
Ph103b: Solutions to the Final Exam

Problem S1.[5 points] To lift yourself out of the swimming pool, you must overcome the forces of both
surface tension and gravity.

a) Estimate the ratio of these two forces.
b) Repeat the calculation for a fly in the pool.

For a cubical object of size L, the surface tension force is Fγ ∼ 4Lγ, since surface tension acts over

a circumference ∼ 4L. The gravitational force is Fg ∼ ρgL3. Their ratio is

R ≡ Fγ

Fg

∼ 4γ

ρgL2
. (1)

For water, γ ∼ 70 dyne cm−1. For both humans and flies, ρ ∼ 1 g cm−3. Scaling (1) relative to

L = 1 cm, we have

R ∼ 4 × 70 dyne cm−1

1 g cm−3 × 1000 cm s−2
L−2 ∼ 0.3 ×

(

1 cm

L

)2

. (2)

a) For a human, L ∼ 50 cm, so R ∼ 10−4 .

b) For a fly, L ∼ 0.5 cm, so R ∼ 1 . Surface tension is a large effect for a fly. If wetted, the fly

might drown; if not wetted, the fly can float on water.

Problem S2.[5 points] How does the incident acoustic energy flux of a whisper compare to the incident
visible electromagnetic energy flux from a 5’th magnitude (faint naked eye) star? Useful facts: i) a whisper
is about 20 decibels where the sound level in decibels is related to the flux of acoustic energy P by
10 log(P/10−12watt m−2); ii) the sun would appear as a 5’th magnitude star if it were at a distance of
10pc ≈ 3 × 1019 cm.

At R = 10 pc = 3 ·1017 m, the energy flux from the sun is

Pstar ∼
Lsun

4πR2
∼ 4 ·1026 W

4 × 3 × (3 ·1017)2 m2
∼ 4 ·10−10 W m−2 , (1)

where we used Lsun ∼ 4 ·1026 W from Purcell’s sheet. Perhaps half the energy is visible light, so

Pstar ∼ 2 ·10−10 W m−2 . (2)

20 dB corresponds to an acoustic energy flux of Psound ∼ 10−10 W m−2 , so the electromagnetic

flux is slightly greater.

Problem S3.[5 points] The electron is the lightest member of the family of 3 leptons which also includes
the muon and tauon. Suppose the world were made up of muons and nucleons instead of electrons and
nucleons. Describe one aspect in which it would differ from the world as we know it. Note: mµ ≈ 207me.

Let mℓ be the mass of the standard lepton. The Rydberg energy scales as Ry
∞

∼ mℓ(αc)2,

since α ≡ e2/~c is the dimensionless velocity of a hydrogen electron, and α does not change when
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mℓ changes. Replacing me by mµ will increase the Rydberg by a factor of mµ/me ∼ 200, to

200 × 14 eV ∼ 3 keV.

The Bohr radius is α−2r0, where r0 ≡ e2/mℓc
2 is the classical lepton radius. So the Bohr radius

will decrease by a factor of ∼ 200, to 0.25 pm. Densities will increase by 2003 ∼ 107, and bulk

moduli (cohesive energy densities) will increase by 2004 ∼ 109.

Let M be the mass of a molecule (typically M ∼ 104me). The ratio of vibrational to electron

transition energies will increase, from (me/M)1/2 ∼ 0.01, to (mµ/M)1/2 ∼ 2001/2 × 0.01 ∼ 0.15.

Similarly, the ratio of rotational to electronic transitions will increase from ∼ 10−4 to ∼ 2 ·10−3.

Other effects are possible.

Problem S4.[5 points] Estimate the thickness a one meter by one meter glass window pane must have
in order to withstand winds of 100 km h−1.

Two kinds of membrane can form a barrier against the wind. The first kind is an object thick

enough to resist bending (windows). The second kind is a thin sheet, thin enough to bend in the

wind, but thick enough so that its tensile strength is large enough to resist tearing (parachutes and

solar sails). We consider windows first, since that is what the question asks about.

A window is a two-dimensional strut; therefore our solution follows the bending-strut example

discussed in class. Let l ∼ 1 m be the characteristic size of the window, and t be its thickness.

The wind will deform the window (produce strain); when the strain reaches the breaking strain the

window will break.

The elastic energy is

E ∼ ǫ2l2tM, (1)

where l2t is the volume of the pane, and M is its elastic modulus. The force is

Felastic ∼
∂E

∂(∆y)
∼ ǫl2tM ∂ǫ

∂(∆y)
, (2)

where ∆y is the characteristic deflection of the window. We need to find an expression for ∂ǫ/∂(∆y).

