
ular (lift) to the wind and water (see figure 3(a). The drag and lift coefficients
are calculated using the polar diagram shown in 3(b) and are multiplied by the
sail area (or rudder area). The force is then:

F=cxmxV?xA
where:
e c is the coeflicient (lift or drag)

e m is a coefficient representing the density of the medium through which
the sail/rudder travels. For air this is 1.226 kg/m?, water is 1000 kg/m?>.

e V1 is the velocity.

(a) (b)
As The

the co-
wind ef-
is fi-
di- cients
vertedof
by lift
the and
sail, drag
lift as
and de-
drag pen-
are dent
gen- on
er- the
ated. an-
gle
of
at-
tack

(@)

Figure 3: Calculating the resultant forces.

e A represents the area of the sail or rudder.

(from [Marchaj, 1964] page 70).

To transform the angles of attack into actual forces estimates of the boat’s
measurements were needed. We modified Timin’s original figures to give a
model which was slightly more maneuvrable (by lowering the mass). The mea-
surements were as follows:

Measure Measurement
Sail Area 100m?
Rudder Area | 6m?

Boat Mass 10, 000kg

Initially we had hoped to be able to learn the tacking behaviour® required
for sailing into the wind, by simply specifying a direction which was too close to
the wind. Unfortunately none of the learning methods surveyed could handle
this problem. All would be able to head somewhat into the wind, however the
drag of the wind would continually slow them down, until their velocity was
away from the target. Since heading is dependent on velocity, the boats would
end up sailing away from the target. In some cases they might recover, and
head towards the wind again however they would be losing ground, rather than
gaining ground. To overcome this we ensured that the required headings would
never be pointing less than 45° into the wind.

5When the target is almost directly into the wind then a boat cannot sail to the target
directly. Instead it sails roughly 45° to one side of the wind and then turns (known as ‘tacking’)
to sail on the other side of the wind.

3.3 Mathematical updates of the dynamics and reward
signal

The update is based on a second order Adams-Bashforth update (see page 295
in [Burden and Faires, 1997]). If trying to find a solution to the problem:

An approximate solution can be given in the form:
v(xy) = v(xi—ar) + AL(L5f(x) — 0.5 (x4—at))

Since force is proportional to acceleration we can use this formula to calculate
the velocity. We can also use this formula to calculate the updated position
from the velocity. The update equations are as follows:

Tit1 = X;+ (15:171 — 0.5i}i,1)At

with z;, ©; and &; representing the position, velocity and acceleration respec-
tively. To calculate the acceleration the force vectors are simply summed (& =
%1, Z]‘ f J)

At first glance the simplest and most intuitive reward function would be
to give a reward proportional to the distance covered in the target direction.
However in the above formulas the position is updated using the old velocities.
Thus the reward received would be the same for all actions in a given state and
only the next state would receive different rewards. To avoid this we chose to
use the directional velocity as a reward signal which still gives us a useful reward
signal, with the advantage of having immediate feedback.

3.3.1 Hand-coding a controller

In order to provide a baseline performance we hand-coded a controller. This
proved quite time-consuming as changing the policy often had unintended con-
sequences. This was in part due to the simplifications the model made which
made the task less intuitively like sailing. Nevertheless we obtained a reasonably
simple controller which had good performance.

The actions of the controller are calculated as:

as <= —0.4 xRW
{ 0 if ||DE|| < 2

(679

! sign(DE)DQfEé2 otherwise.

where DE stands for Directional error, and RW stands for the relative wind. By
using the rudder only when the directional error was large we were able to sail
quite fast, and still steer the boat using the sail. While this controller is not

optimal (it does not use speed information) it appears to be close to optimal.

3.3.2 Evaluating performance

To test the performance we sailed a simple triangular course with it, see figure
4(a). In this course sailing from buoy 1 to buoy 2 is directly into the wind,
which requires tacking. While our controller is capable of doing this, it does not
do it particularly well if one notices how far away from the wind the boat has
to sail. Also in moving from buoy 2 to 3 the controller does not sail a straight
line.

However the boat is able to maintain a good speed, while sailing the course.
This is shown in figure 4(b). To obtain this graph we randomly started the boat
in 100 random positions far away from a target, the reward for 100 simulation
steps was recorded. The average distance covered towards the target direction
in each simulation step is plotted.

(a) (b)
A The
trace av-
of er-
the age
routeper-
fol- for-
lowedmance
by of
the the
hand-hand-
codedcoded
con- con-
trolletroller
The

X’s

rep-

re-

sent,

the

tar-

get

buoys

for

sail-

ing

a

course.

Figure 4: The hand-coded performance for Timin’s model.

Figure 5: Three different types of eligibility traces, from left to right: a spatial
trace, a temporal trace and a spatio-temporal trace. Eligibility is represented
through shading; darker states are more eligible (after [Thompson, 2002])

4 Discrete Methods

In this section the normal reinforcement learning method of dividing up the
state space is examined. We also test the spatio-temporal eligibility trace. It is
shown that these naive approaches result in an extremely slow learning rate and
are rather wasteful. The trace does improve the performance noticeably but is
still a poor method for this task.

