
Part IB Introduction to Computing – Handout 2

Further C++ Programming

David MacKay
University of Cambridge

January 16, 2008 – version 2008.1.15

This term’s tasks are harder than last term’s.
It’s essential to prepare before each week’s programming exer-
cises. Read this manual and sketch out a plan of what you are
going to do before sitting down at the computer.
The exercises involve physics, so you will need to prepare both
physics thoughts and computing thoughts. Please allow two
hours preparation time per week.

For the latest information about the IB course, please see:

• the course wiki (which requires Raven access):

https://wiki.csx.cam.ac.uk/cphysics/

– also reachable via http://tinyurl.com/32tw9m

• the course homepage:

http://www.inference.phy.cam.ac.uk/teaching/comput/C++/

– also reachable via http://tinyurl.com/2uffap

You are advised to attend the laboratory sessions with expert demonstrators, which will
take place in the PWF at the Cavendish Laboratory at the following times in weeks 2, 3, and 4:

A: Thursdays 11am–1pm (starting Thursday 24th Jan)
B: Thursdays 2–4pm (Thursday 24th Jan)
C: Fridays 2–4pm (Friday 25th Jan)
D: Tuesdays 11am–1pm (Tuesday 29th Jan)
E: Tuesdays 2–4pm (Tuesday 29th Jan)

1

Part IB Introduction to Computing Outline

Aims of the Lent Term Computing Course

Main aims:

• Structures, arrays, dynamic memory allocation.

• Putting useful functions into separate files.

• Use computing to help understand physics better.

Possible further aims that may be addressed in the lectures: recursion; classes; other pro-
gramming languages; data modelling, likelihood functions.

Organisation

There are 3 two hour laboratory sessions scheduled for the Lent term computing course. You
should work through the examples and exercises described in this document.

To benefit most from the laboratory session and from the demonstrators’ help you must
read this document before the start of each session.

This term’s tasks are harder than last term’s. The exercises involve physics, so you will need
to prepare both physics thoughts and computing thoughts. Please allow two hours prepara-
tion time per week.

Assessment

In this course, your progress will be self-assessed.
The self-assessment process is based on a desire to treat you as adults, and on the assump-

tion that you are interested in learning, capable of choosing goals for yourself, and capable of
self-evaluation. I expect everyone to achieve full marks.

There are different types of programmers. Some people like to get into the nuts and bolts
and write programs from scratch, understanding every detail – like building a house by first
learning how to make bricks from clay and straw. Other people are happy to take bricks as
a given, and get on with learning how to assemble bricks into different types of building.
Other people are happy to start with an existing house and just make modifications, knocking
through a wall here, and adding an extension there.

I don’t mind what sort of programmer you become. All these different skills are useful. I
encourage you to use this course to learn whatever skills interest you. This term’s exercises
give opportunities for various styles of activity.

As last term, we strongly encourage you to do the exercises at the recommended time,
because that’s when the expert demonstrators are there to help you. To allow for unexpected
complications, the final deadline for assessment of each piece of work will be 9 days after the
recommended completion time.

The main form of assessment for all this work will be self-assessment. Ask yourself “have
I mastered this stuff?” If not, take appropriate action. Think, read, tinker, experiment, talk
to demonstrators, talk to colleagues. Sort it out. Sort it out well before the final deadline.

2

When you have checked your own work and fully satisfied your self-assessment, you should
submit an electronic record of your self-assesment to the course pigeonholes. By submitting
your work, you are confirming that you have assessed yourself and achieved the session’s
objectives. Please do not abuse the electronic pigeonholes. I will make random checks, and all
self-assessed submissions will be made available to the IB examiners.

In each session, set yourself one or two goals. When you have finished each session, submit
a brief summary of your goals to the electronic course pigeonholes along with a file containing
a record of your solution – typically the solution might take the form of one or two compilable
C++ programs.

Collaboration

How you learn to program is up to you, but let me make a recommendation:

I recommend that you do most of your programming work in pairs, with the weaker
programmer doing the typing, and the stronger one looking over his/her shoulder.

Working in pairs greatly reduces programming errors. Working in pairs means that there is
always someone there to whom you can explain what you are doing. Explaining is a great way
of enhancing understanding. It’s crucial to have the weaker programmer do the typing, so that
both people in the pair understand everything that’s going on.

