
Solutions to Problem Set 8

Problem 1. Generation of Sound by Turbulence
a) Consider three-dimensional fluid turbulence with characteristic velocity v, outer scale L, and

Mach number M ∼ v/cs ≪ 1. What is the approximate amplitude of the turbulent pressure
fluctuations?

b) Estimate the efficiency of acoustic radiation by the turbulence. Express the power radiated per
unit volume as a fraction of the total energy dissipation rate per unit volume, namely ǫ ∼ ρv3/L.
Hint: Quadrupoles are the lowest order acoustic multipoles.

a) From Bernoulli, ρv2 + p is a constant along a streamline. So velocity fluctuations ∼ v are
caused by pressure fluctuations ∆p ∼ ρv2. In general, c2

s = p/ρ, so ∆p ∼ p(v/cs)
2 = pM2.

For gases, the p is the gas pressure. For liquids, it is the bulk modulus. In problem set 6 we
calculated the bulk modulus of water to be B ∼ 1010 erg/cm3.

b) From the turbulence lecture, the velocity scales as vl/vL ∼ β1/3, where we’ve defined the
dimensionless parameter β ≡ l/L. Sound is radiated because of the motion of the turbulent
eddies. The frequency is set by how often the eddies cross the length scale, l, so ωl ∼ vl/l.
From the 17 May lecture on sound (or the Pi theorem), the power radiated by a monopole of
size l is

Pmono(l) ∼ ρω2
l v

2
l l4/cs. (1)

This is equation (35) from the typeset notes. Since ωl ∼ vl/l,

Pmono ∼ ρv4
l l2/cs. (2)

In terms of the Mach number,
Pmono ∼ ρM4

l l2c3
s , (3)

where Ml ≡ vl/cs.

Mass injection (e.g., a pulsing sphere) generates monopole radiation; momentum injection (e.g.,
a ship wake) generates dipole radiation. Free turbulence has neither mass nor momentum
injection (that’s what the ‘free’ means), so the lowest allowed multipole is quadrupole. Actual
examples of free turbulence are hard to come by; most turbulent flows have either mass or
momentum injection.

But we’ll assume that quadrupole radiation is the first allowed multipole. For a dipole, the
pressure fluctuations are multiplied by the separation over the wavelength, l/λ ∼ vl/cs, which
is Ml. For a quadrupole, the factor is M2

l . Since power is quadratic in the pressure fluctuations,
the power in (3) needs to be scaled by M4

l . So

Pquad(l) ∼ ρM8
l l2c3

s. (4)

From above, v and Ml scale as β1/3. In a unit volume there are Nl ∝ l−3 sound sources, so
Nl/NL ∼ β−3. Putting in the scalings and accounting for the larger number of smaller eddies,

Pquad(l)

Pquad(L)
∼ Nl

NL
β8/3β2 = β5/3 ∝ k−5/3, (5)

where k is the wavenumber, ∼ l−1. The energy per mode also scales with k−5/3, so this
derivation probably contains in disguise the Kolmogorov argument given in class for the energy
distribution. The upshot is that the long scales dominate the radiated sound (the noise).

From (4), the power radiated at the longest scale is

P ∼ ρM8L2c3
s. (6)
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Per unit volume, this is P ∼ ρM8c3
s/L. The power density dissipated in the turbulence is

ǫ ∼ ρv3/L = ρM3c3
s/L, so the efficiency of acoustic radiation is

Efficiency ≡ P
ǫ
∼ ρM8c3

s/L

ρM3c3
s/L

= M5. (7)

Moral: fast turbulent flows generate a lot of sound. In most flows, where for example dipole
radiation is important, the power law isn’t so steep (M3 instead), but speed still counts.

Problem 2. Information Transfer Rates
a) At what bit rate do you absorb information when reading a novel?
b) How long would it take to transmit over a video channel, bandwidth ∆ν ≈ 4 × 106 cycles per

second, the information contained in the human genome, approximately one meter of DNA?

a) Let b be the number of bits per character of English, which we’ll leave unknown for a
moment. There are ∼ 5 characters per word, and say you read 500 words per minute (about a
page a minute). Then the bit rate, B, is

B ∼ 500words per minute

60 sec/minute
× 5 chars

word
× bbits

char
∼ 50bHz.

