
Physics 103c Final Exam Solutions, 1995

Short Problems

#1) How would you expect world records for weight lifted to scale with body weight?

The mass one can lift (assuming standard competition weightlifting techniques such as the
clean-and-jerk, which emphasise the thighs) is given by

Mlift =
ǫPmuscle

g
A, (1)

where A is the cross-sectional area of the weightlifter’s thighs, ǫ is the efficiency with which
the force exerted by the muscles can be converted into vertical lift, and Pmuscle is the pressure
exerted by muscle, as discussed in class.

Assuming a homologous sequence of weightlifters (!), i.e., all weightlifters have the same overall
build regardless of size, then Mthighs ∝ Mperson. The mass in the thighs will determine the
length scale of the thighs i.e. V ∼ L3 ∝ M and thus L ∝ M1/3. So A ∼ L2 ∝ M2/3 and

Mlift ∝ M2/3
person (2)

The Guiness book of world records gives a comprehensive list of weightlifting records. In the
men’s category, scaling from the 54 kg to 108 kg division gives us a factor of 2 in mass and then
supposedly a factor of 1.59 in mass lifted. In the category called the “Snatch”, the ratio of mass
lifted is 197.5/125 = 1.58 and in the category “Jerk” it is 235/157.5 = 1.49. In the women’s
category, we have a factor of 1.8 between the 46 kg and 83 kg divisions, yielding an expected
ratio in mass lifted of 1.48. “Snatch” gives a mass-lifted ratio of 107.5/72.5 = 1.48 and “Jerk”
gives a ratio 127.5/92.5 = 1.38. So our scaling is extremely good for the “Snatch” category and
a slight overestimate for the “Jerk” category.

#2) The speed of sound in liquid water H2O at room temperature is 1, 482m/s. Estimate the speed
of sound in heavy water D2O at the same temperature; be sure to state your assumptions and estimate
the accuracy to which they ought to hold.

The speed of sound in any ideal fluid is

cs =

√

∂p

∂ρ

∣

∣

∣

∣

S

. (3)

Liquids, like solids, are nearly incompressible; the restoring force to a compression coming from
distortions in atomic bonds (recall that water is slightly denser than ice!). The restoring force
does not come from thermal energy as it does in a gas (so in liquids, cs is not approximately
√

kT/m!). The speed of sound in a liquid is thus best estimated as

cs ∼
(

H

m

)1/2

, (4)

where H is the heat of vaporization (binding energy per molecule in the liquid phase), and
m is the molecular weight. To lowest order, changing the nuclear mass has no effect on the
electronic states of the hydrogen bond, so H2O and D2O should have approximately the same
H, but m(D2O) = (20/18)m(H2O), so we would expect

cs(D2O) ∼

√

18

20
cs(H2O) ∼ 0.95cs(H2O) ∼ 1406m/s . (5)
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In fact the speed of sound of D2O at room temperature is 1384m/s, 1.6% lower than the sim-
ple estimate. At boiling temperature, the heats of sublimation are H(H2O) = 40.66 kJ/mol
and H(D2O) = 41.56 kJ/mol,

√

H/m = 1500m/s for H2O and
√

H/m = 1440m/s for
D2O. Notice that the magnitude of the difference in the H’s (2%) is of the same order
as the difference in the predicted sound speeds, but of the opposite sign. The higher heat
of sublimation of D2O can be understood as a consequence of the fact that that its hydro-
gen bonds have a lower zero-point energy (the ones to neighboring molecules, not the ones
within the molecule, whose zero point energies are also much lower, but whose level spac-
ings ∼ 0.1 eV are much larger than kT and the same in both liquid and gas phases, so the
change doesn’t affect the specific heat): E0 = (1/2)~ω0, where ω0 = [H/(µa2)]1/2, where
µ = mHmO/(mH +mO) ≃ mH (mH = 1, 2 for H and D respectively), and a = 2Å is the length
of the hydrogen bond. Thus ω0 ∼ (cs/a)(m(H2O)/µ)1/2, and we find E0(H−O) = 0.01 eV and
E0(D − O) = 0.007 eV. With 2 bonds per molecule, we would expect the heat of vaporization
of D2O to be 2(E0(H − O) − E0(D − O) = 0.006eV = 0.6kJ/mol higher than that of H2O due
to the lowering of the zero-point energy, in reasonable agreement with the actual 0.9kJ/mol.
Since these shifts are comparable to room temperature kT , the relation of these shifts to the
sound speed is unfortunately not obvious. I have been unable find a good explanation of the
sound speed effect in the literature —any takers?