4.1 Spatio-temporal traces

Here we examine the use of a spatio-temporal eligibility trace [Thompson, 2002].
The standard temporal trace [Singh and Sutton, 1996] awards eligibility to states
which have recently been experienced, while a spatial trace awards eligibility to
states that are similar to the experienced state. A spatio-temporal trace simply
awards eligibility to states similar to those recently experienced (see figure 5).
In this way we can hope to gather a broad overview of the task, early on, with-
out having to experience every state. As the trial progresses however we will
want to narrow the spatial aspect of the trace to enable a higher resolution of
the task.

To implement the spatio-temporal trace we included the idea of a neighbour-
hood in the update equation of the standard eligibility trace to:

elig(i, j) < max(neighbour(i, j), Ayelig(i, 7)) (1)

We implemented the eligibility trace in this manner as we felt this was faithful
to the original theory of replacing traces [Sutton and Barto, 1998]. Our method
has the advantage of degenerating into a standard replacing trace as the spatial
eligibilty shrinks. Our neighbour function was a Gaussian curve centred on the
closest discrete state (with a maximum value of 1).

4.2 The Naive Method

Due to the additional complexity involved in a continuous reinforcement learn-
ing framework when researchers are faced with a naturally continuous problem
many simply convert it to a discrete problem. However the performance can be
severely hampered as a result of many things:

e Too coarse a discretisation. If the continuous variables are sectioned too
coarsely then it is possible that many conceptually distinct states which
require separate actions are now mapped to the same discrete state. This
will result in poor learning as there will be a large variation in the rewards
received for each action.

e Too fine a quantisation. However if the variables are sectioned too finely
then there is a problem with the ‘Curse of Dimensionality’. Moreover it
is highly unlikely that each state will be experienced a sufficient number
of times as the size of the state space explodes exponentially.

10

e The wrong offset. Even if the discretisation has partitioned the state
space into correctly sized units there is no guarantee that these states will
be nicely aligned with significant changes in the reward function. If the
boundary condition of conceptually different states lie in the middle of a
discrete state then that state would receive conflicting reinforcement.

While we could use expert knowledge to quantize the states in an intelligent
manner to help lessen these problems, we chose to first examine tabula rasa
learning’s performance. As a further research direction it would be interesting
to see how much better the methods surveyed here would perform with the
incorporation of expert knowledge.

4.2.1 Experimental Setup

To learn the Annevolve task the state-action space was sectioned as follows:

e 12 states for the relative wind equally spaced in [—7, 7].

12 states to encode the directional error equally spaced in [—m, 7.

5 states for the speed ([0.05,0.5]).

5 states for the rudder action ([—-7, 7).
e 5 states for the sail action in ([, 7]).

This resulted in a total of 18000 state-action pairs (experiments were carried
out with finer quantization, but the performance did not improve significantly).
Standard temporal difference learning (TD(\)) was implemented with the pa-
rameters as follows:

Parameter | Value

A 0.9

vy 0.9

€ 0.9 x 0.9995" 4+ 0.05
o 0.5 x 0.9995! + 0.3

where € represented the probability that an exploratory action would be taken,
and « represented the weighting that was given to new experience. These pa-
rameters have been shown to be fairly robust in terms of performance so we did
not attempt to optimise them extensively. The decaying formulas used for «
and e were found to be useful in transitioning gracefully from an initial value to
a final value.

4.2.2 Results

We tested the standard tabular method as well as the method involving spatio-
temporal traces on Timin’s model. We first evaluated the learning speed for both
methods. This was done by training each method for a total of 30000 steps but
evaluating the performance after every 1000.% (The performance evaluation was

6This experience was broken up into shorter episodes lasting 50 simulation steps, which
ensured that most of the state space was experienced. Thus performance was evaluated after
every 20 episodes.

11

the discounted reward from 50 episodes; each 50 steps long with no exploratory
moves.) This was repeated 15 times and the results are plotted in figure 6(a).
From this we can see that the spatio-temporal trace has increased the learning
rate greatly; the performance plateaus after roughly 15000 steps. [Smith, 2001a]
reports that neighbourhood learning increased the rate of convergence by a fac-
tor of six, from this diagram it seems that spatio-temporal learning has an even
faster rate; the performance after 1000 steps is roughly equivalent to the final
performance of the standard method after 30000. However if the experiment is
run for a sufficiently long time then the standard method eventually increases
its performance to the same level.

The final performance was also examined in more detail. When evaluating
the performance of both methods exploratory moves were turned off and the
simulation was run for 100 steps. This was repeated 100 times and the average
reinforcement was recorded. The results are plotted in figure 6(b). From this
we can see that using a spatio-temporal trace performs best with an average
reward consistently greater than 0.2.

