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* Interactions with light
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Electronic Structure of Molecules and Solids

Carbon bonding:

,Energy

Atomic carbon

2p (3 degenerate levels)

2S

Now add the local environment: carbon usually shows covalent bonding to
adjacent atoms — e.g. Methane, CH,, or diamond — tetrahedral bonding

Diamond: Two face- H §H
centred cubic \ C:‘
lattices, based on / Y
(0,0,0)and (%, %, H H
Q 7a ) methane




Convenient to re-arrange the atomic orbitals to form
hybrid orbitals:

: : 1
sp? hydrid orbitals: ¢ = §(¢S + ¢px + ¢py + ¢pz )
Hy o
N Hybrid orbitals align along the 4 covalent
P ; bond directions:
H H

Bonding through overlap of wavefunctions in direction of bond

- both electrons (one from each atom forming the bond)
experience the attractive potential from the two atomic sites.

Describe the resultant molecular orbitals as linear combinations of
the atomic orbitals. Huckel theory (chemistry), “tight-binding”
model (physics)



The special chemistry of carbon — single and double bonds:

1
sp2 + n bonding h= T(¢ #/24, )
Mix p, p, and s 1 1 V3
p-x Py ¢, =—=| ¢s _—¢px +_¢p

atomic states to J3 V2 2 P
form three sp?
hybrid orbitals: o Lly L, 3,
\ )’ \/§ ; \/E P 2 &

\\\ y ////

““““ a “‘X‘ o 3 orbitals in-plane at 120° to each other

sp? hybrid orbitals leave the p, non-bonding

Overlap of p, between adjacent carbon atoms on
adjacent sites gives weak © bond formation (double

bond)



n-electron molecular orbitals:

H

/C=C\ ethene
H H

Degenerate perturbation
theory:

Mix the two p, orbitals to
form bonding and anti-
bonding combinations:

1
= —— (¢, +
ﬁ(m ds)
H';” — HatomicW+AVW
SO.

Ey=E, y+AVy

/H Simplest example:

p, orbitals now experience
potential from two carbon
sites, A and B

V(r) =V omic T AV(I)

1
W= T(¢A+¢B)

1
l//ﬂ* I~
L (a-)
>8_8< bonding
>8_8< Anti-bonding



1
W:ﬁ(%i%)

Hy = Hatomicw +AVy

Ey=E, y+AVy
Multiply by y* and integrate over all space:

E=E, + [y aAVy

Jy avy :%j(ﬁ + 43 AV (g, + g )= —B Tt

+ E
where —B = I¢ZAV¢A nersy >8_K

and  —l= j¢ : AV ¢y o) 2t _

A 4

t is the ‘transfer’ or Put two electrons into / >8_K
‘resonance’ integral n-bonding orbital




Extend the chain:
n=4 _A S butadiene

4 linear combinations of ¢, orbitals

* i ' O O
n* all antibonding 8 0 8 4)

/
AN

t
A
|

s atbonang 9099

Put two electrons into
lowest n-bonding orbital,
and two into the next lowest
orbital



n== V\% polyacetylene

H H H H

“trans” isomer / _ _ _

by Hy y Hy

9, 9

3506

= Pz 4t Band of n states
\

V*\HH

bandwidth = 4 t ? Fill half the = molecular orbitals



Natural Products with n-conjugated molecules:

(a) B-carotene NN
(b) 11-cis-retinal: PPN
chromophore in
phytochrome protein N

‘ CHO

photo-isomerisation T! hv

induces conformational change

in rhodopsin protein (visual purple),
gives permeation of Ca?*

across membrane

AN N N \CHO



Periodic structures: crystals (here, a one-dimensional long chain)

Construct the crystal lattice by integer amounts of the three lattice
vectors. |dentical points, r and r’ are connected by

r'=r+ua+vb+wc
where a, b, ¢ are the lattice vectors, and u, v, w integers

Potential in the lattice is periodic, V(r + T) = V(r) where T is a lattice
translation vector
N-1 1

Solutions of the Schrodinger equation are 2

wavelike:

- travelling waves require periodic

boundary conditions:

- for a one-dimensional chain, loop round

to form a ring:

Bloch’s theorem: we can write: W(k, r) =u, (r)eikf

Where u(r) is periodic with the lattice, u (r)=u, (r+T)