#3) Estimate how fast you could walk on the moon. [useful information: the moon’s radius is 1/4
that of the earth, and its density of 3 gcm−3 is 0.6 that of earth.]

g = GM/R2 ∝ ρR, so that, relative to earth values,

g

g⊕
=

ρ

ρ⊕

(

R

R⊕

)

∼ 0.6 × 0.25 ∼ 0.15. (6)

Thus g ∼ 150 cm/s
2
. When you walk, one foot is always on the ground, and during each

stride your center of mass describes a circular arc with center located at the foot which is on
the ground, and radius about equal to your leg length l. If the speed along the circular arc
(which is the speed v at which you are walking) is such that v2/l > g, the upward centrifugal
acceleration would be larger than g —your foot would leave the ground, i.e., you would be
running, not walking [notice that this condition corresponds to a Froude number, Fr ≡ v2/gl >
1; experiments indicate that in almost all animals the actual walk/run transition occurs slightly
before the foot becomes weightless, at Fr=0.8]. So vmax ∝

√
gl, and

vmax

vmax(⊕)
=

√

g

g⊕
= 0.4. (7)

So if you walk at 5mph on earth, you could walk at 2mph on the moon.

#4) What fraction of the world’s river water flowing out to sea is human urine?

A sedentary person in a temperate climate consumes ∼ 2.5 ℓ of water per day (about half of
that as obvious liquid, the other half as water in food, and water created by the metabolism of
sugars and fats [whose burning produces H20 and CO2]). Personal observation suggests that
f ∼ 0.3 of this is passed as urine (the rest is sweated, exhaled or excreted in feces; people
doing heavy exercise can consume 4 ℓ per hour, but most of this is sweated out to cool their
bodies; however their urine production is somewhat larger too, since they have to metabolise
more during exercise, so have more metabolic wastes to dilute). With about 6 · 109 people on
earth, that means 5f × 1015 cm3 of human urine released per year across the world.

The average rainfall over the earth is 1m/year, so the total rainfall over the fraction φ ∼ 0.25
of the earth’s surface covered by land is

4π × (6.3 ·108 cm)2 × 102cm y−1 × φ ∼ 1020 cm3y−1. (8)
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About half of this rainfall is evaporated, and half runs off in rivers, giving a net river runoff of
∼ 5 × 1019cm3y−1.

Thus, the fraction of the river water that is human urine is ∼ 1·10−4f . Taking f ∼ 0.3, we get

30 parts per million .

#5) How much electrical power (in MegaWatts) could be produced by burning in a conventional power
plant all the junk mail received by everybody in the United States?

Each person receives about 0.1 kg of Junk mail each day, and with 3·108 people in the US, that
means 3 ·1010 g of rubbish each day.

From Purcell’s sheet, combustion releases 104 cal/g or 4 ·1011 erg/g. Assuming an efficiency of
conversion into useful power of about ǫ ∼ 0.1, we get that the power output is

P ∼ 0.1 × 4 ·1011 × 3 ·1010 ∼ 1021 erg/day ∼ 1016 erg/s ∼ 1GW . (9)

#6) A California Science Fair student proposes to mount magnets (all with N pole facing out) at
the front and rear of cars to prevent collisions. Estimate the size of the smallest, cubical, permanent
magnet necessary to prevent collisions at 5mph and 55 mph.