Qualitatively the controller was able to sail reasonably efficiently away from
the wind. The controller was able to marginally sail into the wind, however was
unable to tack when the course changed direction. This would result in the boat
drifting slowly away from the target.

However we may improve things by only focusing on the regions which are
likely to occur during normal sailing. This leads to adaptive quantisation.

12

(@) (b)
Im- A
provedcom-
per- par-
for- -
manceson
dur- of
ing the
learn- typ-
ing. i-
cal
per-
for-
mance
of
TD(N)
learn-
ing
with
and
with-
out
spatio-
temporal
el-
i-
gi-
bil-
ity
traces
af-
ter
learn-
ing
for
30000
sim-
u-
la-
tion
steps.

Figure 6: Discrete performance

13

5 Adaptive discrete reinforcment learning

In the previous section static quantisation of the state-action space was ex-
plored. In this section we present a method of dynamic quantisation taken from
[Smith, 2001b]. We also explore whether a change of state representation affects
Smith’s method.

5.1 Self-organizing feature maps

Self-organizing feature maps (SOFM’s) are an unsupervised form of learning[Kohonen, 1997].
They were developed by Teuvo Kohonen. They have been used in many areas

(A recent bibliography of the applications of Kohonen nets lists 5000 articles

[Kaski et al., 1998] [Oja et al., 2003]).

SOFM’s are used to discover properties of an input distribution. For this
paper we will use two SOFM’s: one to discover the frequently visited states in
the normal course of sailing, and another to find useful actions.

A SOFM consists of several nodes joined together in a specified topology.
When an input is presented to the SOFM the winning node is identified. This
node is then moved closer to the input, all of the winning nodes neighbours
are also moved (but not quite as much). This simple algorithm allows a simple
representation (the specified topology) of a possibly complex input distribution.
This property of SOFM’s is exploited in the following section on Smith’s method.

5.2 Smith’s method

In [Smith, 2001b] the tasks attempted needed only a one-step return, such as
controlling a Khepara robot and shows that this method is able to learn an ade-
quate controller for such a task. The sailing task is considerably more complex,
and represents a good test of the scaling properties of the algorithm. However
since this task is more complex the spatio-temporal trace from section 4 is used.
In this way neighbouring state-action pairs can share the reward.

The algorithm uses two Kohonen Self Organising Feature Maps (SOFM’s).
The first SOFM is used to map actions and the second is inputs. A Q-table is
maintained as a link between states and actions. The algorithm is as follows
(taken from [Smith, 2001a]):

1. Initialise the input map and action map to small random values.

2. Present the input map with the current state vector and identify the win-
ning unit in the input map (s;).

3. Identify a unit in the action map as follows:

arg max,(Q(s;,a)) with Pr(1 —¢)

action = { Random Action with Pr(e)

4. The action chosen is calculated by adding some exploratory noise to the

weights of the winning node of the action map.

5. Receive reinforcement r and next state s’ from the environment.

14

6. If r +ymax; Q(s},a;) > Q(sj,a;), then the perturbed action appears to
be an improvement over the proposed action, so update the action map
towards the perturbed action.

7. Update all Q-values towards the corrected return proportionallly to the
Q-learning rate and the product of the two neighbourhoods (of the two
SOFM’s) :

elig(s,a) «— max(Nstate($) Naction(a), YAelig(s, a)) (2)
Q(s.) — Q(s.a) + a(t)elig(s.a) [+ymax Q(s'.a') ~ Qs.a)

8. Update the input map towards the state just seen according to the usual
SOFM update rule.

9. Goto instruction 2

5.2.1 Adaptive Discretisation

Smith’s method is attractive for several reasons:

e Adaptivity The most important reason is that the discretisation is adaptive
in both the state and the action spaces. This is important in learning to
control a sailing model as it is not clear which states will be experienced,
in using the model. It also avoids many of the difficulties discussed in the
beginning of this section.

o Simplicity The second reason for choosing such a method is for its con-
ceptual simplicity. It is easy to understand and implement.

o Distribution sensitive The SOFM honours the input distribution, this al-
lows a higher resolution in state-space regions which are experienced more
often. While there is no guarantee that this is where the resolution is
needed it does seem reasonable to apportion resources this way.

Comparing the update equation 2 (on page 15) with equation 1 (on page 10)one
notices how the product of the neighbourhood functions of the state SOFM and
the action SOFM, forms the spatio-temporal trace. In [Smith, 2001a] this is
called neighbourhood Q-learning, however the temporal aspect of the trace is
not included in that article.

5.3 Representation of the state

An advantage of using self organising maps is their dimensionality reduction.
They automatically map onto any manifold present in the state space, which
allows us to use a better representation of the state space. Rather than using the
angles directly we are now able to take the sine and cosine of the angles. Using
this representation angles slightly less than 7 appear close to angles slightly
greater than —mr, if one uses the plain angle then these angles appear far apart.
While the size of the the state representation has increased, there is no change
in the intrinsic dimensionality. Respecting any manifold present in the state
space could speed up learning significantly.