Back to the carbon chain:

We are constructing the molecular orbitals as a linear combination of
atomic orbitals (LCAQO), and are looking here just at the = molecular
orbitals formed from the atomic p, orbitals:

Choice of Bloch wavefunction: v (r)=>e"Tg(r-T)
T

for the 1-d chain here, v, (x)=) e"g(x—na)

Note this gives us exactly N distinct values of k: allowed values of k
are spaced by 2n/Na, and all physically-distinct values of k lie within a
range O<k<2m/a




p, orbitals experience potential from adjacent carbon sites,
V(I’) = Vatomic + AV(I’)
N

N
H, > e"g(x—na +A\/Ze'kna x—na)=E(k)> e*g(x —na)

n=1 n=1 n=1

Multiply by ¢*(xX) and integrate over all x:

¢ (XH,, ZN: " g(x —na)dx + :¢*(x)AV ZN: e""g(x —na)dx = j ¢ (x ZN: e""g(x — na )dx

n=1

E

womio | €% e[ ()aV(x+a)ix+ [ ¢ ()AVH(x)dx| | ER)

we recognise the same
B and tintegrals as we E(k) =E_ . — 2t COS(ka) —
met for the Huckel

treatment of ethene




One-dimensional tight-binding band:

k labels the allowed molecular orbitals
on the chain.

E(k)=E,,,. —2tcos(ka)-B

atomic There are k states are spaced by n/Na

and range between -n/a and n/a

] Sydghedeh

Ent 1 k=rla

25, ) ) )
0.5 0] 0.5
< - %Wm

o

k k=0

Add electrons, one per site, spin-up and spin-down, lowest energy
states first — fill %2 of available states, to Fermi energy E; and
values of k. = + 7/2a

Describes a metal — unfilled states accessible at E




Polyacetylene — shows alternating bond lengths
along the chain — ‘double’ and ‘single’ bonds:

NN NN AN

—

2a

increase in the periodicity from a to 2a
Look at states at k = n/2a, real

Expect standing wave states at space periodicity 4a

k=+m/2a?

Bonding across long
21 | ‘ bonds — higher energy

0
—-98gt-9 83898

Bonding across short
] 05 0 0.5 1 bonds — lower energy




Benzene: 6-membered ring. CH;

L=6a, allowed values of k are:

0’ + i’ + 2_71-’ + E <>
3a 3a a
T .
T 1I k = + = describes
. a |
Clockwise and the same, all anti-

counter-clockwise

travelling waves bonding standing
wave
'hA [ \'_y E(k) = Eatomic — 2t COS(ka)— B
2t | 4t
E =-2t, -t, +t, +2t
Gy =] ==\
—+

6 electrons into =«
bonding orbitals



Inorganic semiconductors used for photovoltaics

Material

Si (crystalline)

Ge

GaAs

CdSe

CdTe

ZnO

CulnSe,
“CulnGaSe,”, CIGS
amorphous-Si

Bandgap (eV)
(at 300K)

1.1

0.66

1.43

1.74

1.44

3.2

1.0

1.2 or greater
1.7 (typical)

direct/
indirect

i

i

d
d
d
?
d
d
d

Amorphous silicon — preparation under conditions of
rapid cooling - locks in disordered ‘liquid-like’ structure.
Short-range order similar to crystal, but no long range

order. Disorder primarily in bond angle rotations.

Electronic states are no longer delocalised k states, but

are spatially localised.

diamond, Si, Ge:
both sites same

GaAs: Ga on (0,0,0),
Ason (V")

CdSe, CdTe —
similar, but based on
hexagonal close-
packed lattice

In general —
increased ionicity
causes a larger
band-gap



Optical properties of semiconductors

Macroscopic absorption coefficient « describes attenuation of light through a material.
Photons of energy E and intensity |, incident normally on a slab of material.