The kinetic energy of the car has to be converted into energy stored in the magnetic field. In
cgs units, the energy density stored in a magnetic field B is ∼ B2/8π, so the total energy stored
in volume V is E ∼ V B2/8π. Since E ∼ Mcarv

2/2, we have

V ∼ L3 ∼
4πMcarv

2

B2
. (10)

For a car of mass 106 g and speed 5mph, or 220 cm/s, we have

L5mph ∼
(

4π × 106 × 2202

B2

)1/3

∼ 20

(

B

104 G

)−2/3

cm. (11)

The best samarium-cobalt and neodymium-iron-boron permanent magnets have B ∼ 4000G

(corresponding to alignment of 10% of the electron Bohr magnetons), which makes L ∼ 40 cm

at 5mph. The size scales as v2/3, so for 55mph, we have L ∼ 200 cm . With the density of iron
∼ 8 g/cc, these magnets would weigh 500 and 64, 000 kg respectively. With a front and rear
pair of magnets, these would increase the mass of the car by factors of 2 and 130 respectively,
so the scheme does not seem very practical. In fact our calculation is not self-consistent, since
the mass of the car [tank?] is now dominated by the magnet, so the kinetic energy has gone up
requiring a bigger magnet. This iteration does not converge above a characteristic maximum
speed which can be found by assuming that the magnet mass dominates that of the car: the
energy stored in a magnet of size L is EM ∼ L3B2/8π, and the maximum speed the magnet
can have before its kinetic energy exceeds EM is

vmax ∼
(

L3B2

8πM

)1/2

∼
B

(8πρ)1/2
. (12)

For the quoted ρ and B, ρ ∼ 8 g/cc and B ∼ 4000G, we have vmax ∼ 288 cm/s, or about 6mph.
Thus the scheme will not work above parking speeds with permanent magnets.

Superconducting electromagnets could get another factor of 10 in B, just barely allowing con-
vergence in magnet mass at 55mph, but you wouldn’t want to be in the car if the cryogen supply
failed. . . . There is also a start-up problem: since cars are made of steel, which is magnetised by
external fields, if your car were magnet-equipped and the cars around you were not, tailgaters
would be sucked up your tailpipe, and during parallel parking your car would inexorably attach
itself to the closest car.
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Long Problems

#1) Overheated Orchestra
During an orchestra concert, heat generated by the players, stage lights and the audience causes the
temperature in the auditorium to rise by 5◦K. Assuming the players take no corrective action,

a) Estimate the fractional change in frequency of notes played by the wind instruments. Do the
frequencies of their notes go up or down as the temperature rises?

b) Estimate the fractional change in frequency of notes played by the string instruments. Do the
frequencies of their notes go up or down as the temperature rises? [hint: the coefficient of thermal
expansion of spruce wood (used for piano and violin face and back plates) along the grain (which
is parallel to the strings) is about 1/7 that of steel (used for strings).]

a) The resonant frequency of a wind instrument of length L is given by ν = n(cs/4L) if it
has cylindrical bore (so the mouthpiece is a pressure maximum; clarinet, flute, trumpet, etc.)
and by ν = n(cs/2L) if it has conical bore (so the mouthpiece must also be nearly a node to
avoid divergence of the pressure; oboe, bassoon, etc), with n = 1, 2, 3 for the various overtones
blown. The temperature rise has two effects. First, it increases the speed of sound, and second,
it lengthens the wind instrument:

∆ν

ν
=

∆cs

cs
−

∆L

L
=

1

2

∆T

T
− α∆T ,

where we have used cs =
√

γkT/m.

The fractional change in sound speed is 1
2
∆T/T ∼ 0.008, which raises the frequency by this

fraction. This change dominates the second term, the small frequency decrease from thermal
expansion: from Purcell’s sheet, the thermal expansion coefficient for solids, say brass, is α ∼
2 · 10−5/deg. Thus for a trumpet, the change in length due to thermal expansion lowers the
frequency α∆T ∼ 10−4, an order of magnitude less than the change in sound speed. In wind
instruments the wood grains are parallel to the length of the instrument, so from part (b), the
thermal expansion coefficient is 1/7 of that of metals, and the effect of the change in length on
the frequency is two orders of magnitude less than that of the change in sound speed. Thus the

wind instruments’ frequencies rise ∼ 0.8% .

b) The fundamental frequency of a string of length L at tension t and mass per unit length µ
is