Naively one might expect b ∼ log2 27 ∼ 5. But this ignores the rules of spelling, syntax and
semantics, which greatly restrict the possible letter sequences. You don’t often see groo, or
more subtly, I am growing to the store. Taking all these restrictions into account is very
difficult. Shannon described a beautifully simple method 1 to get upper and lower bounds on b.
Some of the TA’s and instructors have tried it out, 2 and find for novels (such as Mark Twain’s
A Tramp Abroad), 0.6 < b < 1.2. So let say b ∼ 1. Then B ∼ 50Hz (50 bits per second).

b) From the brain lecture (24 May), we know that base pairs are separated by 3 Å. [Each
nucleotide is a ring, and the rings are stacked like pancakes in a (double) helix.] So one meter
of DNA has ∼ 3 ·109 pairs per strand. But only one strand matters since the second is just the
complement of the first—it contains no new information (as long as your repair and replication
enzymes are working!) Each nucleotide could be one of four possibilities: adenine, guanine,
cytosine or thymine. So if every sequence were equally likely, the number of bits per nucleotide
would be b = 2. But actually it’s a little less: of the 43 = 64 amino acids that a triplet of bases
could code for, only 20 are used. So b ∼ (log220)/3 ∼ 1.4 is a better approximation. If we had
someone who knew the grammar of DNA, we could use the method Shannon describes. But
lacking such a person, we’ll have to settle for b ∼ 1.5. Then the total number of bits in the
genome is N ∼ 1.5 × 3 ·109 ∼ 5 ·109. Of course, to order of magnitude, it’s irrelevant whether
b = 2 or b = 1. The extra precision is included not because the answer requires it; but mainly
to illustrate the importance of a grammar.

Through a channel of bandwidth ∆ν, one can transmit bits at a rate ∆ν. So it’ll take N/∆ν ∼
5 ·109/4 ·106 ∼ 1000 s (15 minutes) to transmit the information.

Problem 3. Information Content
a) Estimate the number of distinct words that you can recognize. Explain your methodology.
b) How many distinct words would you estimate there are in the collected works of Shakespeare?

1 C. E. Shannon, “Prediction and entropy of printed English,” Bell System Tech. J., 30:50–64
(1951).

2 Anyone who wants to try it out, or is curious about the method, check the reference or send mail
to sanjoy@dope for the program.
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a) Out of 45 words chosen at random from the Webster’s College Dictionary, this TA recognized
27 of them, for a hit rate of 60%. According to the dust jacket, the dictionary has “over 180,000
entries,” so a reasonable estimate of the number of words recognized is ∼ 105. The MIT linguist
Steven Pinker quotes 60,000 as an average high school graduate’s vocabulary. 3 Presumably
this TA has filled his head with 40,000 otherwise useless words since high school (advection,
diffusivity, etc.)

b) One uses far fewer words actively (speaking or writing) than one can recognize. In foreign
language class, this TA was told that the active vocabulary is about 3 times larger than the
passive. In Shakespeare’s time, English wasn’t so huge, so perhaps Shakespeare knew 50,000
words, and spoke or wrote with 10,000 or 20,000 words. With the advent Shakespeare’s collected
works on CD-ROM, actually counting the number of distinct words is fairly easy, and the result
quoted by Pinker is ∼15,000.

Problem 4. Neglecting the small bell at the end, a clarinet with all the finger holes covered can
be approximated by a cylinder L = 65cm long and 2a = 1.5cm in interior diameter, driven by periodic
pressure pulses at the mouth end. Consider frequencies close to the fundamental frequency (derived
and illustrated in class). Your answers should not involve any quantities other than L, a, and physical
properties of air (sound speed, thermal and viscous diffusivities).

a) Estimate the Q (π times the number of wave cycles required to reduce the amplitude by 1/e, or
2π times the number of wave cycles required reduce the power by 1/e) of the clarinet. Be sure
you consider heat transfer and viscous losses as well as radiative losses. Which dominate?

b) Neglecting the bell at the end, estimate the radiative efficiency [ratio of acoustic power out to
power driving the pressure pulses at the mouth] of the cylindrical clarinet. How would this change
if the diameter of the tube were doubled? What is the effect of the small flared bell at the end of
a real clarinet?

a) Sound waves are adiabatic—pressure changes produce temperature differences. Going ra-
dially outward from the long axis, the pressure change from to the sound wave approaches
zero—viscosity eliminates the back-and-forth fluid motion at the cylinder wall. So the pressure,
and therefore the temperature, vary with length scale a (in the radial direction).

