Materials, Electronics and Renewable Energy

Neil Greenham

ncg11@cam.ac.uk

- Nanostructured solar cells
- Beyond the Shockley-Queisser limit

'Dispersed Interface' Photovoltaics

'mixed' polymers generally phase-separate due to low entropy of mixing – spinodal decomposition

Halls et al. Nature **376**, 498 (1995), Yu et al. Science **270**, 1789 (1995)

Fine structure in F8BT-PFB blends:

High Resolution Atomic Force Microscopy

Structure on many length scales

Sub-20nm structure most important for device operation

Dye-sensitised solar cells

Current DSSC Status:

- Best lab device efficiency 12 %
- Stable devices 5-8 %
- Trade off between efficiency, stability and processability
 - Replacing liquid electrolyte with less volatile materials (polymer electrolytes, molecular hole semiconductors, ionic liquids)
 - Interface engineering: redox cascades, barrier layers etc.
- Review: Grätzel, M. *Nature* **2001**, *414*, 338-344 plus MRS Bulletin Jan 2005

Fabrication on metal foils for consumer products First factory (30 $\rm MW_p/yr)$ on line early 2007 in Cardiff, UK

http://www.g24i.com/

Prototype building integrated DSSC Toyota, Japan

Inorganic Semiconductor Nanoparticles

100 nm

Luminescence

(CdSe with ZnS shells)

Increasing diameter

- Quantum confinement
- Particle-in-a-box

Use as electron acceptor in polymer solar cell

Nanocrystal shape control

B. Sun et al. J. Appl. Phys. 97 014914 (2005)

Beyond the Shockley-Queisser Limit:

Tandem cells:

Use stack of cells, grading band-gap from highest at incident light surface (with highest V_{oc}) to lowest at back of cell. Practical structures require diodes to be wired in series, so balancing photocurrents from these tandem cells is necessary.

Best results with III-V semiconductors, with demonstrated efficiencies above 33%

Lattice-matched III-V semiconductor growth reduces defects at boundaries.

Example: 2-cell stack [Takamoto et al, Appl. Phys. Lett. **70**, 381 (1997)]

In_{0.5}Ga_{0.5}P top cell – band gap near 1.9 eV

GaAs bottom cell - band gap 1.45 eV

Note: expensive to make – ok for space satellites....

Also possible (easier?) with organics – see J. Y. Kim *et al.*, Science 317 222 (2007)

Beyond the Shockley-Queisser Limit:

Multiple charge pair generation:

One photon to produce multiple e-h pairs? Very inefficient in bulk materials, due to energy and momentum conservation. Possible in nanoparticles, where k conservation is relaxed?

Multiple exciton generation in quantum dots: Evidence for multiple exciton generation in nanocrystals of e.g. PbS

Schaller and Klimov, Phys. Rev. Lett. **92**, 186601 (2004)

Not yet proven that the extra carriers can be extracted in a solar cell