ν =
1

2L

√

t

µ
. (13)

The tension is given by
t

µ
=

B

ρ

L(T ) − L0(T )

L0(T )
, (14)

where L0(T ) is the length the relaxed string would have, B is the elastic modulus, and ρ the
density. Neglecting the small changes in B and ρ, differentiating gives

∆(t/µ)

(tµ)
=

∆L/L − ∆L0/L0

(L − L0)/L0

. (15)

Assuming the wood of the instrument body is thick enough that it is not significantly compressed
by the string tension, the ends of the string will be forced to move with the wood: ∆L/L =
α(wood)∆T , while ∆L0/L0 = α(steel)∆T .

Before the temperature rose, the strings were stretched to the yield point of steel, so ǫ =
(L − L0)/L0 ∼ 0.005 is the strain. Thus we have

∆ν

ν
= −α(wood)∆T +

1

2ǫ

[

α(wood)∆T − α(steel)∆T
]

. (16)
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The first term on the left (the effect of the change in string length on the frequency) is negligible
compared to the later terms (the effect of the change in string tension), and since α(wood) =
α(steel)/7, we finally get ∆ν

ν = −(3/7)α(steel)∆T/ǫ. With α(steel) ∼ 1.4 · 10−5/K and the

strain at yield ǫ ∼ 0.005, we find that the string instruments’ frequencies fall ∼ 0.6% .

This is not a bad estimate: according to E. Lieber (1982), On the Tuning Stablity of Pianos,
Das Musikinstrument 31, 602, the treble strings of a piano fall in pitch by −1.65 cent/K. A cent
is 1/100 of an equal-tempered semitone, i.e. a frequency ratio 21/1200 = 1.00058, so ∆T = 5K
changes the frequencies of the treble piano strings by ∆ν/ν = 0.00058 × (−1.65) × 5 = −0.5%,
quite close to our estimate. According to Lieber’s measurements, the tenor strings of the
piano (which are overwound with wire not under tension to increase µ and thus lower ν) drop
in frequency by −0.39 cent/K, or −0.1% for a 5K rise in temperature. The piano thus gets
noticeably out of tune with itself under such a temperature change (changes in humidity, which
can swell the wood by 5%, are even worse), which is why concert pianos are tuned immediately
before the concert.

#2) House Lights
A 100 watt light bulb is powered by household current flowing in a pair of parallel copper wires, 1 mm
in radius, separated by 2 mm, and 2 m in length.

a) How much power is dissipated in the wires?
b) At what velocity do the current carrying electrons drift?
c) What is the magnetic field generated by the current 1 meter away from the wires?

a) The current flowing through the light bulb is roughly 100W/120V = 0.83A. This assumes
that the power dissipated in the wires is negligible compared with that in the bulb itself, which
we will see is correct. The power dissipated is P = I2R, so we need to know R. [Note that
it is not correct to use P = V 2/R because we don’t know V in the wires—most of the 120V
is dropped in the bulb filament.] The resistivity for copper is ρ = 2 · 10−6 Ω · cm. To get the
resistance you simply note that the resistance scales with the wire length, and that leads us to
a dimension of Ω · cm2; so we need to divide by an area, A, which is the cross-sectional area of
the wire. We end up with

R =
ρL

πr2
∼

2 ·10−6 × 200

3 × 0.12
∼ 10−2 Ω. (17)

This is for one wire. So the power is then P = 2I2R ∼ 2 × (0.83)2 × 10−2 ∼ 10−2 W .

b) Roughly 1A flows in the wire, which is 1 Coulomb per second, or 1019 electron per second.
The mean density of electrons is about 2na, where na is the number density of atoms. To
estimate na, we remember that ρ ∼ A/15, where A is the atomic mass, and ρ is in g/cc. Then
na = NA/15 ∼ 4 ·1022 cm−3, where NA is Avogadro’s number. Then n ∼ 2na ∼ 2 × 4 · 1022 =
1023 cm−3. Also A = π × 0.12 ∼ 0.03 cm2. Since I = 1019 /s = nvA, we have

v =
I

nA
∼

1019

1023 × 0.03
∼ 3 ·10−3 cm/s (18)

c) To find the magnetic field from one wire (there are two), use Ampere’s law:
∫

B·dl = µ0I.
As the Amperean loop, take a circle of radius r centered on the wire. B is completely tangential
(for a long enough wire), so 2πrB = µ0I, or

