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While the main thrust of the meeting on Material efficiency: providing material

services with less material production was to explore ways in which society’s net
demand for materials could be reduced, this paper examines the possibility of con-
verting industrial energy demand to electricity, and switching to clean electricity
sources. This paper quantifies the scale of infrastructure required in the UK, fo-
cusing on wind and nuclear power as the clean electricity sources, and sets these
requirements in the context of the decarbonization of the whole energy system using
wind, biomass, solar power in deserts and nuclear options. The transition of industry
to a clean low-carbon electricity supply, although technically possible with several
different technologies, would have very significant infrastructure requirements.
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1. Overview

Industry accounts for roughly one third of the World’s energy-consumption [All-
wood and Cullen, 2011]; most of that energy today comes from coal, oil, and natural
gas. What infrastructure would be required to deliver the same amount of energy
from zero-carbon electricity? For a couple of possible power sources, I will compare
the increase in infrastructure with existing systems, and describe the approximate
land area required. (This simple-minded focus on energy neglects the fact that some
of the fossil fuels used by industry deliver not only energy but also chemical services
– for example, coal, converted to coke, acts as a reducing agent in blast furnaces.)

(a) Useful units

For concreteness, I will discuss UK industry, but to make the ideas easily trans-
ferrable to other countries, I will frequently express energy consumption and pro-
duction rates in normalized, per-person units. Thus I will convert national energy
consumption rates, which are sometimes expressed in gigawatts (GW) or terawatt-
hours per year (TWh/y), into per-person units: kilowatt-hours per day per person
(kWh/d/p). For the UK, with a population conveniently rounded to 60 million, a
national power of 1GW (per UK) is identical to 0.4 kWh/d/p, and 1 kWh/d/p is
identical to 2.5GW (per UK). For example, the UK’s total primary energy con-
sumption is roughly 310GW, or 125 kWh/d/p, and the UK’s average electricity
consumption is roughly 42GW, or 17 kWh/d/p.

Figure 1a shows the primary energy consumption of the UK, in 2007, broken
down by energy source, and the electricity consumption in the conventional national
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Figure 1. UK primary energy consumption (a) in national units and (b) in per-capita
units. Electricity production (which is derived from roughly one third of the primary
consumption) is also shown.

units of terawatt-hours per year (1GW≃ 9TWh/y; 1 kWh/d/p≃ 22TWh/y); and
figure 1b shows the identical facts in per-capita units.

Whereas developed countries with different populations such as Germany, Den-
mark, and Switzerland have incomparable national power consumptions in gigawatts,
many developed countries have quite similar per-capita energy consumptions. (Fig-
ure 2 shows on the vertical axis the per-capita consumptions of countries in 2005,
and on the horizontal axis their population densities.)

So, I will focus on per-capita units; but to visualize the assets we are discussing
we may sometimes wish to talk in national units. The following equivalence may
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Figure 2. Power consumption per person versus population density, in 2005. Point size is
proportional to land area, except for areas less than 38 000 km2 (eg, Belgium), which are
shown by a fixed smallest point size to ensure visibility. The straight lines with slope −1
are contours of equal power consumption per unit area. 78% of the world’s population live
in countries that have a power consumption per unit area greater than 0.1W/m2.

prove handy, especially for British audiences. All three of the following powers are
equal (near enough) to 1GW:

1. The average electrical output of the Sizewell B nuclear power station (a
standard pressurized water reactor with a maximum output of 1.19GW);

2. The average electrical output of all the UK’s onshore wind turbines

during 2010 (these turbines were 2747 in number, and were grouped in roughly
273 windfarms whose area on a map is roughly 400km2; their nameplate
capacity was 3.8GW);

3. The energy consumption rate of one blast furnace, as measured by the heat
of combustion of the coal it consumes. (One blast furnace consumes 5.8Mt of
coal per year and produces 2.5Mt of steel per year, which would be enough
to make the steel in the 2.5 million new cars per year that join the road in
the UK; the UK has five such blast furnaces today.)