15

Figure 7: A comparison of different state representations on the learning per-
formance (Timin’s model)

Unfortunately Smith’s method requires the setting of many parameters. The
interested reader is advised to consult [Sterne, 2004] for a full description of the
parameters (fortunately the performace of Smith’s algorithm appears robust for
most of the parameters).

In order to ensure the SOFM’s covered the entire state space they were
trained in short episodes (50 steps long) and we randomly reinitialised the model
afterwards. This ensured that large parts of the SOFM did not converge to cover
a single episode, which would occur if many similar states were shown to the
SOFM. The experiment was repeated 15 times and the averaged results are
shown in figure 7.

It is impressive that the method has learnt reasonable control of Timin’s
model with one fifth of the number of states as in the discrete case. We did
experiment with using larger state space maps, however the performance did
not improve significantly and the training times were noticeably longer.

From figure 7 we can see that there is no increase in the performance when
using the sine and cosine of the angles rather than the angles themselves. This
is due to the fact that the best place to introduce a discontinuity would be
between 7w and —= since this is the angle at which the best direction to turn
changes. By breaking the angle in the best place there is nothing to be gained
from using a sine and cosine representation, but it is reassuring that there is
nothing to be lost either.

Qualitatively the performance is identical for both representations. The boat
has learnt to sail downwind very well, however it battles to sail even slightly
above the wind. The controller’s actions are somewhat jerky and this definitely
reduces its effectiveness (since it slows down the boat considerably). While there
are ways to interpolate outputs in a SOFM, [Aupetit et al., 2000], it is not clear
how to apply reinforcement learning to such interpolated results. It is quite easy
to think of scenarios where such interpolation could lead to disastrous results.
For example if one is trying to learn obstacle avoidance in a mobile robot then
averaging a left turn and a right turn could result in a collision. This suggests
a naturally continuous method might be best.

16

6 Continuous-state Reinforcement learning

In this section we present the final method examined for sailing control. Wire-
fitting [Baird and Klopf, 1993], uses a function approximation scheme and an
interpolation function to approximate the value function.

One of the main problems in extending Reinforcement Learning theory to
continuous states is the problem of divergence. For problems with continuous
states some sort of generalization is required. However many of the theoretical
guarantees rely strongly on each state being experienced many times, not merely
similar states. Thus many of the guarantees on convergence fall away, and in
some cases divergence has been observed.

Divergence in some cases hasn’t stopped researchers from exploring these
methods. Many researchers have tried using a function approximator to estimate
the value of the current state. The best known success is Tesauro’s Backgammon
player (TD-Gammon) which has learnt to play at grandmaster level. 7 This
was achieved through repeated self-play with the information used to update a
three layer back-propagation network. See [Tesauro, 1995] for more details.

However in [Boyan and Moore, 1995] several straightforward examples are
shown which reliably diverge using a variety of different function approximation
schemes. The simplest case of proven divergence is Baird’s counterexample
[Sutton and Barto, 1998]. In this case the estimated value can diverge, even
though the linear function could represent the true value exactly. The lack of
convergence for this simple case, is worrying and there are other cases where
divergence occurs [Baird, 1999].

The problem of divergence also partly occurs as a result of bootstrapping.
This refers to the process of learning a new estimate of a state based on the
estimates of other states. In [Thrun and Schwartz, 1993] reasons are given why
bootstrapping can lead to divergence. In this paper they consider a reinforce-
ment learning problem where reward is given only at the end of an episodic task.
As a result the values of the initial states don’t differ by much, as the decayed
future reward is small. Taking a non-optimal move will result in only a small
penalty. If the function approximation scheme introduces random, unbiased
noise, then under certain conditions we can expect Q-learning to fail.

This is as result of the max operator which introduces bias into the unbiased
noise. However this biased noise can easily dominate the useful information. In
this case the network is expected to fail, and will not improve beyond a random
controller.

6.1 Advantage updating

The problem of overestimation increases when the values of the possible ac-
tions don’t differ by much. In this case even discrete Q-learning suffers from
long training times. In [Baird, 1993] Baird argues that as a control problem
approaches continuous time (i.e. the time between action selection decreases)
then the cost of choosing a suboptimal action approaches zero. This is because
the change in states becomes vanishingly small for any given action (in con-
tinuous time). As it does so the time required to train a discrete controller

“While Backgammon is not a problem involving continuous states or actions the size of the
state-action space is prohibitively large, thus requiring the generalisation needed for continuous
reinforcement learning.

17

increases exponentially. In [Baird, 1993] a solution is proposed where one learns
‘advantages’, which in essence represents the derivative.
Mathematically, as
lim Q(s,a max Q(s,a’
Jlim Q(s,a) — maxQ(s,)

which implies that V, ,eaQ(s,a) — Q(s,a’) — 0, differentiating between the
optimal and worst possible action becomes impossible. However if we define an

advantage as:
. Q(s,a) —maxy Q(s,a’) 3
At—0 At 3)
where At is the time step then it does not converge to zero for all actions in the
state. Advantage updating has been shown to have constant convergence time in
simulations where the time step approaches zero [Baird, 1993]. Moreover since
the advantage function does not approach zero for all actions there is more
chance of representing it reasonably accurately with a function approximator
(although divergence is still possible).

