
Ph103b: Solutions to Problem Set 6

Note: we refer frequently to the results on falling balls, which can be found at http://dope/oom/

under ‘Bouncing Balls’.

Problem 1.A steel ball and a solid ball of soft rubber (one which you can deform perceptibly by
squeezing hard) are dropped onto a hard steel plate. What is the maximum height from which the steel
ball can be dropped before its coefficient of restitution begins to drop due to inelastic deformations? For
the rubber ball? Do the sizes of the balls matter?

From the class on bouncing balls, we know the strain is

ǫ ∼

(

ρv2

M

)1/5

∼

(

ρgh

M

)1/5

. (1.1)

Taking the yield strain for steel to be ǫ ∼ 0.005 (as in class), and M ∼ 2 · 1012 erg cm−3, we get

ρgh ∼ 6 erg cm−3. Taking ρ ∼ 8 g cm−3, we get h ∼ 0.001 cm ∼ 10µ. That seems kind of small.

For rubber, we will find below that M ∼ 107 erg cm−3 and ρ ∼ 1 g cm−3. Alternatively, we can

estimate M by guessing that a finger can exert 10 ‘lb’ of force over say 1 cm2, and this may deform

the ball by perhaps 10% (ǫ ∼ 0.1). This force produces a stress σ ∼ 5000 g × 103 cm s−2/1 cm2 ∼

5 · 106 erg cm−3. Since σ = ǫM, we get an estimate M ∼ 5 · 107 erg cm−3. The yield strain in soft

rubber is ∼ 1, so using M ∼ 107 erg cm−3, we get ρgh ∼ 107 erg cm−3; therefore h ∼ 104 cm.

These heights can’t be taken too literally because of the high exponent involved (a fifth power): a

small—by the standards of this class—error in the required ǫ, or in the formula for ǫ, may make

one or two orders of magnitude error in estimating M or h.

The size of the ball doesn’t matter, only the height through which the center of mass falls.

Problem 2.The blue superball which was dropped off the top of Millikan library has a diameter of
4.2 cm and a mass of 38 g. Resting on a hard surface, the radius of the circle of contact is measured to be
0.13 cm.

a) What is the elastic modulus of the rubber?
b) When you drop the rubber ball, it bounces with decreasing height and increasing frequency until it

stops bouncing and begins simply to vibrate. What is the minimum time between bounces of the
rubber ball?

a) Resting on the ground deforms the ball. For the ball-drop discussed in class, the strain is ǫ ∼ r/R,

which produces a stress σ ∼ Mǫ ∼ Mr/R, and it occurs over an area ∼ r2. So the restoring force

is F ∼ σr2 ∼ Mr3/R. This force must balance the weight, so F = mg ∼ ρR3g, and we get

Mr3/R ∼ ρR3g. Solving for the elastic modulus, we find

M ∼ ρgR

(

R

r

)3

. (1.2)

With R = 2.1 cm and m = 38g, we calculate ρ ≈ 1 g cm−3. Putting these numbers into1.2:

M ∼ 1 g cm−3 × 103 cm s−2 × 2.1 cm ×

(

2.1 cm

0.13 cm

)3

∼ 107 erg cm−3. (1.3)
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Typical values for soft rubber are M ∼ 2 ·107 erg cm−3.

b) When the contact time exceeds the time it takes the ball to fall the height its center of mass

rises after a bounce, the ball will stop bouncing. From the notes, the contact time is

∆t ∼
R

v

(

v

cs

)4/5

, (1.4)

where cs ∼
√

M/ρ is the sound speed in the ball. The fall time is ∼ v/g. Equating these times and

solving for the critical v, we find

v ∼
(Rg)

5/6

c
4/5
s

. (1.5)

The corresponding fall time is the inter-bounce time at the transition to vibration:

∆t ∼
v

g
∼

(

R

cs

)2/3 (

R

g

)1/6

. (1.6)

The first factor in parenthesis, R/cs, is the time for sound to cross the ball; the second factor

contains
√

R/g, which is the time to fall a distance equal to the radius of the ball. The critical time

is a weighted geometric mean of these two times.