(In saying that these three quantities are ‘equivalent’, I am not necessarily asserting
that the blast furnace could be powered by 1GW of electricity instead of 5.8Mt/y
of coal; I’m simply pointing out that the three average rates of energy flow are
identical.)
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Figure 3. (a) Power per unit area of UK windfarms versus their size. The horizontal
scale is logarithmic. (b) Power per unit area versus turbine diameter. The horizontal scale
is logarithmic. The black curves in (b) show the trend that would be expected (within
any single region) on the basis of the rule of thumb “doubling turbine size increases
wind-speed by 10% and increases power by 30%”, and assuming wind turbines’ spacings
are proportional to their diameters. See Appendix A for the methodology behind these
data.

(b) Power per unit area of wind and nuclear

When visualizing future low-carbon electricity-generation options for the UK,
two technologies with substantial technical potential are wind power and nuclear
power. (Other technologies such as tidal power, waste-to-energy, deep geothermal
power, and photovoltaics may also have useful technical potential, as discussed in
MacKay [2008].)
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Figure 4. Capacity per unit area (left axis) and estimated power output per unit area
(right axis) of US windfarms versus commissioning date. For the right axis, a load factor
of 42% is assumed. Point area is proportional to capacity; the largest farm shown, Horse
Hollow, has a capacity of 735MW. According to Gallman [2011], Horse Hollow has an
average power per unit area of 1.55W/m2.

The power per unit area of most large wind farms in the UK is between 1.5W/m2

and 4.5W/m2 (figure 3). Of course, the productivity of wind farms depends on their
location; some English farms produce less than 2.5W/m2, and most Scottish farms
produce more – perhaps 3.5–4W/m2; the four offshore wind farms in figure 3 all
deliver about 2.5W/m2. The power production per unit area of most large wind
farms in the USA is between 0.7W/m2 and 2.5W/m2 (figure 4), and there is no
obvious trend in the data indicating that power per unit area is increasing with
time. In the calculations that follow, I estimate the land required for wind farms
assuming a typical power per unit area of 2.5W/m2.

The power production per unit area of nuclear power stations is roughly 1000–
2000W/m2 when the facility is running. Taking into account the time during which
the land lies unavailable during decommissioning, and the land associated with
waste storage and reprocessing, Appendix B shows that the aggregate power per
unit area of the first generation of nuclear power facilities in the UK is roughly
140W/m2.

2. The energy demand of industry

From the Digest of UK Energy Statistics [MacLeay et al., 2011], 18 kWh per day per
person (44GW) is going into industry. (This quantity is a final energy consumption,
not a primary energy consumption. In arriving at this quantity, I’ve included blast
furnaces, but excluded the energy consumption of oil, gas and coal extraction, and
of petroleum refineries.) Of that energy demand, electricity is already being used by
industry to the tune of 5.2 kWh/d/p, so the non-electrical demand amounts to 12.5
kWh/d/p, which is 31GW per UK. To put that in context, today’s total electricity
consumption in the UK is 17 kWh/d/p. So as a rough ball-park estimate, if you
wanted to electrify industry without making any change to its efficiency, then you
would need to nearly double electricity production. (I’ve assumed here a one-for-one
substitution of coal, gas, and petroleum by electricity; that is, 1 kWh of chemical
energy substituted by 1 kWh of electricity.) Moreover, to make the 5.2 kWh/d/p of
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Figure 5. Electricity generated from nuclear fission versus time in a few regions, in
national units (a) and per-capita units (b).

existing electrical supply to industry all low-carbon, assuming that 75% of it is not
low-carbon today, another 4 kWh/d/p of low-carbon electricity would be needed
(10GW per UK). So, in total, to decarbonize industry in this way we would need
to supply new low-carbon electricity of 16 or 17 kWh/d/p – roughly 40GW per
UK.

3. Some ways to supply low-carbon electricity

Is this possible? Yes. Referring back to section 1a, we can deliver an extra 40GW by
adding an extra 40 Sizewell-Bs or an extra 40 replicas of the UK onshore wind fleet of
2010, or any mix of those two actions. (I call wind and nuclear power “low-carbon”
rather than zero-carbon to reflect the small quantity of greenhouse-gas emissions
that are embodied in the construction and maintenance of the infrastructure.)