However one consequence of equation 3 is that the maximum advantage
in any state is zero. This makes it hard to determine which states are more
desirable than others. An estimate of the next state’s value is also required to
update the advantage estimate. Originally Baird proposed to learn the value
function as well as the advantage function. However it is possible to modify
the rule so that the maximum value is unchanged. We discuss this form of
advantage learning in more depth in section 6.4.

6.2 Residual Methods

Residual methods are promising as they are only slightly different formulation of
the problem, and they have convergence proofs. We briefly sketch a derivation of
the formula below, by considering the Q-learning update (the interested reader
should consult [Baird, 1999] and [Baird, 1995] for a more in-depth derivation).

Assume we have a parameterisation of the Q-values as Q(z,u,w) where w
is a vector of weights. A direct method attempts to minimise the temporal
difference error directly:

Aw=a (R +7max Q' u') — Q(x,u)) % (4)

however this can lead to instability and divergence as mentioned earlier. Rather
we try to minimise the mean squared Bellman residual which is defined as:

1 2
E = EZ‘T [(R—i— 'ynia/xQ(x’,u'» — Q(a:,u)}

This gives rise to the residual update:

Aw =« [R +ymaxQ(z',u') Q(xw)} [aawwqf}x Q' u") — ai}@(%u)}

For this update convergence can be guaranteed to a local minimum of the Bell-
man residual. However the convergence can be very slow, to overcome this Baird

18

Figure 8: The wire-fitting architecture (after [Baird and Klopf, 1993]).

proposes a weighted average of 4 and 5. If one is careful with the weighting fac-
tor then one can guarantee that the update is never away from the direction
suggested by eqation 5. Thus the guarantee of convergence still holds.

This learning rule can be applied to other forms of learning such as advantage
learning. In the next section we use a neural network trained on targets which
have been modified using a form of the above update, but modified to work on
advantages rather than @-learning.

6.3 Wire-fitting

Wire-fitting[Baird and Klopf, 1993] has been succesfuly used on a similiar task
: controlling an autonomous underwater vehicle [Gaskett et al., 1999b]. Wire-
fitting requires a function approximator (such as a neural network) to estimate
several control actions(u;’s) as well as control values(y;’s). A control action is
a potential action for a given state, in this article the actions consist of setting
the sail and setting the rudder. Each control value is an estimate of the reward
received for taking the corresponding control action. The neural network maps
the given state into estimated control values and control actions. These control
actions and control values are fed into the interpolation function:

f(u) = lim S vi % [llu — wgl| + c(maxg ye — y;) +¢] " o
e—0 Zz[Hufrth +C(Hlanyk 7y1',)+6}_1

by using this interpolation function we are able to estimate the reward received
from actions other than the control actions. Equation 6 has some useful prop-
erties for reinforcement learning:

e No wild predictions. If the point encountered is far away from known
points then the expected value is simply the average of the control values.
This prevents any unrealistic extrapolation.

e Analytical Maximum. Since any point away from the control actions is
a weighted average of the control values, the maximum of the function
must occur at one of the actions. Moreover the form of the interpolation
guarantees that that maximum will pass through the maximum control
value. This means that finding the maximum of the function does not
require any evaluations of the function, one can simply use the maximum
control value.

o Differentiability. This function is differentiable, which allows the gradient
of the error to be calculated and passed back to the function approximation
scheme. This gradient can then be used to calculate new targets to train
the function approximation scheme on. Since the gradient of equation
6 has a complicated form it is not presented here. It is not technically
difficult to derive however and the interested reader is advised to read
[Gaskett et al., 1999a] for more details.

Since the control values and actions are the output of a function approximator
they are smooth functions of the state. Since the policy is simply the action

19

with the maximum control value we can see that the policy action is also a
smooth function of the state. However taking the maximum introduces discon-
tinuities into the policy action at decision boundaries where the action with the
maximum value changes. This is a good class of policies, as the crisp decision
boundaries avoid problems with averaging intermediate values, for example in
a collision avoidance task either a left turn or a right turn might be acceptable
but averaging them results in moving forwards which could lead to a collision.

A potential disadvantage is that the formula relies on the norm. For high
dimensional spaces the norm behaves non-intuitively [Bishop, 1995] ®. This
would have the result that the interpolated function would be near the mean
for most input values, rendering the interpolated function useless for very high-
dimensional surfaces.

Added flexibility comes from the fact that architecture does not place any
restrictions on the type of function approximation scheme. For this task we used
a back-propagation neural network [Bishop, 1995], but other types are possible
such as lazy learning or radial basis functions.