B =
µ0I

2πr
, (19)
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where we have reverted to SI units because the current is in amps. Note that in our problem
we have two currents flowing in opposite directions, separated by d = 2mm; their fields almost
cancel (dipole effect). So we have to reduce B by a factor of d/r:

B =
µ0Id

2πr2
∼

4π × 10−7 × 1 × 0.002

2π × 12
= 4 ·10−10 T = 4 ·10−6 G. (20)

#3) Hot Rocks
This problem outlines an oversimplified calculation of how the temperature varies on the surface of the
moon. Starting at t = 0, a smooth surface paved with cold (T ≈ 0K) black rocks is subjected to a
constant flux, F , of optical radiation. Assume that the surface absorbs all of the incident radiation and
radiates like a black-body at its surface temperature, Ts.

a) What is the equilibrium value, Teq, of Ts?
b) Describe the time dependence of Ts before equilibrium is reached. Hint: The heat equation reads

ρcp
∂T

∂t
= k∇2T.

You are not expected to solve this equation.
c) What is the characteristic time, teq, for the approach to equilibrium, and what is the depth, δ, of

the thermal boundary layer at this time?
d) Evaluate Teq, teq , and δ for F ≈ 106 erg cm−2 s−1, a flux appropriate to solar heating of the moon.

Heat leaves the surface by black-body radiation into space and by conduction into the moon.
As time flies, the thermal boundary layer (the thickness of warm rock, δ) steadily increases,
which decreases the flux across the boundary layer.

a) In equilibrium all the moon-rock is an isotherm—no heat diffuses into the moon. So all the
incident flux must leave by black-body radiation. Balancing the fluxes, F = σT 4

eq, or

Teq =

(

F

σ

)1/4

(21)

b) The approach to equilibrium is regulated by the flux through the thermal boundary layer,
Fδ. As the boundary layer grows and Fδ approaches zero, Ts → Teq. The inward flux is

Fδ ∼ K
Ts

δ
, (22)

where K is the thermal conductivity of rock. At time t, the boundary layer has thickness

δ ∼
√

κt, (23)

where κ is the thermal diffusivity of moon rock. So

Fδ ∼ K
Ts√
κt

, (24)

The outward flux is σT 4
s , which varies very sharply with Ts. So initially, when Ts is small, most

of the flux goes into the moon, and we may take Fδ ≈ F in (24). Then

Ts ∼ F

√
κt

K
(25)
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Stripping away the junk constants, we have Ts ∝ t1/2 initially. Much later, the surface temper-
ature asymptotes to Teq.

A more elegant method is due to Bradford Behr. After time t, the total energy dumped into an
area A will be FAt. The energy is dumped into a volume V ∼ Aδ ∼ A

√
κt. So the temperature

rise will be E/(V ρcp), which gives (25).

c) As mentioned above, two methods compete to remove the solar flux: diffusion into the rock,
and radiation into space. Initially diffusion is the only possibility, and eventually, when the
thermal boundary layer is sufficiently thick, diffusion is negligible and most of the heat leaves
by radiation. The time, teq, when these two competing processes balance is the characteristic
time for approach to equilibrium. Equating fluxes, Frad ∼ Fδ gives

σT 4
s ∼ K

Ts√
κteq

. (26)

The temperature rises quite sharply in the beginning, so without gross error we may take
Ts ∼ Teq above. Using σT 4

eq = F , we have F ∼ KTeq/
√

κteq, or

teq ∼
K2T 2

eq

F 2κ
. (27)

Using the expression for Teq in (21),

teq ∼
K2

F 3/2σ1/2κ
(28)