40 Sizewell-Bs would be four times the UK’s current nuclear fleet, which is
technically achievable – France, for example, built more than 50GW in a couple of
decades (figure 5). In per-capita terms, France and Sweden are both countries that
produce more than 16kWh per day per person (figure 6). The land area for 40GW
of nuclear power stations and their support facilities would be about 290km2, if the
nuclear industry’s use of land continued in line with the first generation of nuclear
power facilities in the UK. 290km2 is about one tenth of one percent of the UK’s
land area, and is equal, for example, to the sum of the areas of the Balmoral and
Sandringham estates.

The pure-wind option would involve roughly 130GW of offshore wind capac-
ity or 150GW of onshore wind capacity (assuming load factors of 31% and 27%
respectively). The area of sea or land required for the windfarms would be about
16 000 km2, which is 6.5% of the UK’s land area, or 77% of a Wales; the wind ca-
pacity divided by the area of the UK would be roughly 0.57W/m2 – about six times
higher than the capacity-to-land-area ratio of Denmark (figure 7a). The pure-wind
option would imply that the wind capacity per person was about 2200–2500W,
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Figure 6. Electricity generated per capita from nuclear fission in 2007, in kWh per day
per person, in each of the countries with nuclear power.

which is about 3 times that of Denmark (700W, see figure 7b). So a wind-only mix
delivering 16 kWh/d/p would tread where no country has gone before in terms of
wind-exploitation.

If one opted for a wind-dominated solution then electricity-balancing services
would be needed to deal with the intermittency of the wind: either interconnectors
to countries willing to receive and export many tens of gigawatts, or methods for
moving equally large quantities of demand in time, or methods for storing extremely
large amounts of electricity. To make up for a missing 40GW for just a single wind-
less day using storage would require about 1000GWh of storage per UK (16 kWh
per person) which is one hundred times the energy-storage capacity of Dinorwig
or Cruachan, the two largest pumped storage facilities in the UK; and nationwide
near-windless periods of four days are not uncommon.

4. Context and caveats

While asserting that both the four-fold growth in nuclear power and the forty-fold
increase in wind power over 2010 levels are technically possible, I am conscious
that neither of these developments would be judged easy by politicians or engi-
neers. The social, political and engineering challenges are all the greater when we
embed the task of decarbonizing industry within the overall goal of decarbonizing
society. In the UK, at least two thirds of our energy consumption is non-industrial
– the biggest sectors are transport, space-heating in buildings, and non-industrial
electricity consumption. The total energy consumption of the UK, remember, is
125kWh per day per person. Even with radical improvements in energy efficiency,
the UK will need several times the 16 kWh/d/p we have discussed thus far.
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Figure 7. (a) Wind capacity per area, and (b) wind capacity per person, for several coun-
tries. Both vertical axes have logarithmic scales. (Note that to estimate the average power
generation from this wind capacity one must multiply by the load factor; load factors for
wind range from about 20% in Germany to 42% in the biggest farms in the USA.)

Figure 8 shows, to scale, on a map of the UK, four ways of delivering 16 kWh
per day per person. The map shows by grey squares, 100km2 each, the area of
the wind farms discussed in the previous section, and it shows by purple dots
sufficient sites for nuclear power stations to deliver 40GW, assuming roughly two
Sizewell Bs per site. The map also shows by green polygons, some in the UK,
some elsewhere, the area of land (80 000km2) required to create 16kWh/d/p of
bioenergy, assuming a net power per unit area of 0.5W/m2. Each of the three
large green squares is 22 588 km2 in size, which is the area of New Jersey, and just
a shade larger than the area of Wales. And the map shows the area required in
someone else’s desert (2700km2) to deliver 16 kWh/d/p from concentrating solar
power, assuming a power per unit area of 16.5W/m2, and allowing for losses of 10%
between the Sahara and Surrey. If that power were delivered by overhead high-
voltage DC power-lines in a strip of land 750m wide and 1600km long, the land
area occupied in Spain and France by the power-lines would be about 1200km2.

