
Solutions to Problem Set 6

1. Ship Wakes

a) Prove that surface gravity waves generated by a ship in steady motion are confined to a
wedge with opening angle 2θ = 2 sin−1(1/3).

b) How does the wavelength of forward propagating waves depend upon the speed of the
ship?

a) Let the ship move to the right, with velocity v. In the diagram below, the ship
generates a backwards and a forwards wave when it is at P .
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After some time t, the waves have grown. The solid circle shows the forward propagating
wave, and the dotted circle shows the backwards one. We’re interested only in the forward
wave since it sets the opening angle of the wake; the backwards circle is quite a ways inside
in the wake. The tangent lines mark the edge of the wake.

We will measure distance in units of vt, so that the length from P to the ship is 1. The
group velocity of gravity waves on deep water is half the phase velocity. So the forward wave
moves with half the phase speed, and the phase speed is the ship’s velocity, v. So point Q,
the farthest point in the forward wave, has advanced 1/2 from P ; therefore the circle has
radius 1/4. The right triangle has hypotenuse 3/4 and height 1/4, so θ = sin−1(1/3), and
the opening angle is twice that, or 2 sin−1(1/3).

b) The phase velocity, ω/k, is also the ship velocity, v. So ω = vk. The dispersion
relation for gravity waves on deep water is ω2 = gk. Substituting ω = vk into the dispersion
relation gives v2k2 = gk or k = g/v2. So the wavelength is 2π/k = 2πv2/g. When 1/k is
of the order of the ship length (so that Fr = v2/gl ∼ 1), the ship will tilt, like one of those
speedy cigarette-shaped motor boats you see in James Bond movies and Miami Vice.

A tilted hull means huge ram pressure drag which effectively limits the ship’s velocity to
v =

√
gl. For a 4 m motor boat, this speed is about 7 m/s. Another way to say this is that
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the Froude number is ∼ 1 for the maximum ship speed (unless you have a really powerful
engine). Fr ∼ 1 also set the maximum walking speed for humans, cats and other sundry
animals.

2. River Rapids

Two conditions must be satisfied for the formation of rapids. The Froude number of the
flow must exceed unity, and the river bottom must have boulders of size comparable to the
river depth. Assume that the boulders are sparse so that their presence does not affect the
mean flow.

a) What is the limiting downstream slope required to produce rapids? Derive an analytic
expression and then evaluate it numerically.

a) The expression for river speed given in class was

v ∼
√

αgh
ln h/z0

f

where α is the slope, h is the height of the river, z0 is the ”roughness scale” at the bottom
of the river, and f is the fudge factor relating the scale over which the velocity changes to
the vertical height in the stream. The first criterion for rapids is that the Froude number
v2/gh ≥ 1. Thus,

v2 = ghα

(

ln h/z0

f

)2

≥ gh

which implies

α ≥
(

f

ln h/z0

)2

.

The second criterion for rapids is that the river depth is of the order of the size of the
boulders in the stream. Thus, we take h to be ∼ 1 m, our canonical boulder. Using z0 ∼ 30
cm and f ∼ 0.4 as derived in class, we obtain α ≥ 6◦.

3. Atmospheric Scintillation

The atmosphere contains large cells of gas at very different temperatures separated by
shear layers (one obvious place is near the ground, another is in convection cells). The shear
is turbulent, so the turbulence mixes the hot and cold air down to very fine scales. The
resulting complicated temperature distribution has a roughly Kolmogorov spectrum, such
that two parcels of air separated by distance ℓ have root-mean-square temperature differences
of order

〈δT 2/T 2〉1/2 = 5 × 10−5(ℓ/1 cm)1/3 .

a) Explain why stars (angular size < 10−7 radian) twinkle, but planets (angular size ∼
5 × 10−5 radian) don’t.

b) Estimate the timescale on which stars twinkle.

Note: the index of refraction of air at optical wavelengths satisfies n − 1 ≈ 3 × 10−4.
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a) The Fresnel scale in the atmosphere is
√

λD/2 ∼ 5(λ/0.5µ)1/2 cm, where D ∼ 10 km
is the scale height of the atmosphere. Irregularities smaller than this blur the image of a
point source by diffraction. Larger irregularities focus and displace the image by refraction.

Firstly we need to consider how far apart two light rays must be in order for them to be
incoherent. When the phase difference, ∆Φ, between these two light rays is of order ∆Φ ∼ π
then interference will be observed. Consider two paths of light separated by length l. The
phase difference due to light crossing one blob of size l is

∆φ = δn2π
l

λ

where δn is the difference in refractive index between neighboring blobs of length scale l.
After passing through N = D/l of these blobs (with randomly positive and negative δn) the
phase difference will be

∆Φ = N1/2∆φ = N1/2δn
2πl

λ
.