At this time the thermal boundary layer will have depth

δ ∼
√

κteq ∼ KF−3/4σ−1/4 (29)

d) From Purcell’s sheet, in the “black body radiates. . .” section, σ = 6 · 10−12 W K−4 cm−2 =
6 ·10−5 erg K−4 cm−2. For F ∼ 106 erg cm−2 s−1, we have

Teq =

(

106

6 ·10−5

)1/4

∼
(

1.7 ·1010
)1/4

∼ 350K (30)

Moon rock is an insulator, for which Purcell gives K ∼ 10−2 cal/(sec · cm · K). But this is too
high (rock is a good insulator); the magic materials sheet says K ∼ 2·10−3 cal/(sec · cm · K). A
calorie is 4 ·107 erg, so K ∼ 105 erg s−1 cm−1 K−1. To find κ we use K = ρcpκ. Purcell’s sheet
gives ρcp (the specific heat per volume) as 0.5 cal cm−3 K−1. So we may take κ = K/(ρcp) ∼
4 ·10−3 cm2 s−1. Then from (28), the characteristic time is

teq ∼

(

105
)2

(106)
3/2 × (6 ·10−5)

1/2 × 4 ·10−3
∼ 3 ·105 s ∼ 4 days. (31)

After this much time, the thermal boundary layer has thickness
(

4 ·10−3 × 3 ·105
)1/2

∼ 30 cm.
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#4) Boiling Water And Whistling Tea Kettles
a) It takes about 5 minutes to boil a liter of water on a kitchen stove.

i) How much power is used to heat the water?
ii) At what rate does the boiling water evaporate?

b) Many tea kettles come with whistles. The basic whistle is a hole of radius ≈ 0.15 cm through
which water vapor can exit the kettle.
i) At what velocity does water vapor exit the hole when water is boiling inside the kettle?
ii) What is the Reynolds number of the flow near the hole?
iii) Why does the kettle whistle and what determines its frequency?
iv) Estimate the radiated acoustic power.

a) i) Say the water starts out at 20◦C. Raising the liter to to 100◦C takes

Etot ∼ 1000 g × 1 cal g−1◦C−1 × 80◦C ∼ 8 ·104 cal ∼ 3 ·1012 erg. (32)

If this is dumped into the water in 5 minutes, the power is P = Etot/300 s ∼ 1010 erg/s = 1kW.

ii) The water evaporates at a rate R = P/Lvap. From Purcell’s sheet, Lvap ∼ 104 cal/mol ∼

500 cal/g, which is Lvap ∼ 2 ·1010 erg/g. So R ∼ 1010/2 ·1010 = 0.5 g/s.

b) i) At STP, one mole of ideal gas vapor is 22.4ℓ. At 100◦C a mole has more volume, by a factor
of 1.3, so we’ll take 30 ℓ/mol as the conversion. At 18 g/mol, our 0.5 g of water is 0.025mol,
or 0.7ℓ = 700 cm3. The flux, F , is therefore 700 cm3 s−1, and this is vA, where A = πr2 is the
cross-sectional area of the whistle hole, and v is the exit velocity. So

v ∼
F

A
=

700

π × 0.152
∼ 104 cm/s (33)

ii) The Reynolds number is Re ∼ rv/ν, where ν is the viscosity of steam, which we take as

approximately that of air, ν ∼ 0.2. Then Re ∼ 0.15 × 104/0.2 ∼ 104 . The flow is turbulent.

iii) The turbulent flow at the hole oscillates back and forth with velocity v, shedding vortices
from side to side, in the famous von Karman vortex pattern. The angular frequency of oscillation
is roughly the time to cross the whistle hole, so ω ∼ v/2r, and f ∼ v/4πr ∼ 104/1.5 ∼ 7 kHz.

iv) The whistle is an acoustic monopole (there is mass flux). The efficiency of acoustic monopole
radiation by turbulence is the Mach number, M ≡ v/cs. The power density in the turbulent
eddies is ǫ ∼ ρv3/r, so the acoustic power radiated is P ∼ Mρv3r2. For the hot steam,
ρ = 1mol/30ℓ ∼ 6 ·10−4 g/cc, and cs ∼ 4 ·104 cm/s. So

P ∼ 0.25 × 6 ·10−4 × 1012 × 0.152 ∼ 0.4W (34)

At a distance of 1m, the intensity is ∼ 0.4/4π ∼ 0.04W/m
2
, which is about 105 dB (1W/m

2
is

120 dB). The pain threshold is 120 dB, so 105 dB seems about right. At any rate, it’s probably
more accurate than the estimates used to derive it.