In one radian of oscillation, the heat can diffuse a length l ∼
√

κ/(2πf). From class, the

fundamental frequency in a clarinet is f ∼ cs/4L, so l ∼
√

κL/cs. [From the kinetic theory,
κ ∼ cslm, where lm is the mean free path in air. So l ∼

√
lmL. This geometric mean is a

common occurrence—if you have a microscopic and a macroscopic length scale, a third useful
one is often their geometric mean. For example, from the star twinkling problem in problem
set 6, the Fresnel length is

√
λD, where D is the atmosphere height and λ is the wavelength of

light.] The temperature fluctuations have length scale a, so the viscous (or heat transfer) Q is

Qheat ∼
a

l
∼ a

( cs

κL

)1/2

. (8)

The heat also diffuses along the axis, but in that direction the pressure fluctuations vary on a
length scale ∼ λ ∼ L. So the thermal losses from lateral diffusion will be much smaller than
the losses from radial diffusion, by a/L ≪ 1, and we will ignore them.

If the fluid elements move with characteristic velocity u, the energy stored in the clarinet cavity
is

E ∼ ρu2a2L. (9)

This formula is derived in the sound lecture (17 May). The air flux out the open end of the
clarinet makes the sphere of air at the end pulsate in and out. So the open end of the clarinet

3 Steven Pinker, Language Instinct (New York: W. Morrow and Co., 1994), pp. 149–150.
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is a monopole (mass flux implies monopole, see the solution to problem 1). This sphere has
radius a, and it oscillates with frequency ω and velocity u. From the second sound lecture, the
energy radiated by the monopole is

P ∼ 4π
p

c3
s

u2ω2R4ρ
4π

γ
u2ω2a4/cs. (10)

This power is just equation (3) with the proper magic factor. The ratio E/P is the time
constant for radiative decay of energy, and the Q for radiative decay is Qrad ∼ Eω/P . So
from (9) and (10), we find

Qrad ∼ Eω

P
∼ γ

4π

ρu2a2Lω

ρu2ω2a4/cs
=

γ

4π

Lcs

a2ω
. (11)

Since cs/ω ∼ L, we have

Qrad ∼ γ

4π

(

L

a

)2

. (12)

Putting numbers into (8) and (12),

Qheat ∼ 0.75 ×
(

3 ·104

0.2 × 65

)1/2

∼ 40, (13)

and

Qrad ∼ 1.4

12

(

65

0.75

)2

∼ 103. (14)

So Qrad ≫ Qheat, which means heat losses dominate.

b) The total Q is the parallel combination of the two Q’s above, which is dominated by Qheat.
[Q is a measure of resistance to energy escaping, so two escape paths combine their Q’s like
parallel resistors.] The radiative efficiency is ∼ Q/Qrad ∼ 0.04. Since Qrad scales as a−2, and
Q ∼ Qheat scales as a, the radiative efficiency is ∝ a3. Doubling the diameter would increase
the radiative efficiency by a factor of 8. But probably a clarinet this large would have finger
holes too large to play on.

The flare at the end helps the impedance match to free space, thereby radiating more sound.
This can be seen from (10). If we increase the area a2 by a factor α, and preserve the same
mass flux, then u decreases by α; so the power in (10) increases by α. To increase the radiated
power, α > 1—the bell is flared.

Problem 5. The upper 3/4 of piano strings are bare steel wires, stretched to the yield point of
steel.

a) Estimate the speed of transverse waves on such a piano string, and compare to the speed of sound
in air.

b) Estimate (using only the properties of steel) the length of a piano string whose fundamental
frequency ν1 is middle C (262Hz).

c) The middle C piano string is about d = 0.12cm in diameter. The restoring force on a bent string
has contributions from the differential stresses on its two sides (‘stiffness’ cf. the vibrating or
buckling strut, present even if the center of the string is not in tension) and from the tension.
Show that although the frequencies of the modes of a string of zero diameter are harmonically
related (integer multiples n of the fundamental frequency ν1), the stiffness term introduces an
anharmonic term: νn = nν1(1 + An2), and estimate its coefficient A. By what percentage is the
4th harmonic of middle C sharp? Does the problem get better or worse for higher C notes? This
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effect means that beats will always be heard between the upper harmonics when octave intervals
are played on a piano, no matter how it is tuned (to minimize the effect, piano tuners actually
‘stretch’ the tuning of octave strings, so their fundamental frequencies are not exactly a factor of
2 apart, but their overtones are more consonant).

a) Transverse waves have velocity ct =
√

T/µ, where µ is the mass per unit length. This can
be derived from the Pi theorem. The relevant variables are: the wave speed, ct; the tension,
T ; the mass, M ; and the length, L. Our string for now has zero thickness, so the only length
scale is L. So we have four variables and three dimensions, therefore one Pi variable. A little
fiddling gives Π = c2

t M/TL, so c∼t TL/M = T/µ, and ct ∼
√

T/µ. The magic constant here
turns out to be unity.