Since n − 1 is proportional to the density of air, at constant pressure n − 1 ∝ T−1, so
δn = (n − 1)δT/T = (n − 1) 5 × 10−5l1/3 (l in cm), where on average n − 1 = 3 × 10−4 for
air in the visible. Therefore

∆Φ = 2πD1/2l5/61.5 × 10−8λ−1.

The tilt of the wavefront on scale l is thus ∆θ = ∆Φ
2π

λ
l ∼ 1.5× 10−5l−1/6. Thus the smallest

scales (weakly) dominate the tilt. The Kolmogorov cascade continues down to l ∼ 0.1 cm,
where viscosity and diffusion smooth the fluctuations. Thus temperature fluctuations on
scales of 0.1 cm–5 cm produce a fluctuating diffraction pattern (speckle pattern), whose

size and position are modulated (by about (0.1/5)1/6 ∼ 50%) by the fluctuations on scales
larger than the 5 cm Fresnel scale. This modulation is the cause of the observed twinkling.
Detailed understanding of the twinkling in the earth’s atmosphere is complicated by the
fact that the Fresnel scale is comparable to the coherence length (at which ∆Φ = π, i.e.,

lc ∼ 10(λ/0.5µ)6/5cm), by the fact that the wavefront tilt depends so weakly on l, so that
a wide range of scales contributes, and by the fact that the atmosphere is not a thin screen
(layers of the atmosphere within 100 m of the ground, at ∼ 3 km altitude, and at the base
of the jet stream all contribute roughly equally to the scintillation).

b) The angular size of a star is much less than ∆θ so that it will twinkle. However,
planets subtend angles Θ much larger than ∆θ, so that although each ∆θ “pixel” of the
planet moves and changes in area (as easily observed through a telescope), since each “pixel”
changes independently, the intensity of the planet changes only by a fractional amount of
order one over the square root of the number of pixels, i.e. ∆θ/Θ ≪ 1. Thus planets don’t
twinkle much.

The timescale of twinkling is determined by the time it takes the winds in the atmosphere
to convect a new set of temperature fluctuations into your line of sight to a star. Since
the twinkling is dominated by fluctuations on about the coherence length lc ∼ 10 cm, the
timescale is t ∼ lc/v. Taking a typical wind speed v = 30 mph ∼ 103 cm s−1, we find
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t ∼ 10−2 s. To fix the speckle pattern, astronomers doing speckle interferometry must use
exposure times much shorter than this. Your eye of course isn’t sensitive to this most rapid
twinkling: what you see is averaged over your eye’s integration time (∼ 0.05 s).

4. Southern California must find new supplies of fresh water. To be economically feasible the
cost must be competitive with the current Pasadena price of 20 cents per 102 gallons. Use
$1.25 per gallon of gasoline as the cost of energy. In b) and c) below the total rate of supply
enters into the unit cost. Assume that the supply is intended to meet the needs of 20 million
people.

a) Towing icebergs from the arctic. What size iceberg (assume it is a cube) would
supply the needs of 20 million people for one year? How fast could we afford to tow it?
Would melting in transit be a serious problem? At fixed speed, is it cheaper to tow one
large iceberg or many smaller ones?

b) Pumping water over level ground from large rivers that empty into the Pacific

Ocean near the border between Canada and the United States. To keep the
costs of pumped water comparable with that of current supplies, how large a diameter
pipe would we have to build?

a) 20 m people using 100 gal/day gives about 1012 gal or 4×1015 cm3 of water used in a
year. Since the density of ice is 0.9 that of water, this corresponds to an icecube L = 1.5 km
on a side. Since 90% of the berg is underwater, the power required to tow it at speed v
against the water drag (Re ≫ 1) is Ptow ∼ (CD/2)ρH2O

v3L2, with CD ∼ 1. Thus the
mechanical energy required for a trip from the arctic (time t = D/v, D ∼ 5000 km) is
Etow ∼ Mbergv