These four technologies are not the only low-carbon power sources, though they
are among the most promising sources with large potential. All the other renewable
sources share the property of wind power that they are relatively diffuse: they deliver
a power per unit area in the ballpark of wind’s 2.5W/m2. Solar parks, for example,
which are sprouting up across Europe, deliver an average power per unit land area
of roughly 4W/m2 [MacKay, 2012]; and hydroelectric facilities in Scotland deliver
about 11W per square metre of lake area, and about 0.2W per square metre of
catchment area [MacKay, 2008]. So whatever the mix of renewables one develops,
the land area or sea area required for 16kWh/d/p is roughly as indicated by the
area of the wind farms. When I talk of the land “required”, of course not all the
area is literally used up. In a wind farm for example, only a tiny fraction of the
land area is occupied by turbines, foundations, and access roads. The rest remains
available for agriculture or other uses.
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Figure 8. Four ways of delivering 16 kWh/d per person in the UK.

(a) Public discussion of decarbonization pathways

I have emphasized the area required for energy infrastructure, but this is of
course not the only important metric. Cost, resilience, and air quality are other
metrics that may be important in the public deliberation of energy options. The
UK Department of Energy and Climate Change has published an interactive open-
source tool, the 2050 Pathways Calculator, which allows the user to explore the
effectiveness for the UK of different combinations of demand-side and supply-side
actions, and which computes and displays several metrics. The UK government’s
Carbon Plan, published in December 2011 [Department of Energy and Climate
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Figure 9. Red Tile wind farm, East Anglia, and its associated land area. The blue grid’s
spacing is 1 km. Each turbine has a diameter of 82m and a capacity of 2MW. Map ©
Crown copyright; Ordnance Survey.

Change, 2011], illustrates the magnitude of effort required to achieve the UK’s 2050
goal of 80% decarbonization within its own borders. The Carbon Plan sketches a
corridor of pathways in which: per-capita demand in the UK falls by between 31%
and 54%; nuclear power generation capacity increases from today’s 10GW to be-
tween 16GW and 75GW; renewable electricity-generation capacity increases from
today’s 10GW to between 22GW and 106GW; carbon capture and storage elec-
trical capacity increases to between 2GW and 40GW; and bioenergy use increases
from today’s 73TWh/y to between 180 and 470TWh/y (21–54GW).

The authors of the 2050 Pathways Calculator would be delighted to see en-
hancements made to the Calculator’s industry module.

(b) This paper hasn’t described how to decarbonize industry

This paper has only explored the scale of energy infrastructure required to
provide a low-carbon flow of (electrical) energy equal to the current high-carbon
flow of (mainly chemical) energy into industry. I have not addressed the questions
of whether the energy-consuming industrial processes could in fact be electrified,
nor what their efficiencies would be when electrified. Moreover, some industrial
processes directly emit carbon dioxide because of chemistry, as well as indirectly
from their energy consumption – cement production is the most notable example
– and this paper has not addressed the challenge of eliminating these chemically-
driven emissions.
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Appendix A. Power per unit area of wind farms

Methodology for figure 3: from the monthly statistics published at https://www.
renewablesandchp.ofgem.gov.uk/ and collated by Renewable Energy Foundation
[2009], whole-year average outputs were obtained for each wind farm; areas of wind
farms were measured by the author from Ordnance Survey maps, which showed
the locations of turbines, as illustrated in figure 9. For isolated turbines, the “area”
was deemed to be a circle of diameter five times the turbine diameter. For a large
farm, the perimeter of the “area” was sketched allowing a strip around the turbines
of width equal to half that farm’s typical turbine spacing, or 2.5 turbine diameters,
whichever was the larger. Figure 9 shows Red Tile wind farm, which is typical of
the British farms represented in figure 3.

Appendix B. Power per unit area of nuclear facilities

Table 3 shows the energy produced by several nuclear facilities in the UK, and
their land areas. The average power per unit area of each site is calculated in two
ways: first, during operation alone, and second, taking into account the duration
of decommissioning. The more modern sites in table 3 generated about 2000W/m2

when operating, or about 500W/m2 on average if we take account of the time
taken for decommissioning; the aggregate power density of all these sites, including
Sellafield (the largest site, which has hosted other nuclear functions beside power
generation), is 140W/m2.

Nuclear power also has a footprint where the ore is mined, but this footprint is
shared with the mining of other useful minerals. The Olympic Dam Mine in South
Australia, opened in 1988, produces much of the world’s uranium oxide, along with
significant quantities of copper, silver, and gold. The site has an area of about
20 km2 and is expected to be able to sustain production of roughly 4000 tonnes
of uranium oxide per year for 200 years. If the uranium oxide is used in once-
through reactors with an efficiency of 1GW-year per 191 t, the uranium-related
power production per unit area of the mine is roughly 1000W/m2. If the uranium
oxide were used in 60-fold more efficient breeder reactors, the power per unit area
would be 63 000W/m2.
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Scotland

average
power area

power/
area

turbine
diameter

load
factor

years
averaged

(MW) (km2) (W/m2) (m) (%)

Ardrossan 8.83 2.2 4.0 80 29.4 2005–07

Artfield Fell 5.41 2.2 2.5 62 27.7 2006–07

Beinn An Tuirc 4.91 1.7 2.9 47 32.7 2003–07

Beinn Ghlas 2.25 1 2.25 44 26.8 2003–07

Beinn Tharsuinn 8.6 1.7 5.0 66 28.8 2006–11

Bowbeat 8.31 3 2.8 60 27.0 2004–07

Boyndie 4.6 1.3 3.6 71 28.4 2007–12

Braes of Doune 18.5 5.3 3.5 80 25.7 2008–11

Burradale 1.07 0.17 6.5 47 50 2003–07

Burradale 0.89 0.14 6.6 52 50 2004–07

Causeymire 13.8 3.7 3.7 80 28.6 2005–07

Cnoc Donn Arnicle 5.33 1.5 3.6 47 35.5 2003–07

Crystal Rig 13 3.5 3.7 80 26 2005–07

Deucheran Hill 3.9 1.02 3.8 66 24 2003–07

Dun Law 4.64 1.65 2.8 47 27 2004–07

Earlsburn 11.6 2.6 4.5 80 30.9 2008–12

Farr 26.4 8 3.3 80 28.7 2007–12

Gallow Rig & Polwhat Rig 6.34 1.8 3.5 37 29.3 2003–08

Glens of Foudland 8 3 2.7 60 29 2006–07

Hadyard Hill 29.7 10.2 2.9 80 24.8 2006–12

Hagshaw Hill 4.22 1 4.2 40 27.5 2003–08

Hare Hill A 5.51 1.35 4.1 47 41.7 2003–08

Paul’s Hill 21.7 3.6 6.0 80 33.8 2007–08

Rothes 13.3 2.9 4.6 82 26.2 2006–07

Tangy 3.36 0.9 4.3 52 30.0 2003–08

Black Law 30.0 8.4 3.6 82 24.2 2007–08

Wales

average
power area

power/
area

turbine
diameter

load
factor

(MW) (km2) (W/m2) (m) (%)

Bryn Titli 2.65 2.5 1.1 37 26.8 2002–11

Carno 7.0 3.6 1.9 44 20.7 2003–08

Cefn Croes 14.5 5.8 2.5 70 32.2 2006–08

Cemmaes 4.56 1.7 2.7 52 29.8 2003–08

Dyffryn Brodyn 1.11 0.7 1.6 37 20.2 2003–08

Ffynnon Oer 8.1 2.7 3.0 70 25.4 2007–08

Llanbobo 5.51 1.7 3.2 44 27.0 2003–08

Llangwryfon 2.83 1.2 2.4 52 30.2 2004–06

Llidiartywaun 4.43 2 2.2 25 23.4 2003–08

Penrhyddlan 2.81 1.25 2.2 25 21.7 2003–08

Rheidol 0.70 0.3 2.3 33 29.2 2003–08

Rhyd Y Groes 2.10 1 2.1 30 29.2 2003–08

Taff Ely 2.30 0.85 2.7 37 25.5 2003–08

Tir Mostyn 6.4 2.8 2.3 52 29.8 2006–08

Trysglwyn 1.60 0.75 2.1 37 28.5 2003–08

Table 1. Power per unit area of major onshore wind farms in Scotland and Wales.
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England