An outline of the algorithm we followed:

1. Initialise the neural network weights to small random values.

2. Calculate control actions and control values by presenting the current state
to the neural network.

3. Get the action

.| wu; where ¢ = argmax;(y;) with Pr(1 —e¢)
action = { Random Action with Pr(e)

4. Add some exploratory noise to the action.
5. Take action and observe reward r and next state s'.
6. Calculate the reward predicted by equation 6.

7. Calculate the gradient of the error and use this to update the network
weights.

8. Train the network on the updated control actions and values.
9. Goto step 2.

We also found it necessary to bound the targets for the control actions and
action or else they would sometimes diverge. This is in part due to the gradient
calculation updating all the control actions when it really only needs to update
the nearest few. As an example if the sampled action has a lower reward than
predicted it will push all the control actions which are above it (i.e. have a
greater control value) away and lower them slightly. If they are already at the
bounds of the action space it makes sense to restrict them, since they will not
contribute to the surface otherwise.

8Bishop gives an exercise showing that the proportion of volume that a d-dimensional
sphere contained in a d-dimensional cube tends to zero as d increases. As a control action
only has a spherical region of influence (from the norm) this shows that it too suffers from
problems of dimensionality although to a far lesser extent than most other methods.

20

6.4 Advantage learning

Since wire-fitting is designed for continuous state and action methods, it is
natural to include advantage updating which can speed the convergence of near-
continuous time learning by orders of magnitude [Baird, 1993]. If a problem
requires continuous states and actions it is normally because fine-grained control
is required. Advantage updating emphasizes the differences between states by
a factor proportional to 1/At (see page 17 for more details).

In the original paper on advantage updating, it was proposed that one learn
both a value function and an advantage function which is then normalised so
that the maximum value for the advantage is zero in all states. However it is
possible to modify the formula so that one does not need to model both the
value and advantage functions [Baird, 1995]:

A(z,u) — (1 — a)A(z,u)+

1
a E(R 4 At I&ian(:z:tH, wpy1)) + (1 — Kt) n}ﬁxA(:z:t,ut) (7)

This is the advantage learning update (as opposed to advantage updating).

6.5 Experimental Setup

Since we are using a neural network for learning, we must be careful of forgetting
previous knowledge. This interference can occur if we only focus on updating the
network for the most recent experience. If we perform an update which is greedy
with respect to the new experience we can change the network in other parts of
the state-space for the worse. There are many ways to avoid interference; we take
the simplest approach of performing training updates in batches. Other methods
do exist, another method followed in [Gaskett et al., 1999a] is to maintain a
buffer of experience which is constantly updated and retrained.

We found that increasing the size of the batches lead to increased perfor-
mance. This is probably as a result of minimising the possible interference.
However we found that initially only small batches were necessary to increase
the performance. This led us to starting with a small batch size and incremen-
tally increasing it after every batch update. We also found that the advantage
learning update had slow convergence which meant we needed more than dou-
ble the previous number of iterations of any other method to achieve maximum

performance.

The parameters for both tasks are given:
Parameter AnnEvolve
Initial Batch size 400
Increment 100
Number of updates 30
Number of control wires | 25
Number of hidden units | 12

The neural network had a single hidden layer of tansig units, with a linear
output layer. We wanted to confirm the results of [Gaskett et al., 1999a] which
showed a noticeable difference in performance between the standard temporal
difference update and the update proposed by advantage learning. To test this
we ran 15 trials of each update. The results are shown in figure 9(a). Tt is

21

(a) (b)
Av- In-

er- di-
age vid-
per- ual
for- per-
mance for-
of mance
tem- of
po- 5

ral tri-
dif- als
fer- (us-
ence ing
learn- ad-
ing van-
and tage
ad- learn-
van- ing).
tage

learn-

ing.

Figure 9: Wire-fitting for Timin’s sailing model.

(a)(b)
AnA
adstan-
vamtard
tagem-
uppo-
datral
ingdif-
surfer-
facence
sur-
face

Figure 10: A comparison of the wire-fitting surfaces (note the different scales in
the Z-axis)

interesting to note the differences in the surfaces predicted by both methods.
We plot two typical surfaces in figure 10; note the increased scale in the z-axis for
the advantage updating method, this increased scale gives the neural network
an easier surface to fit, which accounts for the improved performance.

Advantage learning performs particularly well on learning Timin’s model. In
fact it found several solutions which were better than the hand-coded controller
(see figure 4(a)). To quantify the difference in speed we timed a good solution
found by wire-fitting with the hand-coded controller and found that the hand-
coded controller required 2137 simulation steps to complete a fixed course, while
the wire-fitting solution took only 1578. The means that the learned model is
approximately 36% faster, yet on average receives less reward. This is due to the
fact that hand-coded controller cannot sail close to the wind and has to cover
much more distance as a result. This extra distance allows the learnt controller
to win when sailing a course.