At the end of the day, you must all self-assess individually, and you must submit individual
electronic records of your work to the electronic course pigeonholes.

Copying

When programming in real life, copying is strongly encouraged.

• Copying saves time;

• Copying avoids typing mistakes;

• Copying allows you to focus on your new programming challenges.

Similarly, in this course, copying may well be useful. For example, copy a working program
similar to what you want to do; then modify it. Feel free to copy programs from the internet.
The bottom line is: “do you understand how to solve this sort of programming problem?” Ob-
viously, copying someone else’s perfect answer verbatim does not achieve the aim of learning
to program. Always self-assess. If you don’t understand something you’ve copied, tinker with
it until you do.

‘Is this enough?’

If you find yourself asking “have I done enough for this week’s session?”, the answer is “please
self-assess!” Do you feel you’ve got a firm grasp of all the highlighted concepts? If so, then
that’s enough. One thing to check is “have I developed my understanding of this week’s physics
topic?” That’s one of the aims this term – to get fresh insights into orbits, dynamics, waves,
statistical physics, pressure, temperature, and so forth.

3

Submitting your self-assessed work

1. Last term we already made folders for everyone. If your user ID is jb007

you can check your folder is still there:

ls /ux/physics/part_1b/c++/pigeonhole/jb007

You may find it convenient to make a symbolic link (or ‘shortcut’) to your
folder, like this for example

ln -s /ux/physics/part_1b/c++/pigeonhole/jb007 ~/submissions

2. Then, for each of the three pieces of work this term, make a folder like this:

mkdir /ux/physics/part_1b/c++/pigeonhole/jb007/IB.4

mkdir /ux/physics/part_1b/c++/pigeonhole/jb007/IB.5

mkdir /ux/physics/part_1b/c++/pigeonhole/jb007/IB.6

[or mkdir ~/submissions/IB.4 if you made the symbolic link]. Put
your work (the additional programming goal, and your solution) in that
sub-folder: for example, if the work is in files called c++/README and
solution.cc, copy them like this:

cp c++/README /ux/physics/part_1b/c++/pigeonhole/jb007/IB.4

cp solution.cc /ux/physics/part_1b/c++/pigeonhole/jb007/IB.4

Your marks for the course depend on your submission of your self-assessments to the
course pigeonhole.

Deadline: You should do the first exercise during ‘week 2’ (between Thursday 24th and Wednes-
day 30th January). The recommended completion time for the first exercise is thus Wednesday
30th January 2007. The final deadline is 9 days later, on Friday 1st January 2007 at 23:59.

Any problems, email djcm1@cam.ac.uk.

Feedback

Your feedback on all aspects of this new course is welcome. Feedback given early is more valu-
able than feedback delivered through the end-of-term questionnaires. Early feedback allows
any problems arising to be fixed immediately rather than next year!

I’d be especially interested to know whether you feel it was a good idea to split this course
into two halves, one in Michaelmas term and one in Lent.

4

Programming concepts

The new programming tools we’ll use this term are arrays (great for representing vectors, or
lists of similar things); structures (great for organizing things that belong together, such as a
particle’s position, mass, and velocity, or a vector and its range of indices); and how to modu-
larize your code.

The next 11 pages cover the following topics.

arrays how to allocate memory on the fly for
things like vectors

modularizing chopping up your code so you can reuse
it elegantly

structures and packages how to use structures in your elegant
modules

formatted output getting the number of decimal places that
you want

The appendices include a guide to Twenty-nine useful unix commands (page 29).

Arrays

Last term, we declared arrays of fixed size like this

float position[3];

int count[100];

for(int i=0; i< 100; i++)

{

count[i] = 0;

}

This fixed-size approach is an ugly way of doing things – it’s inflexible, and it hard-wires
numbers like ‘3’ and ‘100’ into your code, whereas such numbers should almost always be
parameters. It would be more elegant to replace the ‘100’ above by a name (such as N), and use
that name everywhere, and fix the value of N just once at the start of the program. It’s even
more elegant to allow N to be set interactively or on the command-line of the program – in the
way that RandDemo6.cc, for example, could optionally set the number of points N (page 34 of
tutorial 1). The ugly way of doing arrays does not allow the creation of arrays of size controlled
by a variable.