#5) Resting and Bouncing Balls
a) A spherical rubber ball of density, ρ, shear modulus, µ, and radius, R, is lying on a smooth, rigid

floor. Estimate the radius, r, of the circular area of contact between the ball and floor.
i) Use the Buckingham Π theorem to show that r = RF (ρgR/µ).
ii) Demonstrate that F (x) ∝ x1/3.

b) The ball described in part a) is bounced on the floor with impact velocity v ≫ (gR)1/2. Estimate
the contact time, ∆t, between the ball and the floor.
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i) Use the Buckingham Π theorem to show that ∆t = (R/v)G(ρv2/µ).
ii) Demonstrate that G(x) ∝ x2/5.

c) Numerical evaluation
i) Evaluate r in part a) for R = 10 cm, ρ = 2g cm−3, and µ = 107 dyne cm−2.
ii) Using the same parameters as for part a) together with v = 5m/s, evaluate ∆t and the
maximum value of r in part b).

a) i) The relevant variables are ρ, µ, R, r and g. There are three dimensions associated with
these variables, M , L and T . Thus, there are 5 − 3 = 2 dimensionless Π variables. Two good
choices are

Π1 =
r

R
and Π2 =

ρRg

µ
. (35)

The Buckingham Pi theorem then tells us that

r

R
= F

(

ρRg

µ

)

(36)

ii) The downward force due to gravity is balanced by the shear force exerted by the compressed
part of the ball. The pressure from the compressed part is P ∼ µǫ, where ǫ is the strain, and
the force is F ∼ Pr2. As we saw in the homework question about the train wheel (note the
revised solution), ǫ ∼ δ/r where δ is the flattening and r is the radius of the contact surface.
By the Pythagorean theorem, R2 = (R − δ)2 + r2 which implies δ ∼ r2/R for δ ≪ R. Hence
ǫ ∼ r/R, P ∼ µr/R and F ∼ µr3/R.

The shear force balances gravity, mg ∼ ρR3g. So

ρR3g ∼
µr3

R
, (37)

which implies

r ∼ R

(

ρRg

µ

)1/3

(38)

b) i) In this case ρ, µ,R, v and ∆t are the relevant variables, with the same three dimensions,
so we again have 2 Π’s. Two choices are

Π1 =
v∆t

R
and Π2 =

ρv2

µ
. (39)

Hence we get

∆t =
R

v
G

(

ρv2

µ

)

(40)

ii) From above, the shear force is F ∼ µr3/R. It acts through a distance δ, so the work done
is W ∼ Fδ, which is

W ∼ Fδ ∼
µr3

R
×

r2

R
∼

µr5

R2
. (41)

This work must be sufficient to stop the ball, so W ∼ mv2 ∼ ρR3v2. Equating this to µr5/R2,
we find

( r

R

)5

∼
ρv2

µ
. (42)
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The impulse from the shear force cancels out the initial momentum (it stops the ball). So
F∆t ∼ mv, and

∆t =
mv

F
∼

ρR3 × v

µr3/R
∼

R

v

ρv2

µ

(

R

r

)3

. (43)

Using (42),

∆t ∼
R

v

(

ρv2

µ

)2/5

(44)

c) i) R = 10 cm, ρ = 2g/cc, µ = 107 dyn/cm
2
, so from (38),

r ∼ R ×
(

2 × 10 × 103

107

)1/3

∼ 0.13R ∼ 1.3 cm (45)

ii) v = 5m/s so from (44),

∆t ∼
10

500
×

(

2 × 5002

107

)2/5

∼ 6ms (46)

and from (42), we have

r

R
∼

(

2 × 5002

107

)1/5

∼ 0.55. (47)

So r ∼ 5.5 cm . The ball gets quite distorted.
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