2D/L, where Mberg is the mass of the iceberg. Hence the (energy) cost per

unit mass is v2D/L; so at fixed speed the water is cheaper if we tow one big iceberg instead
of many small ones (drag means you pay for area, not mass!). The maximum economical
towing speed is determined by the current price of water in energy units: 0.15 gallon of
gas/100 gallon of water, or U = 6 × 108 erg g−1. Thus, with an engine of efficiency ǫ ∼ 0.3,

vmax ∼
(

2

CD

L

D
Uǫ

)1/2

∼ 500 cm s−1 ,

or 17 km h−1. At this speed, the journey would take about 2 weeks. [Note that the engines
required are amazing: Ptow ∼ 200 GW , thus using a significant fraction of the total US
energy-generating capacity. Large aircraft carriers are each powered by about 8 nuclear
reactors, with total capacity of ∼ 200 MW of shaft power. Towing the iceberg at vmax

would thus require ∼ 103 aircraft carriers! Only 10 carriers would be required to tow it at
1 m/s, though.] Melting: sunlight melts (80 cal/g) about a meter per month off the top.
Heat conduction from surrounding sea water through the turbulent boundary layer melts
∼ 20 meters per month of the bottom and sides. Hence melting isn’t a problem.

b) Pump must carry 1012 gal/year, or V̇ = 108 cm3s−1 = πr2v, in pipe of radius r at flow
speed v. Re is large, so the flow is turbulent, and the energy dissipated per unit volume in the
pipe of length D ∼ 2000 km is ∼ ρv2

t v/r, where vt ∼ v/(2.4 ln(rvt/ν)) ∼ v/30 is the velocity
of the turbulent eddies (ν is kinematic viscosity of water). Since it takes the water time D/v
to traverse the pipe, the energy cost per gram of water is v2

t (D/r) = V̇ 2Dr−5/(30π)2. To
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be economical, this must be less than the cost of energy U (calculated in (b) above) times
the pump efficiency ǫ ∼ 0.3. Thus r > 2 m.

5. Water gets from the roots of trees to their leaves through the long hollow cells of the xylem.
The radii of the xylem cells are ∼ 20 µm, and the pores in the leaves have radii ∼ 50Å.

a) By arguments similar to those given in class for solids, estimate the tensile strength
of pure water, with no dissolved gasses (the units are those of pressure, so the tensile
strength is also called the cavitation pressure).

b) One limit to the height of a tree is set by the capillary pressure defect of water in the
pores (show that the capillary rise in the xylem is insignificant: water doesn’t pour out
of the stumps of cut trees). Another limit is set by the tensile strength of the column of
water joining the root to the leaf pores. How close are the tallest trees to these limits?

c) Estimate the velocity of flow of water up a tree trunk. What additional pressure drop
(beyond the hydrostatic one) between the roots and the leaves are required to maintain
this velocity of flow in the xylem?

a) The energy and mean separation is about 0.4eV/molecule (hydrogen binding) and 3
Ångström respectively. The bulk modulus defined as energy/separation3 gives bulk modu-
lus 2 · 1010erg/cm3, which is correct bulk modulus of water (AIP p 2-184). Typical tensile
strength of pure materials is 10−2B = 28 erg/cm3 = 200 atm. This is about the maximum
tensile strength ever measured for pure, degassed water (AIP p. 2–204). ‘Ordinary’ measure-
ments give about 10 atm, and seawater has about 0.5 atm (Denny, p. 255, Sterl’s biology
book).

b) From pressure balance, ρgh = 2 · 108, we get h = 3 km. The capillary pressure
is p = 2γ/R where γ is the surface tension, R is here the radius of the hollow cylinder.
In our case R is the size of the pores in the leaves. So, from pressure balance we get
h = 2γ/(Rgρ) = 3km again. The capillary pressure for the xylem gives h = 30 cm. The
tallest tree is 127 m, so about a factor of 20 below these limits. But surely the water has
some dissolved gas. Real trees may be approaching real tensile strength limits?

c) ¿From Denny p. 72 : ∆p = 8µv/r2h, where µ is the dynamic viscosity of water.
Estimate v: if tree respires all rainfall under its leaf area, and leaf extent is 1/2 trunk height,
then v = 1m/yr(Area leaves/Area trunk) = 1m/yr(50m)2/(1m)2 = 10−2cm/s. Real trees
probably don’t have water flowing up the whole trunk area, and probably need faster flow
during the spring growing season when the rain falls. So 0.1cm/s seems reasonable, and is
supposedly measured too! Using µ = 10−2g/cm2/s for water, we get ∆p = 2×107dyn/cm2 =
20atm for h = 100m. The hydrostatic drop ρgh for such a tree is 10 atm, so to keep the
flow going one needs to triple the hydrostatic drop. Power for this comes from evaporation
of water from leaves.
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