Let the radius of curvature of the window be R. From Figure 1 (dropping the constants), we see

that the strain is

ǫ ∼ ∆l

l
∼ t

R
. (3)

From Figure 2, we see that in terms of the maximum deflection, the radius of curvature is

R ∼ l2

∆y
, (4)

if we again drop the dimensionless constants. Combining (3) and (4), we have

ǫ ∼ t∆y

l2
, (5)

and therefore ∂ǫ/∂(∆y) ∼ t/l2. When we substitute this result into (2), we obtain Felastic ∼ ǫt2M.
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Figure 1. A piece of material (the
dark lines) bent to have radius of
curvature R. The thickness is t; the
length of the central surface (the
thin solid line) is l. The angle is
θ = l/R, so the length of the outer
surface is (R+ t/2)θ = l(1+ t/2R).
The strain at the outer surface is
therefore ǫ ∼ ∆l/l = t/2R.

2R − ∆y ∆y

l/2

l/2

A

Figure 2. A radius of curvature R pro-
duces a deflection ∆y in the central sur-
face (dark line). We will use one of the
power theorems of geometry to express ∆y
in terms of R. The point A splits the diame-
ter into a segment of length 2R−∆y ≈ 2R,
and one of length ∆y. It splits the per-
pendicular chord into two segments each of
length l/2. The power theorem says that
the product of the split lengths is indepen-
dent of the chord, so 2R∆y ≈ l2/4. There-
fore R = l2/8∆y.

The force from the wind is Fwind ∼ ρav
2l2, where ρa is the density of air, and v is the wind velocity.

Equating the elastic force to the wind force,

ρav
2l2 ∼ ǫt2M, (6)

and solving for the critical thickness, we have

t ∼ l

(

ρav
2

ǫM

)1/2

. (7)

The numerator of the expression parenthesis is the ram pressure from the wind, p ∼ ρav
2. Here,

v ∼ 100kmh−1 ∼ 3·103 cms−1, so p ∼ 104 ergcm−3. The denominator, if we allow no safety margin,

is the yield stress. Taking M ∼ 7·1011 erg cm−3 and ǫ ∼ 10−3, we have σy ∼ 7·108 erg cm−3. Then

t ∼ 100 cm ×
√

104

7 ·108
∼ 0.3 cm. (8)

To include a safety margin, we will estimate that t ∼ 0.5 cm .

[Actually with t ∼ 0.3 cm, a strain of ǫ ∼ 10−3 corresponds to R ∼ 300 cm (using (3)), which

corresponds to ∆y ∼ 30 cm (using (4)). So Figure 1 is roughly to scale, and a window that bent
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as much would probably fall out of its frame. Therefore a real 1 m window would be significantly

thicker than 0.3 cm, with t ∼ 1 cm.]

We can express (7) as

t

l
>

(

p

σy

)1/2

, (9)

where p ∼ ρav
2 is the wind pressure and σy = ǫM is the yield stress. Among the four variables—p,

σy, t and l—there are two dimensionless Pi variables (the four variables contain two dimensions:

pressure and length). The Pi theorem then tells us that

t

l
∼ f

(

p

σy

)

, (10)

where f is a dimensionless function of a dimensionless argument. For the solution given in (9), we

have f(x) =
√

x.

Now we will treat the solar sail, or parachute, case, which applies if the membrane is very thin. A

thin-enough membrane can bend into a hemisphere without breaking. In a hemisphere of thickness

t and half-circumference l, the outer surface has extra length ∆l ∼ t, or strain ǫ ∼ t/l. Therefore,

for the membrane to bend, we must have t/l < ǫy. The requirement that the membrane bend sets

a maximum thickness. The requirement that it not tear in the wind will set a minimum thickness.

In this hemispherical configuration, the membrane will break if the wind force exceeds its tensile

strength; breaking will happen when ρav
2l2 ∼ σytl, since tl is roughly the cross-sectional area of

the window. Solving for the minimum thickness-to-length ratio, we have:

t

l
∼ p

σy

, (11)

which is of the form given in (10), with f(x) = x. This parachute scaling will apply to the solar

sail of problem L4.

Above we found that ρav
2/σy ∼ 1.4 ·10−5. Thus (11) gives t > 10−3 cm (provided we assume that

the parachute material has the same yield stress as glass). For the membrane to be able to bend

into a parachute, we require t/l < ǫy ∼ 10−3, or t < 10−1 cm.