Now let’s put in numbers. Using1.3 for M, we find that the sound speed is cs ∼
(

107/1
)1/2

cm s−1 ∼

3000 cm s−1. Then

∆tcrit ∼

(

2 cm

3000 cm s−1

)2/3

×

(

2 cm

1000 cm s−2

)1/6

∼ 3ms. (1.7)

As the ball bounce time decreases, we should hear a steadily increasing frequency until around

f ∼ (3ms)−1 ∼ 300Hz, the sound should stop.

Problem 3.Yet more fun with balls
a) If you drop the blue superball of problem 2 from height h = 1m with no spin while you are at rest,

it will rebound with no spin. But if you drop it while walking, it will be spinning when it rebounds.
Why? Is Galilean invariance wrong? Estimate the rotation frequency of the ball after bouncing.

b) You repeat the experiment, but now dropping the ball out of a car with horizontal velocity vx adjustable
to higher values than walking speed. Estimate the critical vx above which the ball skids, in the
speedometer units of your native land.

a) During contact with the ground, the frictional force exerts a torque on the ball, which will give

it a spin. Galilean invariance is not wrong; it just doesn’t apply here because we have a preferred

frame: the frame of the ground. If the ball has a horizontal velocity with respect to this preferred

frame, it will rebound with spin (which is a frame-independent quantity).

If the ball doesn’t slip, and has forward velocity v′x after the bounce, then the angular velocity ω

must be enough to make ωR = v′x. Conserving the forward kinetic energy (which gets split into

rotational and and translational pieces), we get

1

2
mv2

x =
1

2
mv′2x +

1

2

2

5
mR2ω2 =

7

10
mv′2x . (1.8)
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Therefore, vx =
√

5/7 vx ∼ 0.85vx and ω = 0.85vx/R. Walking speed is ∼ 3mph or 150 cm s−1.

With R = 2.1 cm, we get

ω ∼ 60 rad/s ⇒ f ∼ 10 revolutions/second. (1.9)

b) Let cf be the coefficient of friction of the ball on the surface. Then the maximum force along

the surface is Fmax
x = cfFy , where Fy is the downwards force (the contact force calculated in class).

The angular momentum given to the ball in the contact time is L ≤ cf(Fy∆t)R. But from part (a),

we know that the linear momentum impulse is F∆t ∼ mvy, where vy is the downwards velocity. So

L ≤ cfmvyR. (1.10)

We also have L = Iω = (2/5)mR2ω. From part (a), for no skidding, we know that ω ∼ vxR (taking

0.85 ∼ 1). Then we get L ∼ (2/5)mvxR. By combining this expression with1.10, we find the critical

velocity:

vx ≤
5

2
cfvy. (1.11)

In other words, for no skidding the angle of impact can’t exceed tan−1(5cf/2).

For h ∼ 100 cm, the downwards velocity is vy =
√

2gvy ∼ 400 cm s−1. Taking cf ∼ 1 gives vx ≤

1000 cm s−1, or 20mph. A good runner could make the ball skid. Or just throw it (with no spin!).

Problem 4.Mars has atmospheric pressure 5 × 10
−3 earth atm, and radius 0.5 earth radii.

a) Equipped with an oxygen mask, could an earth native bird fly on Mars?
b) Could it land?
c) Could a mouse on Mars hear a falcon coming towards it in a free-fall dive?

a) From the lecture on flight, we know that the minimum power to fly scales as Pmin ∼ g3/2ρ
−1/2
a .

Mars has slightly slightly less dense rock than the Earth (∼ 0.8 times that of Earth). We can then

find a scaling for the gravitational constant: g = GM/R2 ∼ ρGR3/R2 ∝ ρR. So gmars ∼ 0.4gearth .

The ideal gas law says P ∝ nT , so ρ ∝ mP/T . The temperature on Mars is roughly −50 ◦C ∼

220K ∼ 0.7Tearth , and the atmosphere is CO2, which has molecular mass ∼ 1.5 times that of N2.