In C++ we can create variable-sized arrays on the fly while a program is running. We use
a special command new to allocate the memory for an array, and a complementary command
delete to free up the memory again when we don’t need it any more.

The example program NewDelete.cc illustrates how to use new and delete, and how to
pass an array to a function.

5

// NewDelete.cc

#include <iostream>

using namespace std;

void show(double *a , int N){

for(int n=0; n<N; n++)

cout << "a["<<n<<"]=\t"

<< a[n]

<< endl ;

}

int main()

{

double *a ;

// This creates a pointer but doesn’t allocate any memory for the array

int N = 20 ;

a = new double[N] ; // allocates memory for a[0]..a[N-1]

for(int n=0; n<N; n++)

a[n] = n*n ;

show(a , N) ;

delete [] a ; // frees the memory

}

In C++, array indices by default run from zero. But if you want an array that runs from,
say, 1 to N, then you can do this by creating an array a[0]. . .a[N-1] of the right size, then
offsetting the pointer by 1 (using b=a-1), so that b[1]. . .b[N] points to the same locations as
a[0]. . .a[N-1]. This convenient offsetting is demonstrated in the next example.

We can also allocate memory on the fly for more complex objects such as matrices. A good
way to think of an M × N matrix with typical entry q[m][n] is that it consists of M vectors,
each of length N. We can allocate memory for a pointer (q) to an array of pointers (q[1]. . .q[M]).
Each of the pointers q[1]. . .q[M] is just like the pointer a in the previous example, pointing to
its own personal chunk of memory of size N. This way of handling matrices is demonstrated in
several examples on the website.

You can pass arrays to functions only by reference, not by value.

Modularizing

Last term we introduced the idea of chopping a program into small chunks called functions.
It’s good style to put each conceptual bit of the program in its own function. Try to avoid
writing the same piece of code more than once.

In accordance with this principle of writing everything once only, it’s also a good idea to
put any function that you might want to use again into a file that other programs can make use
of. There’s a couple of ways to split programs over multiple files.

1. The simple way with #include. If you put the directive #include "blah.cc" on one
line of a C++ program then the compiler will behave exactly as if the contents of the file

6

blah.cc were there, in your file, at that point. In this way you need to compile only one
file – the other files get read in appropriately.

2. The professional way with linking. Alternatively, you can split the program into multiple
files each of which is compiled separately. In this approach, the compiler needs to be run
several times, once for each separate file, and then a final time to link the compiled files
together. Compiling each individual .cc file creates a corresponding .o file. Linking takes
all the .o files and combines them into a single executable. Just one of the .cc files should
contain a definition of the main function, which is where the executable starts.

When compiling an individual file, the compiler doesn’t need to know anything about
the functions in the other files, except for the syntax of any functions that get used in the
current file. That syntax is conveyed to the compiler by function declarations. The recom-
mended technique to handle these function declarations is to ensure that all functions in
the file blah.cc are declared in another file called blah.h, which is #included by blah.cc

and by any other files that wish to use blah.cc’s functions.

This ‘linking’ technique is illustrated by the four files that follow. The main program is
in package1.cc. This program uses utility functions for memory allocation and array print-
ing, located in the file tinyutils.cc. Both package1.cc and tinyutils.cc include the header
file tinyutils.h. And finally, to keep track of what needs compiling when, it is essential to
use a makefile. The makefile must contain an explicit statement that “package1 depends on
package1.o and tinyutils.o”, and (on the following line, which must start with a single tab
character) an explicit instruction of how to link them together.

// tinyutils.h

// declares the functions defined in tinyutils.cc

using namespace std;

// memory management

double *dvector (int low, int high) ;

void freedvector (double* a , int low) ;

// printing

void printVector(double *b , int lo , int hi , int style=1) ;

// Note that any default parameter values (such as ’style=1’)

// must be specified in the declaration.