Problem S5.[5 points] Consider the stability of a two dimensional, incompressible, stratified, shear
flow. Let z denote the vertical coordinate and g the constant gravitational acceleration. The flow is
characterized locally (in z) by the logarithmic density gradient, d ln ρ/dz < 0, and the vertical shear of the
horizontal (z) velocity, dux/dz.

a) Provide a dimensionless parameter whose value determines the stability of the flow.
b) What is the physical significance of this parameter?

a) The dimensions:

d ln ρ/dz [L]−1

dux/dz [T ]−1

g [L][T ]−2
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A dimensionless combination of these expressions is

Π1 = g

(

d ln ρ

dz

)

/

(

dux

dz

)2

, (1)

which is the Richardson number, Ri.

b) Consider a slice of ocean, with thickness ∼ ∆z, and work in the rest frame frame of the fluid in

the center of the slice. Then the numerator of (1) is

N =
g

ρ

∆ρ

∆z
, (2)

and the denominator is

D =

(

∆ux

∆z

)2

. (3)

If we multiply both N and D by ρ(∆z)2, then we get

N ′ = g∆ρ∆z, (4)

and

D′ = ρ(∆ux)2. (5)

N ′ is the gravitational potential energy change due to moving a unit volume of fluid from the edge

of the slice to the center. D′ is the corresponding kinetic energy change (since ∆ux is the velocity at

the edge of the slice, and the fluid would be at rest in the center.) So Ri measures the stratification

(how much the fluid resists generation of turbulence): large, negative values of Ri imply stability.

Problem S6.[8 points] A particle of speed v = βc moving through a medium with index of refraction
n emits Cerenkov radiation if β > 1/n. The energy radiated in Cerenkov radiation at frequencies between
ω1 and ω2, per unit length traversed by the particle, dE(ω1, ω2)/dx depends on the electron charge e, speed
of light c, ω1, ω2, n, β.

a) Use the Buckingham Pi theorem to find an expression for dE/dx.
b) Recall that at frequency ω, the index of refraction for a medium composed of atoms whose electrons are

approximated as harmonic oscillators of natural frequency ω0 is given by n2 = 1 + 4πNe2/(ω2

0 − ω0),
where N is the number of electrons per unit volume. For ultrarelativistic particles, the dE/dx of
Cerenkov radiation is independent of β, and in a dilute medium such as air, with n−1 ≪ 1, dE/dx ∝ N .
Find an expression for dE/dx in this case (β → 1, n − 1 ≪ 1).

a) Since dE/dx is proportional to dω, we have

d2E(ω)

dx dω
= f(e2, c, ω, n, β), (1)

where we used e2 instead of e since e2 has the more intuitive units. The variables n and β are

already dimensionless. The remaining four variables have the following dimensions (in an energy,

velocity, length system of units):

d2E/dx dω [E][V ]−1

e2 [E] · [L]

c [V ]

ω [V ][L]−1 (2)
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There is only 1 Pi variable (there are 4 original variables and 3 dimensions), which we can take to

be

Π1 =
d2E(ω)

dx dω

/

e2ω

c2
. (3)

From the Pi theorem, we have g(Π1, n, β) = 0, or Π1 = f(n, β). So

dE(ω)

dx
∼ e2ω

c2
f(n, β) dω . (4)

b) The index of refraction is

n2 = 1 +
4πNe2

me(ω
2
0 − ω2)

. (5)

For dilute media, where n − 1 ≪ 1, this expression reduces to n − 1 ∝ N . Since we are told that

dE/dx ∝ N in this limit, and we are working in the ultrarelativistic limit (where β drops out), we

know that f(n, β) ∼ n − 1. Therefore

dE(ω)

dx
∼ e2ω

c2
(n − 1) dω. (6)

Problem L1.[10 points] Fun with turkeys
A mad scientist stuffs his Thanksgiving turkey with liquid oxygen, attaches a nozzle and ignites it; the
resulting burn lasts several seconds. Estimate the maximum altitude the charred remains could attain

a) if the earth had no atmosphere.
b) including the effects of the earth’s actual atmosphere.
c) in case (b), how does the altitude attained scale with the size of the turkey?

We will solve this using a conservation-of-energy argument. The argument to be given is wrong,

but Sterl and the TAs used it when they solved it initially, so we’re giving full credit for it. For the

correct solution see Sterl’s handwritten solution in the Interaction Room.

a) Combustion of dry turkey releases E ∼ 6kcalg−1 (taking turkey to be a mixture of carbohydrate,

protein and fat). We assume that a fraction of the mass, f ∼ 0.2, is combustible (the rest is water),

and that only a fraction ǫ ∼ 0.3 of the combustion energy is converted into gravitational potential

energy via thrust. Then mgh ∼ fǫmE , where m is the mass of the turkey; therefore

h ∼ fǫE/g ∼ 0.2 × 0.3 × 2.5 ·1011 erg g−1

1000 cm s−2
∼ 1.5 ·107 cm = 150 km . (1)