Fraction «(E) dx of the photons are absorbed, so: dl /dx = —ax

integrating, |(X)= Ioe_“x (the Beer-Lambert law)

1807 it - absorption coefficient for Si (indirect
1S1D1E .

ap) and for GaAs (direct gap):

s | — gap) ( gap)
?“{/
1.E+05 Gals : .
M"ﬁj a = 10% cm™ — thickness to absorb 1/e of

1,604 | i incident light is 10"m, or 0.1 pm

1,E+08 1 .~ Silicon

x_r__\

1,E402 / a = 102 cm™ — thickness to absorb 1/e of
incident light is 10-4m, or 100 um

1.E:01 ¢

Absorption coefficient / cm’

e

1.B400 - - g -
1 1.5 2 25 3 3.5 4

Energy/eV



Optical properties of semiconductors

Microscopic description of absorption and emission: start with a 2-level system

_ S (i) stimulated absorption, rate B, u(w)
) (i) (iif) (ii) stimulated emission, rate B u(w)
(iii) spontaneous emission, rate A
u(w) is the energy density of radiation per
E unit @

A and B are the Einstein coefficients. Fermi golden rule requires B ,,sorption) =
B(stimulated emission).

Thermal equilibrium in reservoir of black body radiation at temperature T sets
relation between A and B:

haw®

2.3
7T C

A=B



Einstein B coefficient:

Fermi Golden rule to calculate transition 7262

2
rate between initial and final states caused BVC = ‘<V‘X‘ C>‘

2
by EM electric field: &l

Einstein A coefficient gives radiative decay rate, e.g. hydrogen 2s to 1s,
A,,=6x108s" and 1,4 =1.6ns
s energy

Optical absorption for band-to-band transitions:

transitions between valence and conduction
band Bloch states: l//v(k’ r): uv(r)e"‘r 4

k' r)=u, (e = _]
Eg

dipole matrix element E —
includes the term Je‘(k'—k)fd 3r Y
- non-zero only when k = K’

filled
standard matrix element ‘atomic’
selection rules, (s to p etc.) also hold




Indirect gap semiconductors

transition requires participation of a phonon, which
provides energy /i and momentum 7k

4 requires thermal population of phonons, so
temperature-dependent absorption coefficient (near
the band edge), and weak absorption coefficient.

absorption coefficient only large at threshold
energy for direct transitions — a relatively high

E — A K energy for silicon
c >
Eg kphonon
E B 1,E+07 —— L
Y Visible uv
. ‘TE 1.E+06 1 e
filled S o
= 16405 + GaAs . /
g o
2 1E04 P
E -
0 ‘,f#’“ T
> S 1Esl ( -~ Silicon
» : P
el
L
)
2 1eo
q §
1,600 . ‘ .
1 1.5 2 25 3 35 4

Energy/eV




Excitons in inorganic semiconductors

independent treatment of electrons and holes for optically-excited states — is this realistic?

Mott-Wannier Excitons: Coulomb interaction between electron and hole — treat this
using a modified Bohr model for the H atom: [c.f. dopant states in extrinsic
semiconductors]

1
_|_

4
E epu _plm scey  where uis the reduced i :
me mh

1
binding 2(4”550h)2 g2 mass for the e-h system: M

Minimum energy for absorption is therefore lower by the exciton binding energy.

Photon energy in eV

large dielectric constants and low effective
masses give very low exciton binding energies for
lower-gap semiconductors such as Si and GaAs:

Si 15 meV confinement to smaller
GaAs 4 meV sizg cauges .increase in
exciton binding energy —
CdS 29 meV seen for 2-dimensional
semiconductor
heterostructures, and
nanocrystals




Electron dynamics in semiconductors

p2 72K 2
Energy vs. momentum for a free particle E = —
2Zm  2m
A energy
For electron in conduction band, E(k) is locally parabolic
about band minimum
| 2 2
E, 3 e 1(k—k)

2m,

kV
E, [ /'
_ effective mass # free electron mass due to
filled interactions with lattice

To describe a localised electron in an electric field

> Kk - make a wavepacket with k values around k,
- field increases k’s with time
E, . : . :
el  electron moves like classical particle with mass

m,* and charge -e
* due to scattering, k's never get far from k,



a ‘hole’ in the valence band:

A

energy

filled

Efield

« Remove one electron from full valence band

« Consider remaining “hole” as a new particle

* Positive effective mass
 Positive charge \
related to curvature
of top of band, as
before

electrons move to right (increase k) as before
empty state moves with them

but khoIe = 'kelectron removed

momentum of system (hole) increases to left
equivalent to motion of positive particle

energy also increases, as expected
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