We are given that P is 0.005 times that of earth. Combining all these factors together, we get that

the atmospheric density is ρ ∼ 0.01ρearth . The minimum power therefore gets scaled from its earth

value by 0.43/2 × 0.01−1/2 ∼ 2.5. The minimum power is pretty high. Possibly a tough bird could

manage it, but not for very long distances.

b) But the minimum-power speed scales as (g/ρa)
1/2, which means a factor of 6 increase in speed.

The kinetic energy therefore increases by a factor of 36: the bird would surely break all its bones

upon landing. And to land at a lower, survivable speed would take too much power.

c) Can the falcon can dive supersonically? The sound speed scales as the thermal speed, ∝
√

T/m.

Using the scalings from part (a), we get the scaling for the sound speed as 0.7, so cs ∼ 230m s−1.

The terminal velocity of the falcon is given by the high-Re formula with cd ∼ 1:

v ∼

(

mg

0.5ρA

)1/2

. (1.12)
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The drag coefficient is effectively unity at these transsonic speeds: the drag comes from the ram

pressure, ∼ ρv2/2, exerted over the frontal cross-section. Putting in m ∼ 1 kg and A ∼ 100 cm2, we

get:

v ∼

(

1000 g × 400 cm s−2

0.5 × 10−5 g cm−3 × 100 cm2

)1/2

∼ 2.8 ·104 cm s−1. (1.13)

It’s close, but probably the falcon can dive supersonically (which means the mouse won’t hear its

invitation to dinner before the meal is served.) And maybe the falcon shakes its feathers off flying

so close to the sound barrier. But that’s the least of its problems: The falcon will eat only one meal,

if it’s lucky (none otherwise)—the landing will most likely break all its bones. As an exercise to the

reader, estimate how far into the ground the falcon embeds itself.

Problem 5.How fast could a plant grow (height per unit time)? Consider limitations due to availability
of light, water and CO2.

We will consider grass as our typical plant.

If there is no limit to the supply of water, ground based nutrients and carbon dioxide then the

limiting factor is the availability of sunlight. We quote the average solar flux from the weather

lecture: S ∼ 2 ·105 erg cm−2 s−1.

Burning plant material (carbohydrate) releases about h ∼ 4 kcal/gm or 2 · 1011 erg/gm. Burning

converts cellulose plus oxygen to CO2 and H2O. When the plant grows, it must therefore use at

least an equal amount of energy from sunlight to drive the inverse reaction (H2O and CO2 converted

into sugars and cellulose). Hence the growth rate of grass, if it uses sunlight with efficiency ǫ is

dm

dt dA
=

ǫS

h
= 0.09ǫ g cm−2 day−1 = 30ǫ g cm−2 year−1. (1.14)

This rate tells how many tons of grass clippings you have to haul away. To estimate the rate at

which the grass lengthens, we need to know the mean density of a grass patch. Grass blades have

density ρgrass ∼ 1 g cm−3, but they fill only f ∼ 10−2 of the volume of a lawn (the evolutionary

reason can be understood by noting that the grass blades in front of Millikan have twh = 0.02 cm×

0.2 cm × 10 cm, so a volume 4 · 10−2 cm3. But, averaged over a day, each blade shadows a mean

volume ≃ (1/2)h2(1/3)w = 3cm3 where no other grass can get sunlight. Hence the filling factor

should be f ∼ 4 ·10−2 cm3/3 cm3 ∼ 10−2, as observed). The growth rate, dh/dt, is thus

dh

dt
∼

dm

dt dA

1

fρgrass

∼ 2 cm/day
( ǫ

0.2

)

(

0.01

f

)

. (1.15)

Since grass has to grow roots as well as blades, and the roots have mass at least comparable to the

blades’, probably less than half of this dh/dt will appear as above-ground growth. If chloroplasts

get light of the optimum wavelength, they can convert ∼ 30% to energy. But sunlight contains

many photosynthetically useless photons. So we will take ǫ ∼ 0.1. Then dh/dt ∼ 0.5 cm/day, about

what is observed in a well-watered Pasadena lawn in summer.