This part of the solution is fine; Sterl’s solution provides a way to estimate ǫ.

b) The turkey is launched with a supersonic velocity: v0 ∼ √
gh ∼ 105 cm s−1. When the turkey

has displaced a mass of air equal to its own mass, it will have lost ∼ 1/2 its momentum. Picture

a cubical turkey, of side length L. To displace a mass of air m ∼ ρtL
3, where ρt is the density of

turkey, it must travel a distance d given by

ρaL
2d ∼ ρtL

3. (2)

Therefore

d ∼ L
ρt

ρa

. (3)
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If the turkey has mass m ∼ 10kg, and density ρt ∼ 1gcm−3, then its size is L ∼ (m/ρt)
1/3 ∼ 20cm,

so

d ∼ 20 cm × 1000 = 0.2 km. (4)

It takes many such heights to slow the supersonic turkey down to a reasonable speed, slow enough

that gravity can reverse its velocity. We will assume it takes 5 such heights. Then h ∼ 5d ∼ 1 km .

This method is only correct for an extremely fast burn, less than ∼ 0.1 s. With a slower burn,

drag will have time to slow the turkey down during the powered portion of the flight, to a terminal

velocity determined by equating the thrust to the air drag. The coasting part of the flight will

be shorter, and most of the height will be attained during the powered part of the flight. See the

handwritten solution for the proper treatment of these effects.

c) From (3), we see that d ∝ L, so the height attained will be ∝ L as well, until h ∼ O(6000km),

and g becomes significantly smaller. Again, this result will be different if we include the powered

part of the flight.

Problem L2.[10 points] Toaster physics
An American (120V) toaster uses 400W in each bread slot. Each slot is wound with 300cm of metal ribbon
10−2 cm thick, which serves as the heating element.

a) Estimate the width of the metal ribbon.
b) Estimate (using fundamental physics and the numbers provided) the temperature of the ribbon when

the toaster is on.
c) How long does the ribbon take to reach this temperature after the toaster is turned on?

a) Using P = V 2/R, with P = 400 W and V = 120 V, we have R ∼ (120)2/400Ω ∼ 35Ω. The

resistance is R = ρl/wt, where ρ is the resistivity, l is the length, w is the width, and t is the

thickness of the ribbon. For copper at room temperature, Purcell’s sheet quotes ρ ∼ 2·10−6 Ω · cm.

The ribbon is red hot, say T ∼ 1500K, so we should increase ρ by a factor of 5 for the lower phonon

mean free path (ρ ∝ T , as we found in the light bulb problem). Also toaster filaments are not made

of copper; they are made of some higher resistance material, say tungsten, so we should multiply ρ

by 3 or so. So we will take ρ ∼ 3 ·10−5 Ω · cm.

The width is given by

w ∼ ρl

tR
∼ 3 ·10−5 Ω · cm × 300 cm

0.01 cm × 35Ω
∼ 0.03 cm . (1)

Sterl measured a width of 0.1 cm in an actual toaster.

b) The filament is a blackbody with surface area

A ∼ 2(w + t)l ∼ 2 × 0.04 cm × 300 cm ∼ 24 cm2, (2)

radiating P = 400 W. Since P ∼ AσT 4, we have

T ∼
(

P

σA

)1/4

∼
(

400 W

24 cm2 × 6 ·10−12 W K−4 cm−2

)1/4

∼ 1500 K . (3)
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[The high temperature is the reason ribbons are not made out of copper, which melts at ∼ 1400K—

or even iron, which would be marginal (at melts at ∼ 1800K). Tungsten, which melts at ∼ 3700K,

is a much better choice.]

c) The thermal energy stored in the filament is E ∼ wltcp∆T , where cp is the specific heat per

volume, and ∆T ∼ 1200K is the temperature change. From Purcell’s sheet, cp ∼ 0.5 cal cm−3 K−1.