Let A be the cross-section of string. The stress on the string is Y , the yield stress of steel,
so the tension is T ∼ Y A. The mass per unit length is ρA, so ct =

√

Y A/ρA =
√

Y/ρ.

From the materials sheet, the yield stress for steel is Y ∼ 6 · 109 erg/cm3, and ρ ∼ 8 g/cc. So
cs ∼ 3 ·104 cm/s, which is about the speed of sound in air.

One may briefly wonder why ct is not the same as the speed of sound in steel. The yield
stress is defined as Y = ǫB, where B is the bulk modulus and ǫ is the yield strain. So
ct = ǫ1/2

√

B/ρ = ǫ1/2cs, where cs is the sound speed in steel. Since ǫ ∼ 10−2, we find
ct ∼ cs/10. Compressional waves have a restoring force set by the interatomic forces, which are
huge—so compressional waves move quickly. Transverse waves have a restoring force set by the
tension. But you can’t stretch most materials by anywhere near to the interatomic force—they
flow or fracture long before that.

b) A piano string is fixed at both ends, so the lowest frequency (the fundamental) fits half a
wavelength into the string length. Let λ be the wavelength and L be the string length. Then
λ = 2L. Since λ = ct/f , we have L = ct/2f ∼ 3 ·104/500 ∼ 60 cm.

c) Imagine one wavelength of the piano wire, of length λn ≡ 2L/n. When it is bent into one
period of a sine wave the string will be tilted by some small angle θ, and the downward force
will be F ∼ Tθ. If the sine wave has amplitude y, we have θ ∼ y/λn, and F ∼ Ty/λn. This
restoring force acted over a distance ∼ y, so the energy in the string due to tension is

E(0) ∼ Ty2/λn. (15)

But now we also have to worry about the energy due to the stiffness, since the string has
been deflected by ∼ y. The energy stored in a deflected beam was worked out the strength of
materials lecture. From there (19 April, equation 17 of the typeset notes), the energy stored is

E(1) ∼ B
d4

l3n
y2. (16)

This energy is a small perturbation on E(0). The energy ratio is

R ≡ E(0)

E(1)
∼ Bd4y2/λ3

n

Ty2/λn
∼ Bd4

Tλ2
n

. (17)

Since T = Y A ∼ ǫBd2, we have R ∼ (d/λn)2/ǫ. Putting in λn = 2L/n, we find R ∼ (nd/2L)2/ǫ.
Energies scale as the square of the frequency, and the energy is perturbed by a small fraction,
R. So the frequencies are perturbed by a small fraction, ∼ R/2. This is an application of
Taylor’s theorem, or the binomial theorem,

√
1 + x ≈ 1 +

x

2
+ · · · . (18)
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Ignoring stiffness, the nth harmonic had frequency nν1. So now it has frequency

νn = nν1

(

1 +
(d/L)2

8ǫ
n2

)

. (19)

In other words, A ∼ (d/L)2/8ǫ. For our string, ǫ ∼ 0.003, d = 0.12 cm and L = 60 cm. Putting
this all in,

A ∼ (0.12/60)2/(8 × 0.003) ∼ 1.5 ·10−4.

So the fourth harmonic of middle C (ν1 = 262Hz) is sharp by a fraction n2A = 16A ∼ 0.2%.
Higher C notes, made by shorter strings, will be more out-of-tune because A ∝ L−2 ∝ ν2

1 .

One half-step is 6%, so this is one-thirtieth of a whole step. Two notes separated by such a
small interval are probably indistinguishable when played a few minutes apart. But sounded
together, they produce beats, at a frequency ∼ 0.002f ∼ 0.002 × 4 × 262 ∼ 2Hz. Beat notes
can be heard into the fractions of Hertz, so this beat note is easy to hear.
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