// maths

double square(double a) ;

7

makefile for package1 and package2

CFLAGS = -ansi -g -Wall

LIBS = -l stdc++ -lm

CXX = g++

These lines define what package1 depends on, and how to make it

package1: package1.o tinyutils.o

$(CXX) $(CFLAGS) $(LIBS) package1.o tinyutils.o -o package1

package2: package2.o tinyutils2.o

$(CXX) $(CFLAGS) $(LIBS) package2.o tinyutils2.o -o package2

%.o: %.cc

$(CXX) $(CFLAGS) $< -c -o $@

%: %.cc makefile

$(CXX) $(CFLAGS) $(LIBS) $< -o $@

8

// package1.cc

// demonstrates how to use functions

// defined in a separately-compiled file (tinyutils.cc)

#include <iostream>

using namespace std;

// Both this file and tinyutils.cc include the

// function declarations from a single header file:

#include "tinyutils.h"

// In this example, we use functions ’dvector’,

// ’square’, ’printVector’, and ’freedvector’, all defined in

// tinyutils.cc

int main()

{

double *b , *a ;

int N = 20 ;

// allocate the space for b[1]..b[N]

b = dvector(1 , N) ;

a = dvector(1 , N) ;

for (int n = 1 ; n <= N ; n ++)

a[n] = static_cast<double>(n) ;

for (int m = 1 ; m <= N ; m ++)

b[m] = square(a[m]) ;

printVector(b , 1 , N) ;

// free the memory

freedvector(b , 1) ;

freedvector(a , 1) ;

return 0;

}

9

// tinyutils.cc

// provides functions for double vectors allocation and clean-up

#include <iostream>

using namespace std;

#include "tinyutils.h"

// allocates memory for an array of doubles, say b[low]..b[high]

// example usage: b = dvector(1 , N) ;

double *dvector (int low, int high) {

int N = high-low+1 ;

double *a ;

if (N <= 0) {

cerr << "Illegal range in dvector: "

<< low << ", " << high << endl ;

return 0 ; // returns zero on failure.

}

a = new double[N] ; // allocates memory for a[0]..a[N-1]

if(!a) {

cerr << "Memory allocation failed\n" ;

return 0 ; // returns zero on failure.

}

return (a-low) ; // offset the pointer by low.

} // the user uses b[low]..b[high]

void freedvector (double *b , int low) {

delete [] &(b[low]) ; // The ’[]’ indicate that what’s

} // being freed is an array

// Note that default parameter values (such as ’style=0’) have already

// been specified in the function declaration in tinyutils.h.

void printVector(double * b , int lo , int hi , int style) {

// style 1 means "all on one line"; style 0 means "in one column"

for (int n = lo ; n <= hi ; n ++) {

cout << b[n] ;

if(style) {

if (n == hi) cout << endl;

else cout << "\t" ;

} else {

cout << endl;

}

}

}

double square(double x) {

return x*x ;

}

When we type make package1, the following things happen.

10

1. make looks at the makefile and learns that package1 depends on package1.o and tinyutils.o.

2. If package1.o needs to be made, make invokes

g++ -ansi -pedantic -g -Wall package1.cc -c -o package1.o

At this stage, the compiler compiles just the functions that are defined in package1.cc.

3. Similarly for tinyutils.o, make invokes

g++ -ansi -pedantic -g -Wall tinyutils.cc -c -o tinyutils.o

4. For the final linking step, make invokes

g++ -ansi -pedantic -g -Wall -l stdc++ -lm package1.o tinyutils.o -o package1

yielding the executable package1. It’s at this stage that the compiler will complain if any
functions have been declared but not defined.

Structures and packages

We described, last term, how to use structures. Structures are a great way to organize things
that belong together, and that should never really be separated from each other, such as a
vector and its index range. By putting such things together into a single object, we can make
code briefer (because we just refer to the one object, rather than its parts), and less buggy. The
next example shows how to rewrite the previous example’s vector-creation and vector-printing
using a structure that contains the vector’s pointer and its index range. The structure is defined
in the header file. Why is it a good idea to use this structure? For this toy example, it doesn’t
seem like a big deal, but what you can notice is that function-calls that do things with the
vector, once it’s been created (such as printDvector(b)) are simpler and briefer, because we
don’t need to send along the baggage (low, high) that is required in the un-structured approach.
The structure contains this baggage, so when we pass the pointer to the structure to other
functions, those functions get access to exactly the baggage they need. The only down-side of
this structured approach is that when we want to access the contents of the vector, we have to
get the pointer to the vector out of the structure, so what used to be a[n] in the old approach
(where a was the pointer to the array) becomes a.v[n] in the new approach (where a is the
structure).