Using (1) for the width, we have

E ∼ 0.03 cm × 300 cm × 0.01 cm × 0.5 cal cm−3 K−1 × 1200 K ∼ 60 cal ∼ 250 J. (4)

The time to generate this energy is the heating time:

τ ∼ E

P
∼ 250 J

400 W
∼ 0.6 s . (5)

Problem L3.[10 points] The blood and guts of exercise
You are pedaling your bicycle as hard as you can, generating 300W of mechanical power.

a) If there were no heat flow out of your leg muscles, how long would it take for the temperature deep
inside your leg to rise by 1K (onset of fever)?

b) If the inner temperature of the leg did rise by 1K, what fraction of the heat generated by the leg
during vigorous exercise could be carried by static thermal conduction in the leg tissue?

c) The excess heat is carried from the interior to the skin by the blood vessels. Estimate the volume of
blood flow (in cm3 s−1 required to transport the heat generated by the legs during exercise.

d) Estimate the mass of oxygen per unit time (g s−1) which must be carried to the muscles to sustain
the exercise aerobically.

e) 50% of your blood volume is occupied by red blood cells. 1 cm3 of packed red blood cells contain 0.35 g
of hemoglobin. Oxygenated hemoglobin contains 1 O2 molecule. Use this information, combined with
your answers to parts (c) and (d), to estimate the molecular weight of hemoglobin.

f) Your white (anaerobic) muscles store enough energy to sustain maximum output for about 30 seconds.
Would there be a point to storing more energy?

a) The human body is about 20% efficient which means that if you generate P = 300 W of

mechanical power you will produce a further 1200 W of heat: the rate of heat production is Q̇ =

1.2 ·1010 erg s−1. If none of this heat is transported away from the legs, the time, t, it would take

to raise the temperature of the legs by ∆T is given by

t =
cm∆T

Q̇
, (1)

where c is the heat capacity of leg. If we take the mass of your legs to be ∼ 20 kg, and their heat

capacity to be that of water, then the time it takes to raise their temperature by 1 K is

t ∼ 4.2 ·107 erg g−1 K−1 × 2 ·104 g × 1 K

1.2 ·1010 erg s−1
∼ 1 min . (2)

b) If we treat each leg as a cylinder of radius r and length h, the rate of heat loss, Ḣ, from both

legs is the flux across a thermal boundary layer of thickness r, times the surface area:

dH

dt
∼ K

∆T

r
× 2 × 2πrh = 4πK∆Th, (3)
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where K is the thermal conductivity of thigh. Using Purcell’s sheet, we take the thermal conduc-

tivity to be

K ∼ 10−2 cal s−1 cm−1 K−1 ∼ 4.2 ·105 erg s−1 cm−1 K−1. (4)

Then (3) becomes

Ḣ ∼ 4π × 4.2 ·105 erg s−1 cm−1 K−1 × 1 K × 50 cm ∼ 2.5 ·108 erg s−1 = 25 W . (5)

Only about 2% of the heat generated could be lost by thermal conduction.

c) If the mass flow rate of blood is Ṁ , then the rate at which blood transports heat is

Q̇ = cṀ∆T, (6)

where c is the heat capacity of blood. If we take the heat capacity of blood to be that of water, we

find that the flow rate is

Ṁ =
1.2 ·1010 erg s−1

4.2 ·107 erg g−1 K−1 × 1 K
∼ 300 g s−1. (7)

So the volume flow rate of blood is about 300 cm3 s−1 . [Note: the stroke volume of the human

heart is about 70 cm3, so this volume flow rate corresponds to a heartrate of about 250 beats per

minute.]

d) The chemical reaction for respiration of carbohydrate is

CH2O + O2 → CO2 + H2O + ∆E; ∆E ∼ 4 kcal g−1 of CH2O (8)

The molecular mass of CH2O is 30 and that of O2 is 32 so the mass ratio of carbohydrate to oxygen

is about 1:1. If Ṁ is the rate of oxygen consumption by mass, then

(Q̇ + P ) = Ṁ∆E, (9)

so

Ṁ ∼ 1.2 ·1010 erg s−1 + 0.3 ·1010 erg s−1

1.7 ·1011 erg g−1
∼ 0.1 g s−1 . (10)

[Note: 0.1gs−1 of O2 is 100cm3 s−1. Assuming a body mass of 70kg, a 100cm3 oxygen consumption

rate means an oxygen consumption per unit body mass of V̇O2
∼ 86 cm3 min−1 kg−1. The highest

directly measured value of V̇O2
is 93 cm3 min−1 kg−1, which belonged to a Scandanavian cross

country skier.]

e) In parts (c) and (d) it was found that 300 cm3 of blood carries 0.1 g of O2. Given that blood

is 50% red blood cells by volume and that there is 0.35 g of hemoglobin in every 1 cm3 of red cells

this means that 150 cm3 × 0.35 g cm−3 ∼ 50 g of hemoglobin is needed to carry 0.1 g of O2. Thus

the molecular mass of hemoglobin is about (50/0.1) × µO2
= 500 × 32 amu = 16, 000 amu .