22

Figure 11: Two examples of solutions for Timin’s model found using wire-fitting.
(Compare these with figure 4(a))

We do find it rather strange that in none of the trials did wire-fitting find a
strategy similar to the hand-coded’s, since this seems to result in more positive
reinforcement received. It is possible that this is due to the exploration noise
and short episodes which would limit the maximum speed achievable. This
encourages the agent to find the best direction when at this maximum speed.

However since the algorithm is only guaranteed to converge on a local min-
imum not all trials had equally good results. In figure 9(b) we plotted the
performance of five individual trials. From this we can see that four of the trials
converged to solutions which had better performance than the other methods
and a single trial converged to a bad solution. Unfortunately most of the time
the controllers were able to sail very efficiently into the wind on one side, but
not efficiently on the other. Taking advantage of the left-right symmetry in this
task would improve their performance further.

23

7 Discussion

This article originally had the intent of examining the claim made in [Adriaans, 2003]
that reinforcement learning when applied to sailing had an incredibly slow con-
vergence rate. While standard reinforcement techniques were slow there exist
several techniques which are able to speed reinforcement learning, these include
spatio-temporal traces and adaptive discretization.

However to find an improved controller we needed to use wire-fitting, which
was comparatively slow. Tt should be pointed out that in [van Aartrijk and Samoocha, 2003]
data-mining is performed on a database containing twelve million entries. Given
this amount of experience we feel it would be possible to achieve good perfor-
mance using reinforcement learning for several of the behaviours in Adriaans’
agent based decomposition.

Tabular learning was unable to sail a course, due to the discontinuous actions
it would take. This would both slow the boat and were not sufficiently fine-
grained to ensure the boat was completely controllable. Smith’s method was
able to reproduce the performance of the tabular methods with only a fraction
of the resources, yet this was still insufficient. Wire-fitting was able to find a
solution which sailed a course faster than the hand-coded controller. It was able
to do this by travelling more directly to the way-points. While it is a bit strange
that the solutions found received less reward than the hand-coded controller, we
feel this can be explained through the effects of the random exploratory noise.
The noise limited the maximum speed the boat could travel at and the agent
then focussed on sailing as directly as possible instead.

7.1 Future Research

In both Smith’s method and wire-fitting there was a small amount of fine-tuning
noise which was added to each action. In a real system one would not be able to
simply add random noise, but one could systematically fine-tune the action with
a coherent exploration strategy. This would enable the autopilot to slowly adapt
to each boat, an advantage which is not present in the current architecture of
Adriaans.

This forms the suggested direction of future research; to apply reinforcement
learning to other behaviours in the behaviour-based decomposition of Adriaans
in order to determine whether or not such a compositional approach to rein-
forcement learning is viable. However several other research directions arose
which also appear promising. These are listed below.

7.1.1 Interpolation

We feel Smith’s method performed extremely well considering its limited re-
sources. It might have performed even better had there been an appropriate
form of interpolation. One such heuristic could consider not just the winning
node in the state SOFM, but also its nearest neighbour. If the actions recom-
mended by both nodes are reasonably similar then the average of the actions
could be chosen. If the actions are quite distinct then only one action should
be chosen.

This would avoid trying to average a left turn and a right turn and end up
moving forward into an obstacle etc. However this approach seems to introduce

24

even more parameters into Smith’s method which already has too many. The
most natural way of defining similar actions would be to determine the dis-
tance from each action node in terms of the number of nodes separating them.
However this is left as a possible future research direction.

7.1.2 Symmetry

Since the task is symmetrical between left and right, learning could be sped up
if one takes advantage of this symmetry. Unfortunately it is unlikely that the
performance will improve as we ran all the learning methods until they showed
no increase in performance.

7.1.3 Expert Knowledge

To obtain a fair comparison of the different reinforcement learning methods we
used tabula rase learning. However several of the methods could be consid-
erably improved with the incorporation of expert knowledge. This knowledge
could be included through an intelligent division of the state in the standard
reinforcement learning. In Smith’s method expert knowledge could be used to
initialise the positions of the nodes of both the state and action SOFM’s. It
is not clear however how to incorporate expert knowledge into the wire-fitting
method.

25

7.2 Acknowledgements

Thanks to George Wells and George Konidaris for providing motivation and
a keen eye at key points during this research. This research was made possi-
ble through a Commonwealth scholarship (ref. ZACS-2003-335) which is also
greatly appreciated.

26

References

[Adriaans, 2003] Adriaans, P. (2003). From knowledge-based to skill-based sys-
tems: Sailing as a machine-learning challenge. In Machine Learning: ECML
2003, 14th European Conference on Machine Learning, volume 2837 of Lec-
ture Notes in Computer Science. Springer.

[Aupetit et al., 2000] Aupetit, M., Couturier, P., and Massotte, P. (2000).
Function approximation with continuous self-organizing maps using neighbor-
ing influence interpolation. In Bothe, H. and Rojas, R., editors, Proceedings
of the ICSC Symposia on Neural Computation (NC’2000) May 23-26, 2000
in Berlin, Germany. ICSC Academic Press.

