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Electronic Structure of Molecules and Solids

Carbon bonding:

Energy

2s

2p (3 degenerate levels)

Atomic carbon 

Now add the local environment:   carbon usually shows covalent bonding to 
adjacent atoms – e.g.  Methane, CH4, or diamond – tetrahedral bonding

Diamond: Two face-
centred cubic 
lattices, based on 
(0,0,0) and ( ¼ , ¼, 
¼ )

C

H H

HH

methane



Convenient to re-arrange the atomic orbitals to form 
hybrid orbitals:

sp3 hydrid orbitals: ( )
zyx ppps φφφφφ ±±±=

2
1

C

H H

HH
Hybrid orbitals align along the 4 covalent 
bond directions:

Bonding through overlap of wavefunctions in direction of bond

- both electrons (one from each atom forming the bond) 
experience the attractive potential from the two atomic sites.

Describe the resultant molecular orbitals as linear combinations of 
the atomic orbitals.   Hückel theory (chemistry), “tight-binding”
model (physics)



The special chemistry of carbon – single and double bonds:

sp2 + π bonding

Mix px, py and s 
atomic states to 
form three sp2

hybrid orbitals:

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

+=

yx

yx

x

pps

pps

ps

φφφφ

φφφφ

φφφ

2
3

2
1

3
1

2
3

2
1

3
1

2
3

1

3

2

1

sp2 hybrid orbitals leave the pz non-bonding

Overlap of pz between adjacent carbon atoms on 
adjacent sites gives weak π bond formation (double 
bond)
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3 orbitals in-plane at 120° to each other



Simplest example:  
ethene

Degenerate perturbation 
theory:

Mix the two pz orbitals to 
form bonding and anti-
bonding combinations:
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π-electron molecular orbitals:
pz orbitals now experience 
potential from two carbon 
sites, A and B

V(r) = Vatomic + ΔV(r)
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Multiply by ψ∗ and integrate over all space:

∫ Δ+= ∗ ψψ VEE
zp

( ) ( ) tBVV BABA m−=±Δ±=Δ ∫∫ ∗∗∗ φφφφψψ
2
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∫ Δ=− ∗
AA VB φφ

∫ Δ=− ∗
BA Vt φφ

where

and 2t

Energy

E(pz)

Put two electrons into 
π-bonding orbital

t is the ‘transfer’ or 
‘resonance’ integral



Extend the chain:

n = 4 butadiene

4 linear combinations of       orbitalszpφ

Put two electrons into 
lowest π-bonding orbital, 
and two into the next lowest 
orbital

π*   all antibonding

π all bonding



? Fill half the π molecular orbitals

n = ∞

bandwidth = 4 t

Band of π stateszpE

n
polyacetylene

H H

H H

H

HH

H

“trans” isomer

π

π*

4 t



Natural Products with π-conjugated molecules:

CHO

CHO

(b)  11-cis-retinal:  
chromophore in 
phytochrome protein

photo-isomerisation hν

(a)  β-carotene

induces conformational change
in rhodopsin protein (visual purple),
gives permeation of Ca2+

across membrane



Periodic structures: crystals  (here, a one-dimensional long chain)

Potential in the lattice is periodic, V(r + T) = V(r) where T is a lattice 
translation vector

( ) ( ) ikr
k erurk =,ψ

( ) ( )Truru kk +=

1
2

N-1
Solutions of the Schrodinger equation are 
wavelike: 
- travelling waves require periodic 
boundary conditions:
- for a one-dimensional chain, loop round 
to form a ring:

Bloch’s theorem:  we can write:

Where u(r) is periodic with the lattice,

Construct the crystal lattice by integer amounts of the three lattice 
vectors.  Identical points, r and r’ are connected by 

where a, b, c are the lattice vectors, and u, v, w integers
cbar wvur +++=′



Back to the carbon chain:

We  are constructing the molecular orbitals as a linear combination of 
atomic orbitals (LCAO), and are looking here just at the π molecular 
orbitals formed from the atomic pz orbitals:

Choice of Bloch wavefunction:

for the 1-d chain here,
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Note this gives us exactly N distinct values of k:  allowed values of k
are spaced by 2π/Na, and all physically-distinct values of k lie within a 
range 0<k<2π/a



pz orbitals experience potential from adjacent carbon sites,

V(r) = Vatomic + ΔV(r)
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Multiply by φ*(x) and integrate over all x:
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Eatomic E(k)( ) ( ) ( ) ( ) ( )∫∫ ∗∗− +++ dxxVxdxaxVxee ikaika φΔφφΔφ

( ) ( ) BkatEkE atomic −−= cos2
we recognise the same 
B and t integrals as we 
met for the Hückel
treatment of ethene
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( ) ( ) BkatEkE atomic −−= cos2

One-dimensional tight-binding band:

E/t

k

π/a−π/a

k labels the allowed molecular orbitals
on the chain.

There are k states are spaced by π/Na 
and range between -π/a and π/a

k=π/a

k=0

Add electrons, one per site, spin-up and spin-down, lowest energy 
states first – fill ½ of available states, to Fermi energy EF and 
values of kF = ± π/2a

Describes a metal – unfilled states accessible at EF
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Polyacetylene – shows alternating bond lengths 
along the chain – ‘double’ and ‘single’ bonds:

increase in the periodicity from a to 2a
2a

–π/2a π/2a

Expect standing wave states at 

k = ± π/2a ?