[Normal human hemoglobin consists of four chains, each of which is capable of carrying one O2

molecule. There are two α-chains, each with mass 15,126 amu, and two β-chains, each with mass

15,867 amu.]

f) The results above suggest that the ability of the blood to transport oxygen to the muscles

and its ability to transport heat away from the muscles are optimized. The implication is that

periods of anaerobic respiration (which produces energy without consuming oxygen) much beyond

30 seconds would lead to a dangerous rise in body temperature .
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Problem L4.[10 points] Interplanetary Sailing Using Solar Radiation
a) A circular sail composed of aluminum foil is attached to a spacecraft of equal mass in a manner similar

to a parachute (i.e. the spacecraft hangs in the center of the sail on the sunward side, suspended by
threads which extend from the circumference of the sail). What is the maximum thickness of the
aluminum foil which would permit sailing in the radial direction away from the Sun?

b) What is the maximum radius that a solar sail composed of a single sheet of aluminum could have if it
is to avoid tearing? Consider the system described in (a).

c) Estimate the minimum thickness of aluminum foil sufficient to reflect most solar radiation.

a) The mass of the sail is Msail = πR2tρ, where R is the radius of the sail, t is its thickness, and ρ

is its density, so the mass of the sail plus spacecraft is

M ∼ 2πR2tρ. (1).

At a distance D from the sun, the radiation pressure is P = 2P/c, where P ∼ Lsun/4πD2 is the

energy flux from the sun (the 2 is because almost all the radiation reflects off the sail, as we will

see in part c). The force over the whole sail is therefore

Frad ∼ πR2P ∼ πR2

4πD2

2Lsun

c
=

1

2

(

R

D

)2
Lsun

c
. (2)

For the ship to make progress, this force must at least balance solar gravity, so

1

2

(

R

D

)2
Lsun

c
∼ GMsunM

D2
∼ GMsun2πtρ

(

R

D

)2

, (3)

where we used M from (1). Simplifying (3), we find

t ∼ Lsun

4πρcGMsun

. (4)

Putting in numbers from Purcell’s sheet, and guessing that ρ ∼ 3 g cm−3, we have

t ∼ 4 ·1033 erg s−1

12 × 3 g cm−3 × 3 ·1010 cm s−1 × 7 ·10−8 erg cm g−2 × 2 ·1033 g
∼ 3·10−5 cm = 3000 Å . (5)

b) We assume that the points where the parachute strings attach to the sail are well reinforced,

so that no tears occur there. Consider a hemispherical sail. The radiation force produces a stress

across the equator of the hemisphere, which has cross-sectional area A ∼ 2πRt. So the stress is

σ ∼ Frad/2πRt and the strain is ǫ ∼ σ/M ∼ Frad/2πRtM, where M is the elastic modulus of

aluminum. Using the radiation force is given by (2), we have

ǫ ∼ RLsun

4πD2tMc
. (6)

Solving for the radius, we have

R ∼ 4πD2tǫMc

Lsun

. (7)

We estimate that M ∼ 1012 erg cm−3, and with a reasonable safety margin, that ǫ ∼ 10−3. The

earth–sun distance will determine the largest allowed R, because the strain will be greatest there
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(since the spacecraft sails away from the sun), so we take D = 1 AU. Then, using t from (5), we

have

R ∼ 12 × 2.3 ·1026 cm2 × 3 ·10−5 cm × 10−3 × 1012 erg cm−3 × 3 ·1010 cm s−1

4 ·1033 erg s−1
∼ 6 ·108 cm. (8)

So R ∼ 6000 km , which is about the radius of the earth.

If we note that the radiation pressure is p ∼ Lsun/(cD2), then we can rewrite (7) as t/R ∼
p/(ǫM) ∼ p/σy. This relation is what we found in the solution to S4, when we considered the

easy-to-bend, thin-membrane limit (see (11) in solution S4). The solar sail is certainly easy to

bend: t/R ∼ 10−9 ≪ ǫy. Therefore, the strut solution (see (9) in the solution to S4) is not relevant.

(The strut would only be relevant for a solar sail with R < t/ǫy ∼ 0.03 cm; such a small sail would

not make a very useful propulsion device.)

[The mass of the sail, and of the payload, is

M ∼ πR2tρ ∼ 3 × (6 ·108 cm)2 × 3 ·10−5 cm × 3 g cm−3 ∼ 1014 g = 108 tons.

For comparison, a Nimitz-class aircraft carrier is ∼ 105 tons.]

c) The free electrons in aluminum make a plasma, with plasma frequency

ωp =

(

4πnee
2

me

)1/2

= c

(

4πnee
2

mec2

)1/2

= (4πnea0)
1/2

αc, (9)

where ne is the number density of free electrons, and we used e2/mec
2 ≡ r0 = α2a0, where r0 is the

classical electron radius. We guess that there are 2 free electrons per (3Å)3 cube, so ne ∼ 1023cm−3.