(on hilltops or near coast)

average
power area

power/
area

turbine
diameter

load
factor

years
averaged

(MW) (km2) (W/m2) (m) (%)

Bears Down Reservoir 2.58 0.7 3.7 44 26.9 2003–08

Blood Hill 0.42 0.3 1.4 27 18.6 2003–08

Carland Cross 1.49 0.5 3.0 34 24.8 2002–12

Caton Moor 4.8 1.2 4.0 70 30.0 2007–12

Coal Clough 2.2 1.25 1.74 34 22.7 2002–12

Cold Northcott 1.52 1.9 0.80 33 22.4 2002–12

Far Old Park Farm 0.95 0.65 1.46 47 20.6 2002–12

Four Burrows 0.94 0.6 1.57 31 20.9 2002–11

Goonhilly Downs 1.07 0.95 1.12 34 19.0 2002–10

Kirkby Moor 1.29 1 1.29 34 26.9 2002–12

Lowca 1.37 0.55 2.5 47 29.6 2002–12

Siddick 0.79 0.6 1.3 42 18.9 2002–11

Oldside 1.04 0.55 1.9 42 19.3 2002–11

Out Newton 2.83 0.95 3.0 62 31.0 2002–12

Ovenden Moor 2.55 0.85 3.0 34.8 27.7 2002–11

Royd Moor 1.30 0.27 4.8 37 20.1 2002–11

St Breock 1.32 0.45 2.9 37 26.3 2002–07

England

(other)

average
power area

power/
area

turbine
diameter

load
factor

(MW) (km2) (W/m2) (m) (%)

Burton Wold 4.11 1.7 2.4 71 20.6 2006–12

Deeping St Nicholas 4.14 1.75 2.4 82 25.9 2007–12

Glass Moor 4.3 2 2.2 82 27.0 2006–12

Red Tile 5.9 2 2.9 82 24.5 2007–12

Offshore

average
power area

power/
area

turbine
diameter

load
factor

(MW) (km2) (W/m2) (m) (%)

Burbo 28.7 13.3 2.2 130 31.9 2008–11

Kentish Flats 27.1 10.0 2.7 90 30.1 2006–12

North Hoyle 20.2 8.4 2.4 80 33.6 2005–11

Scroby sands 16.8 6.45 2.6 80 28.1 2005–11

Table 2. Power per unit area of major onshore wind farms in England and offshore.

Sources: powers and diameters – https://www.renewablesandchp.ofgem.gov.uk/; areas

– measured by the author from Ordnance Survey maps.
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Site Power per unit area Area Generation

during
gener-
ation

allowing for
decommiss-

ioning
energy

delivered start–end

End of
decommiss-

ioning

W/m2 W/m2 km2 TWh

Sellafield∗ 47 14 2.76 54 1956–2003 2120

Chapelcross 158 52 0.96 60 1959–2004 2095

Berkeley 673 155 0.27 43 1962–1989 2079

Bradwell 856 263 0.2 60 1962–2002 2092

Hunterston A 1730 375 0.15 57 1964–1989 2080

Dungeness A 1670 519 0.2 120 1965–2006 2097

Hinkley Point A 1770 496 0.19 103 1965–2000 2090

Trawsfynydd 2110 464 0.15 72 1965–1991 2083

Sizewell A 2240 679 0.14 110 1966–2006 2098

Oldbury 616 208 0.51 124 1967–2012 2101

Wylfa 2910 919 0.21 220 1971–2012 2101

Aggregate 470 140 5.74 1023

Table 3. Power per unit area of some UK nuclear power-generating facilities, sorted by the

start-year of generation. * The Sellafield site includes Calder Hall and Windscale, which

served not only civilian power generation but also military functions. Source: Nuclear

Decommissioning Authority Business Plan 2012–2015. www.nda.gov.uk

Energy Foundation, 21 John Adam Street London WC2N 6JG, November 2009.
Also http://www.ref.org.uk/roc-generators/.

Article submitted to Royal Society