[Baird, 1993] Baird, L. (1993). Advantage updating. Technical Report WL-TR-
93-1146, Wright-Patterson Air Force Base Ohio: Wright Laboratory.

[Baird, 1999] Baird, L. (1999). Reinforcement Learning Through Gradient De-
scent. PhD thesis, Carnegie Mellon University.

[Baird and Klopf, 1993] Baird, L. and Klopf, A. (1993). Reinforcement learn-
ing with high-dimensional, continuous actions. Technical Report WL-TR-93-
1147, Wright-Patterson Air Force Base Ohio: Wright Laboratory.

[Baird, 1995] Baird, L. C. (1995). Residual algorithms: Reinforcement learn-
ing with function approximation. In International Conference on Machine
Learning, pages 30-37.

[Bishop, 1995] Bishop, C. (1995). Neural Networks for Paitern Recognition.
Oxford University Press.

[Boyan and Moore, 1995] Boyan, J. A. and Moore, A. W. (1995). Generaliza-
tion in reinforcement learning: Safely approximating the value function. In
Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural
Information Processing Systems 7, pages 369-376, Cambridge, MA. The MIT
Press.

[Burden and Faires, 1997] Burden, R. L. and Faires, J. D. (1997). Numerical
Analysis. International Thompson Publishing, 6th edition.

[Gaskett et al., 1999a] Gaskett, C., Wettergreen, D., and Zelinsky, A. (1999a).
Q-Learning in continuous state and action spaces. In Proceedings of the 12th
Australian Joint Conference on Artificial Intelligence. Springer-Verlag.

[Gaskett et al., 1999b] Gaskett, C., Wettergreen, D., and Zelinsky, A. (1999b).
Reinforcement learning applied to the control of an autonomous underwater
vehicle. In Proceedings of the Australian Conference on Robotics and Au-
tomation (AuCRA99).

[Kaelbling et al., 1996] Kaelbling, L. P.; Littman, M. L., and Moore, A. P.
(1996). Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4:237-285.

[Kaski et al., 1998] Kaski, S., Kangas, J., and Kohonen, T. (1998). Bibliography
of self-organizing map (som) papers:1981-1997. Neural Compuling Surveys,
1:102-350.

27

[Kohonen, 1997] Kohonen, T. (1997). Self-organizing maps, volume 30 of
Springer Series in Information Sciences. Springer-Verlag New York.

[Mahadevan and Connell, 1992] Mahadevan, S. and Connell, J. (1992). Auto-
matic programming of behavior-based robots using reinforcement learning.
Artif. Intell., 55(2-3):311-365.

[Marchaj, 1964] Marchaj, C. A. (1964). Sailing theory and practice. Granada
Publishing Limited.

[Oja et al., 2003] Oja, M., Kaski, S., and Kohonen, T. (2003). Bibliography of
self-organizing map (som) papers:1998-2001 addendum. Neural Computing
Surveys, 3:1-156.

[Singh and Sutton, 1996] Singh, S. P. and Sutton, R. S. (1996). Reinforcement
learning with replacing eligibility traces. Machine Learning, 22(1-3):123-158.

[Smith, 2001a] Smith, A. (2001a). Applications of the self-organising map to
reinforcement learning. Technical report, University of Edinburgh.

[Smith, 2001b] Smith, A. (2001b). Dynamic generalisation of Continuous Ac-
tion Spaces in Reinforcement Learning: A Neurally Inspired Approach. PhD
thesis, University of Edinburgh.

[Sterne, 2004] Sterne, P. (2004). Reinforcement sailing. Technical Report EDI-
INF-IM040206, University of Edinburgh.

[Sutton and Barto, 1998] Sutton, R. and Barto, A. (1998). Reinforcement
Learning : an introduction. Adaptive Computation and machine learning.
MIT Press.

[Tesauro, 1995] Tesauro, G. (1995). Temporal difference learning and td-
gammon. Communications of the ACM, 38(3).

[Thompson, 2002] Thompson, D. R. (2002). Scaling up spatial credit assign-
ment through modularity. Master’s thesis, University of Edinburgh.

[Thrun and Schwartz, 1993] Thrun, S. and Schwartz, A. (1993). Issues in using
function approximation for reinforcement learning. In Proceedings of the 1993
Connectionist Models Summer School. Erlbaum Associates.

[Timin, 2006] Timin, M. (2006). AnnEvolve website : http://www.annevolve.
sourceforge.net.

[van Aartrijk and Samoocha, 2003] van Aartrijk, M. and Samoocha, J. (2003).
Learning to sail. In Proceedings of Furopean Symposium on Intelligent Tech-
nologies, Hybrid Systems and their implementation on Smart Adaptive Sys-
tems.

[van Aartrijk et al., 2002] van Aartrijk, M., Tagliola, C., and Adriaans, P.
(2002). AI on the ocean: the robosail project. In Proceedings of the 15th
European Conference on Artificial Intelligence, ECAI 2002.

28