Then

ωp ∼
(

4 × 3 × 1023 cm−3 × 0.5 ·10−8 cm
)1/2 × 0.01 × 3 ·1010 cm s−1 ∼ 2 ·1016 s−1. (10)

The index of refraction is

n2 = 1 −
(ωp

ω

)2

. (11)

When n2 < 0, then n is imaginary and the wave vector k = nω/c will be imaginary as well: the

waves will be exponentially cut off in the plasma, with length constant l ∼ 1/k = c/(|n|ω). What

doesn’t make it through the sail will be reflected.

The shortest wavelengths will travel the farthest, so we will choose the thickness so that most of

the blue light is reflected. For blue light,

ω ∼ 2πc

λ
∼ 6 × 3 ·1010 cm s−1

5 ·10−5 cm
∼ 4 ·1015 s−1. (12)

Thus ω ≪ ωp, so from (11) we find that |n| ∼ ωp/ω. So

l ∼ c

|n|ω ∼ c

ωp

∼ 3 ·1010 cm s−1

2 ·1016 s−1
∼ 1.5 ·10−6 cm = 150 Å. (13)
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A couple length constants will reflect ∼ 1 − e−4 ∼ 98% of the light, so we estimate the required

thickness as t ∼ 300 Å , which is significantly less than the maximum thickness of the foil we

calculated in (5); the craft can sail.

[The usual formula for the skin depth,

δ ∼ c√
2πµωσ

, (14)

where σ is the conductivity, assumes that σ is real (i.e., that the wave is attenuated by eddy currents

in the conductor). However, at optical frequencies, σ is almost purely imaginary in most metals,

so the derivation of (14) breaks down.

To treat the general case, we start with the expression for k2 in a conductor, from Jackson, Classical

Electrodynamics, 1st. ed., p. 223:

k2 = µǫ
ω2

c2

(

1 + i
4πσ

ωǫ

)

. (15)

(This expression can be got by substituting a plane wave of frequency ω and wavevector k into

Maxwell’s equations.)

In the free-electron model of metals, we have

dv

dt
+ γv =

eE

me
, (16)

where γ is the damping constant (1/γ ≡ τ is mean free time). The current density is given by

J = neev and J = σE, so E = (nee/σ)v. Therefore (16) becomes

(

d

dt
+ γ

)

v =
nee

2

meσ
v. (17)

Substituting in a plane wave of frequency ω, so that v ∝ e−iωt, we find that −iω + γ = nee
2/meσ.

Therefore

σ =
nee

2

me(γ − iω)
=

ω2
p

4π(γ − iω)
. (18)

At high frequencies (ω ≫ γ), the conductivity is independent of damping, and we have

σ ∼ i
ω2

p

4πω
∼ iσ0

γ

ω
, (19)

where σ0 is the conductivity at ω = 0. The damping drops out in the high-frequency limit because

an electron collides only after many cycles (so the real part of the conductivity—the dissipative

part—is small).

We may estimate γ using γ ∼ vF/l, where vF is the Fermi velocity, and l is the mean free path;

typically l ∼ 100 lattice constants in a good conductor. Taking vF ∼ 108 cms−1 and l ∼ 3·10−5 cm,

we have γ ∼ 3 · 1013 s−1. For ω ≪ γ, the DC conductivity is a good approximation to σ; but at

12



optical frequencies, where ω ≫ γ, we see from (19) that σ falls as γ/ω from the DC value, and that

σ is almost purely imaginary.

We can estimate γ by another method: we force the ω = 0 conductivity to match the measured

conductivity. From Purcell’s sheet, for copper at room temperature, ρ ∼ 2·10−6 Ω · cm. Aluminum

is a slightly worse conductor, so we’ll take ρ ∼ 3 ·10−6 Ω · cm. Then the DC conductivity is

σ0 = ρ−1 ∼ 3 ·105 Ω−1 cm−1 × 9 ·1011 cm s−1

1Ω−1
∼ 3 ·1017 s−1. (20)

Using (18) with ω = 0 to solve for γ, we have

γ ∼
ω2

p

4πσ
∼ 4 ·1032 s−2

4 × 3 × 3 ·1017 s−1
∼ 1014 s−1, (21)

which is in rough agreement with the value we estimated using the collision time.

To find the skin depth, we substitute (19) into (15), to get (with µ = ǫ = 1):

k2 ∼ ω2

c2

(

1 −
ω2

p

ω2

)

. (22)

Since n = kc/ω, we obtain

n2 = 1 −
(ωp

ω

)2

, (23)

which is (11) again, via a much longer route.]