Look at states at k = π/2a, real 
space periodicity 4a

Bonding across short 
bonds – lower energy

Bonding across long 
bonds – higher energy



Benzene: 6-membered ring.  C6H6

L=6a, allowed values of k are:

aaa
πππ

±±± ,
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Clockwise and 
counter-clockwise 
travelling waves

a
k π
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the same, all anti-
bonding standing 
wave

+
+
-

-
+
+

--

+ -
+
-

2t 4t

( ) ( ) BkatEkE atomic −−= cos2

E = -2t, -t, +t, +2t

6 electrons into π
bonding orbitals



Inorganic semiconductors used for photovoltaics

Material Bandgap (eV) direct/
(at 300K) indirect

Si (crystalline) 1.1 i
Ge 0.66 i
GaAs 1.43 d
CdSe 1.74 d
CdTe 1.44 d
ZnO 3.2 ?
CuInSe2 1.0 d
“CuInGaSe2”, CIGS 1.2 or greater d
amorphous-Si 1.7 (typical) d

diamond, Si, Ge: 
both sites same

GaAs: Ga on (0,0,0), 
As on ( ¼ ¼ ¼ )

CdSe, CdTe –
similar, but based on 
hexagonal close-
packed lattice

In general –
increased ionicity
causes a larger 
band-gapAmorphous silicon – preparation under conditions of 

rapid cooling - locks in disordered ‘liquid-like’ structure. 
Short-range order similar to crystal, but no long range 
order.   Disorder primarily in bond angle rotations.

Electronic states are no longer delocalised k states, but 
are spatially localised.  

Si Si



Optical properties of semiconductors

Macroscopic absorption coefficient α describes attenuation of light through a material.  
Photons  of energy E and intensity I0 incident normally on a slab of material.  

Fraction α(E) dx of the photons are absorbed, so: xdxdI α−=/

integrating,                                (the Beer-Lambert law) ( ) xeIxI α−= 0

absorption coefficient for Si (indirect 
gap) and for GaAs (direct gap):

α = 105 cm-1 – thickness to absorb 1/e of 
incident light is 10-7 m, or 0.1 μm 

α = 102 cm-1 – thickness to absorb 1/e of 
incident light is 10-4 m, or 100 μm 



Optical properties of semiconductors

Microscopic description of absorption and emission:   start with a 2-level system

Ev

Ec

(i)
(i) stimulated absorption, rate Bvcu(ω)

(ii) stimulated emission, rate Bcvu(ω)

(iii) spontaneous emission, rate A

u(ω) is the energy density of radiation per 
unit ω

(ii) (iii)

A and B are the Einstein coefficients.  Fermi golden rule requires B(absorption) = 
B(stimulated emission).

Thermal equilibrium in reservoir of black body radiation at temperature T sets 
relation between A and B: 
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Einstein B coefficient:

Fermi Golden rule to calculate transition 
rate between initial and final states caused 
by EM electric field:
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hε
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Einstein A coefficient gives radiative decay rate, e.g. hydrogen 2s to 1s, 
A21 = 6 x 108 s-1, and τrad. = 1.6 ns

Optical absorption for band-to-band transitions:

( ) ( ) rki
cc erurk ′=′,ψ

( ) ( ) ikr
vv erurk =,ψ

transitions between valence and conduction 
band Bloch states:

dipole matrix element 
includes the term                          
- non-zero only when k = k’

( )∫ −′ rde rkki 3

energy

Ec

Ev

filled

Eg

standard matrix element ‘atomic’
selection rules, (s to p etc.) also hold



Indirect gap semiconductors

Ec

Ev

filled

Eg

transition requires participation of a phonon, which 
provides energy       and momentum  

requires thermal population of phonons, so 
temperature-dependent absorption coefficient (near 
the band edge), and weak absorption coefficient.

absorption coefficient only large at threshold 
energy for direct transitions – a relatively high 
energy for silicon

kphonon

ωh kh



Excitons in inorganic semiconductors

independent treatment of electrons and holes for optically-excited states – is this realistic?

Mott-Wannier Excitons:  Coulomb interaction between electron and hole – treat this 
using a modified Bohr model for the H atom:  [c.f. dopant states in extrinsic 
semiconductors]
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where μ is the reduced 
mass for the e-h system:

∗∗ +=
he mm

111
μ

Minimum energy for absorption is therefore lower by the exciton binding energy.

Cu2O
large dielectric constants and low effective 
masses give very low exciton binding energies for 
lower-gap semiconductors such as Si and GaAs:

Si 15 meV

GaAs 4 meV

CdS 29 meV

confinement to smaller 
size causes increase in 
exciton binding energy –
seen for 2-dimensional 
semiconductor 
heterostructures, and 
nanocrystals



Electron dynamics in semiconductors

kc
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Ev
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Energy vs. momentum for a free particle
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For electron in conduction band, E(k) is locally parabolic 
about band minimum
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effective mass ≠ free electron mass due to 
interactions with lattice

To describe a localised electron in an electric field
• make a wavepacket with k values around k0
• field increases k’s with time
• electron moves like classical particle with mass 

me* and charge -e
• due to scattering, k’s never get far from k0

Efield



energy

Ec

Ev

filled

a ‘hole’ in the valence band:

• Remove one electron from full valence band

• Consider remaining “hole” as a new particle

• Positive effective mass
• Positive charge

Efield

• electrons move to right (increase k) as before
• empty state moves with them
• but khole = -kelectron removed
• momentum of system (hole) increases to left
• equivalent to motion of positive particle
• energy also increases, as expected

related to curvature 
of top of band, as 
before


	Electronic Structure of Molecules and Solids
	Natural Products with p-conjugated molecules:

