
Ph103b: Solutions to Problem Set 5

Problem 1.Relate the speed at which a pole vaulter can sprint to the height he can vault. Provide
both an analytical formula and a numerical estimate in your answer.

Sprinting at speed v, the runner has kinetic energy mv2/2. If the pole stores all the energy, and the

vaulter converts it back into gravitational potential energy, then mg∆h = mv2/2, so ∆h = v2/2g.

Note that the symbol ∆h was used for the height, not h, to emphasize that this height is the change

in center-of-mass height of the vaulter, h0. So h = h0 + v2/2g.

A world-class sprinter can run the 100m dash in 9 s (this time includes accelerating at the start).

So maybe for them v ∼ 12m s−1, but perhaps carrying a pole, and being a notch off world-class

sprinting performance, we have v ∼ 10m s−1. We will take h0 ∼ 1m. Then

h ∼ 1m +
100m2

2 × 10m s−2
∼ 6m. (1.1)

But we have neglected many effects. First, the vaulter must reserve some kinetic energy so she or he

moves forward over the bar. Second, some energy will be dissipated in the pole, and in the ground

upon contact with the pole. Third, air drag will cost the vaulter a bit of energy on the way up. But

the vaulter may use the Fosbury flop to get an extra few centimeters of clearance (by making the

center of mass move under the bar a hair). And the vaulter can push off the pole with her or his

arms on the way up. So maybe all the effects cancel out, and h ∼ 6m is still reasonable.

The Ukrainian Sergey Bubka set a world record of 6.14m (which stood as of a couple years ago).

Problem 2.Skating: the coefficient of steel sliding on ice at temperatures between -11C and -5C is
about 0.005.

a) Estimate the ratio of power a speed skater uses to overcome sliding friction compared to the power
to overcome wind resistance (the world records in 5km and 10km speed skating are held by Koss,
respectively 6

m

35
s and 13

m

30
s).

b) Estimate the forward force that must be applied by the skating strokes to maintain speed against the
total drag. You should find that this is large compared to the sliding friction, but small compared
to the body weight. How is speed skating possible if the forward force must be large compared to
the sliding friction (banana peel effect)? Are wind resistance and sliding friction the only relevant
dissipation?

a) The air drag is turbulent, so Fd ∼ (1/2)ρcdv2A. Putting in v ∼ 1200 cm s−1; A ∼ 40 cm ×

100 cm = 4 ·103 cm2; and cd ∼ 1, we have

Fd ∼
1

2
× 1 × 10−3 g cm−3 × 1.4 ·106 cm2 s−2 × 4 ·103 cm2 ∼ 3 ·106 dyne. (1.2)

With m ∼ 80 kg, the frictional force is

Fµ ∼ mgµ ∼ 8 ·104 g × 103 cm s−2 × 0.005 ∼ 4 ·105 dyne. (1.3)

So the power ratio, which is also the force ratio, is Fµ/Fd ∼ 1/7.

b) The forward force, F , must balance the sum of the frictional and the air drag forces, so F ∼

3.4 · 106 dyne. This force is large compared to the sliding friction (by a factor of 8) and small
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compared to the body weight (by a factor of 1/8µ ∼ 25). Speed skating is possible because you cut

into the ice with the edge of your blade, to give somewhere to push off. Otherwise you’d slip as if

you were on a banana peel (try playing broomball in dress shoes, if you have strong bones).

Besides air resistance and sliding friction, there are a few other sources of dissipation. Your leg

gives up its velocity (and therefore its kinetic energy) when your blade contacts the ice to dig in for

the push. Some of this energy goes into tearing up the ice (the reason for ice grooming machines).

Also you must do some work to move your legs back and forth (even if they didn’t have to stop for

a push), because muscles can’t store energy perfectly.

Problem 3.Estimate the electrical conductivity of sea water. The mass of salt per unit mass of seawater
is 0.035. Hint: think of cages of water molecules and Stokes drag on spheres.

Seawater is mostly water and table salt (NaCl). The ions feel a force from the electric field, F = eE

(ignoring signs). This force fights Stokes drag (the spheres are very small), so

6πρνRv = eE, (1.4)

where R is the radius of the ion with its shell of water, and v is its terminal velocity. Since

J = nve = σE, where σ is the conductivity, we have

σ ∼
ne2

6πρνR
. (1.5)

We estimate R ∼ 2 Å (a shell of water around each ion), and take ν ∼ 10−2 cm2 s−1 as usual. A

mole of NaCl, which provides two charges per molecule, is 60 g, so

n ∼ 0.035 g cm−3 ×
1.2 ·1024 charges

60 g
∼ 7 ·1020 charges. (1.6)

Then

σ ∼
7 ·1020 × 2.5 ·10−19 esu2

6 × 3 × 1 g cm−3 × 10−2 cm2 s−1 × 2 ·10−8 cm
∼ 5 ·1010 s−1. (1.7)

Using the value from Purcell’s sheet of 1Ω−1 = 9·1011 cm s−1, the result is σ ∼ 0.05Ω−1 cm−1, and

the resistivity is 18Ω cm, fairly close to the value Purcell gives of 25Ω cm.

The biggest error here is in estimating the radius of the ion plus waters of hydration. Perhaps R

should be greater than 2 Å, especially for sodium, which is smaller and therefore has a higher electric

field at its ‘surface’. A larger radius would reduce the conductivity. (In fact R = 3 Å would produce

almost exactly the experimental conductivity.) Also charge transfer may increase the conductivity.

Probably the continuum fluid dynamics approximation—using viscosity and the Stokes drag—is

not so bad because the mean free path in water is so short, quite a bit shorter than an ionic radii,

especially if the ion has a shell of water around it.

Problem 4.Interplanetary Communication at Radio Frequencies
a) Calculate the power p received by an earth based radio telescope of diameter D from a spacecraft at

distance s that transmits power P at wavelength λ using an onboard antenna of diameter d. Provide
an analytical formula and a numerical evaluation in watts for D = 70m, d = 3m, s = 10AU, λ = 4 cm,
and P = 10watts.
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b) Denoting the system temperature of the earth based radio telescope by T , what is the maximum
bandwidth ∆ν at which the signal exceeds the noise? As for a), provide both an analytical formula
and a numerical evaluation in Hz for T = 20K.

c) Relate ∆ν to the bit rate at which information can be transmitted from the spacecraft to earth.

a) The angular spread in the transmitted beam is ∆θ ∼ λ/d. By the time the beam reaches earth,

it will have spread to a cone of size L ∼ s∆θ ∼ sλ/d. The fraction of the beam power that the

receiver captures is f ∼ (D/L)2, so

p = Pf ∼ P

(

Dd

sλ

)2

. (1.8)

Putting in the numbers,

p ∼ 10W ×

(

70m × 3m

1.5 ·1012 m × 0.04m

)2

∼ 10−16 W. (1.9)

b) The detector is some system with a degree of freedom, like a spring, so it gets a ‘thermal’ energy

∼ kT (thermal in quotes because the ‘system temperature’ is a faked-up temperature designed to

give the right answer if we treat it as a thermal energy). If the spring has bandwidth ∆ν, then its

damping time is τ ∼ 1/∆ν, so the noise power is kT/τ ∼ kT∆ν. We equate1.8 to the noise power,

to find

∆ν ∼ p/kT ∼
P

kT

(

Dd

sλ

)2

. (1.10)

Numerically, kT ∼ 3 ·10−22 J, so ∆ν ∼ 300 kHz.

c) To order of magnitude, the bit rate is roughly the bandwidth, so ∼ 3 ·105 bits/sec.

The most important effect we’ve neglected is probably antenna efficiency (about 0.7 for the Deep

Space Net, and maybe less for the spacecraft antenna). So perhaps the actual bit rate is about

105 s−1. Water, which is in the atmosphere, doesn’t absorb too badly at 4 cm. The numbers in

this problem describe reasonably the Voyager spacecraft broadcasting from Saturn, from where it

returned 40 000 bits per sec.

Problem 5.Interplanetary Communication at Optical Frequencies
a) Repeat as for problem 4 except in this case the transmitter consists of a laser which emits P = 1

watt at λ = 0.5 µm and is located at the focus of a 10 cm diameter mirror. Assume that the signal is
collected by the Hubble Space Telescope which has D = 2.4m.

b) What is the rate at which photons are received and how is that related to the bit rate at which
information can be transmitted from spacecraft to earth.

a) The analytical formula is identical to that in problem 4. Putting in the numbers,

p ∼ 1W ×

(

2.4m × 0.1m

1.5 ·1012 m × 5 ·10−7 m

)2

∼ 10−13 W. (1.11)

b) The energy per photon is

E = 2π~c/λ ∼
6 × 0.2 eVµ

0.5µ
∼ 2.4 eV ∼ 4 ·10−19 J. (1.12)
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So the photon arrival rate is ∼ 250 kHz. Maybe we use 3 or 4 photons per bit (to fight the
√

N

photon shot noise), so we’ll say the bit rate is ∼ 70 kHz.

Our worst error is probably in our estimate of the channel capacity (in the guess of 3 or 4 photons

per bit).
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