Problem L5.[10 points] Bombs and torpedoes
An explosion in an isotropic medium (like air or water) creates a spherically expanding shock front, across
which the pressure increases discontinuously. A sudden overpressure of 0.1–1 atm (equivalent to 0.1-1kg
weight per cm2) destroys living things, buildings and ships.

a) While the velocity of the shock is much larger than the speed of sound cs of the medium through which
it propagates, the shock speed v depends only on the density ρ of the medium, the instantaneous radius
R of the shock, and the explosion energy E. Use the Buckingham Pi theorem to find the shock speed
v as a function of E, R and ρ.

b) When the energy density (pressure) behind the shock drops below ρc2

s, it ceases to be a strong shock,
and its speed is no longer given by the v you found in part (a), but it instead propagates at nearly
the sound speed as a (sharp-edged) wave. Find the postshock pressure as a function of E, R, ρ and
cs in this limit.

c) Consider two explosions of identical energy E, one of which occurs under water and the other in air.
Compute the ratio of the distances at which the shockwave pressure falls to 1 atm, R1w/R1a, and thus
show that underwater explosions are destructive to a much larger distance than the same explosions
in air.

a) We want v = v(E,R, ρ). With four variables and three dimensions, we have one Pi variable:

Π = E/ρR3v2. So

v ∼
(

E

ρR3

)1/2

. (1)

The postshock pressure is ∆p = p − ρv2 ∼ E/R3.
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b) In a weak shock moving at velocity cs + ∆v, the pressure jump (as for sound waves), is

∆p

ρc2
s

∼ ∆v

cs

. (2)

This result can be found by the piston argument from class, or from the jump condition of conser-

vation of mass and momentum flux across the shock front. By the time that ∆p ∼ ρc2
s , the reverse

shock will have propagated through the ejected explosive. Since the internal pressure cannot drop

below ambient in this stage (or an implosion would result), the weak shock must propagate as an

N-wave—an overpressure region, followed by a suction region.

Let the width of the N-wave be w. The kinetic energy stored in the weak shock is

E ∼ ρ(∆v)24πR2w. (3)

The thermal energy will be O(∆p)2, since the + and − parts of the N-wave cancel to first order;

since ∆p ∼ ∆v, the thermal energy will also be O(∆v)2, and in fact is of the same magnitude as

the kinetic energy.

We will guess that w is constant and check this assumption shortly. From (3), since E is a constant,

we have

∆v ∝ 1

R
√

w
. (4)

With w constant as well, we have ∆v ∝ R−1. Since dw/dt = 2∆v and dR/dt ∼ cs, we have

dw

dR
=

dw/dt

dR/dt
∼ ∆v

cs

∝ R−1, (5)

since Ṙ ∼ cs. So w ∝ ln R (which means w is almost constant). So from (4), we have

∆v ∝ 1

R
√

ln R
. (6)

The initial width of the shock is R∗ = (E/ρc2
s )

1/3, the radius at the strong-shock to weak-shock

transition. So

∆v ∼ cs

R∗

R

1
√

ln(R/R∗)
, (7)

and

∆p ∼ ρc2
s

R∗

R

1
√

ln(R/R∗)
. (8)

c) In air ρc2
s ∼ 1atm, but in water ρc2

s ∼ 104 atm (103 times denser, and 3 times the sound speed).

So in air, the postshock pressure drops at 1 atm at the strong-to-weak-shock transition:

R1a ∼ R∗a ∼
(

E

ρac2
sa

)1/3

. (9)

For R1w, we use (8) to find that

1 atm ∼ ρwc2
sw

R∗w

R1w

1
√

ln(R1w/R∗w)
∼ ρwc2

sw

(

E

ρwc2
sw

)1/3
1

R1w

1
√

ln(R1w/R∗w)
. (10)
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Therefore, since 1 atm ∼ ρac
2
sa, we have

R1w ∼ ρwc2
sw

ρac2
sa

(

E

ρwc2
sw

)1/3
1

√

ln(R1w/R∗w)
. (11)

This equation, with R∗w replaced by the blast radius a0, was first derived by Bethe and Kirk-

wood in their wartime study of underwater explosions (see Shock and Detonation Waves, by John

G. Kirkwood (New York: Gordon and Breach, 1967), p. 30, eq. 5.3.)

Combining (9) and (11), we find that

R1w

R1a

∼
(

ρwc2
w

ρac2
a

)2/3
1

√

ln(R1w/R∗w)
∼
(

104
)2/3 × 1√

ln 104
∼ 100 . (12)

Therefore are destructive for a far longer distance in water than they are in air.
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