What about water? A typical long carbohydrate is (CH2O)
n
, so about five percent of the plant’s

mass is hydrogen. Hydrogen must come from the water, and water is 10 percent hydrogen by
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mass. Hence to grow a gram of plant material requires ∼ 0.5 g of water. In recent years, Southern

California’s precipitation has been only ∼ 35 cm/year, allowing 70βf−1 cm/year or 0.2βf−1 cm/day

of plant growth, where β is the efficiency of absorbing and converting water to carbohydrate,

and f ∼ 0.01 is the fill factor used above. Taking β ∼ 0.1 to account for losses in transpiration

and evaporation, we find dh/dt ∼ 2 cm/day. Comparing this rate to the sunlight-limited rate of

0.5 cm/day, we see that it’s not the meager total rainfall that limits the growth of Los Angeles grass.

Rather, it’s the variance: the long dry summer will kill all the grass before it can make it to winter

and drink up. In fact grass and trees, like humans, lose most of their water through transpiration

and evaporation. Desert plants like cacti have evolved to lose much less.

What about carbon dioxide? It must diffuse across a viscous boundary layer next to the grass; the

boundary layer thickness, δ, will limit the mass flux:

F ∼ D
∆ρ

δ
, (1.16)

where D is the diffusivity of CO2 in air and ∆ρ is the density difference across the boundary layer.

Since CO2 is slightly more massive than N2, we will take D to be ∼ 0.1 cm2 s−1. The carbon dioxide

concentration in the atmosphere (mass/mass) is ∼ 4 · 10−4, so we will take ∆ρ ∼ 4 · 10−7 g cm−3.

Now we only need δ. We will guess the wind speed near the ground is v ∼ 40 cm s−1. [There was

some debate whether to use v ∼ 10 cm s−1 or a larger value such as v ∼ 40 cm s−1. So Sterl had the

good idea to actually substitute some experiment for theory and noted the following:

A 10 cm grass blade bends about 45◦ in a strong breeze. The blades of grass in front of Millikan

are approximately 0.2 cm × 0.01 cm × 8 cm. Before they wilted, 1 cm could lift a dollar bill (1 g),

deflecting by 1 cm. Thus 8 cm should lift m ∼ (1/8)2 g, deflecting 8 cm (using the strut scaling from

class) and requiring a force mg ∼ 1000/82 dyne ∼ 20 dyne. The free oscillation frequency of the

blade is about 5Hz, which gives a force of 40 dyne for an 8 cm deflection, consistent with the dollar

bill result.

Thus the wind speed at grass level required to bend the grass is

F = 20–40 dyne =
1

2
× 0.2 cm × 8 cm × ρav

2, (1.17)

giving v ∼ 200 cm s−1. Such uniform bending requires a strong breeze, but it probably indicates

that the speeds at grass level are more than 10 cm s−1 on a normally breezy day. So we’ll use

v ∼ 40 cm s−1.]

Then

δ ∼

√

νw

v
∼

√

0.2 cm2 s−1 × 0.2 cm

40 cm s−1
∼ 0.03 cm, (1.18)

where we used the width of the grass blades as the characteristic length. The flux of carbon dioxide

is then

F ∼ 0.1 cm2 s−1 ×
4 ·10−7 g cm−3

0.03 cm
∼ 10−6 g cm−2 s−1. (1.19)

If the blade collects CO2 over an area wh ∼ 2 cm2 with an efficiency α, then the mass rate is

Ṁ ∼ 2 cm2 × αF ∼ 2 ·10−6α g s−1 ∼ 0.2α g/day. (1.20)
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The carbon in plant matter—in CH2O—comes from CO2, so doing the stoichiometry, 1 gram of CO2

will make ∼ 1.5 g of plant matter. And 1 g ≈ 1 cm3 of plant matter is a height 1 cm3/tw ∼ 250 cm.

Using1.20, we find that CO2 limits the growth to 80α cm/day. The uptake of CO2 isn’t perfect;

maybe α ∼ 0.1, so the CO2-limited growth rate is ∼ 8 cm/day, indicating that grass, and maybe

other plants, are not often CO2-limited, but may be sunlight-limited, especially in winter.
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