11

// package2.cc

// demonstrates how to use structures and functions

// defined in a separately-compiled file (tinyutils2.cc).

// The structure Dvector is defined in tinyutils2.h

#include <iostream>

using namespace std;

// Both this file and tinyutils2.cc include the

// function declarations from a single header file:

#include "tinyutils2.h"

int main()

{

Dvector a , b ;

int N = 20 ;

// allocate the space for b.v[1]..b.v[N]

allocate(b , 1 , N) ;

allocate(a , 1 , N) ;

for (int n = 1 ; n <= N ; n ++)

a.v[n] = static_cast<double>(n) ;

for (int m = 1 ; m <= N ; m ++)

b.v[m] = square(a.v[m]) ;

printDvector(b) ;

// free the memory

freeDvector(b) ;

freeDvector(a) ;

return 0;

}

12

// tinyutils2.h

// declares the structures and functions defined in tinyutils2.cc

using namespace std;

struct Dvector {

double *v ; // the vector itself

int low;

int high;

} ; // don’t forget the semicolon in the structure definition

// memory management

int allocate(Dvector &a , int low, int high) ;

void freeDvector (Dvector &a);

// printing

void printDvector(Dvector &b , int style=0) ;

// Default parameter values (such as ’style=0’)

// must be specified in the declaration.

// maths

double square(double a) ;

13

// tinyutils2.cc

// provides functions for double vectors allocation and clean-up

#include <iostream>

using namespace std;

#include "tinyutils2.h"

// allocates memory for an array of doubles. Example: allocate(b, 1 , N) ;

int allocate (Dvector &a , int low, int high) {

a.low = low ; a.high = high ;

int N = high-low+1 ;

if (N <= 0) {

cerr << "Illegal range in dvector: "

<< low << ", " << high << endl ;

return 0 ; // returns zero if failure.

}

a.v = new double[N] ; // allocates memory for a[0]..a[N-1]

if(!a.v) {

cerr << "Memory allocation failed\n" ;

return 0 ;

} else {

a.v -= low ; // offset the pointer by low.

return 1 ;

}

}

void freeDvector (Dvector &b) {

delete [] &(b.v[b.low]) ;

b.high = b.low - 1 ;

}

// Note that default parameter values (such as ’style=0’) have already

// been specified in the function declaration in tinyutils2.h.

void printDvector(Dvector &b , int style) {

// style 1 means "all on one line"; style 0 means "in one column"

for (int n = b.low ; n <= b.high ; n ++) {

cout << b.v[n] ;

if(style) {

if (n == b.high) cout << endl;

else cout << "\t" ;

} else {

cout << endl;

}

}

}

double square(double x) {

return x*x ;

}

14

Formatted output

We’ve mainly printed out numbers using cout with commands like

cout << myint << " " << mydouble << endl ;

What if you don’t like the way cout makes your numbers look, however? Too many decimal
places? Too few? Well, cout can be bossed around and can be told to serve up numbers with
different numbers of decimal places. You can find out more about cout by looking in a manual
online or on paper.

Here we’ll describe another way to control output formatting, using the old-fashioned C
function, printf (which means print, formatted). It’s probably worth learning a bit about
printf because its syntax is used in quite a few languages.

The commands

int age = 84; printf("his age is %d years" , age) ;

will print the string ‘his age is 84 years’. The command

printf("%d %d\n" , i , j) ;

causes the integers i and j to be printed, separated by a single space, and followed by a newline
(just like cout << i << " " << j << endl ;). The command

printf("%3d %-3d\n" , i , j) ;

causes the same numbers to be printed out but encourages i to take up 3 columns, and to be
right-aligned within those 3 columns; and encourages j to take up 3 columns and to be left-
aligned. Text and numbers can be mixed up. For example,

printf("from %3d to %-3d\n" , i , j) ;

might be rendered as
from 123 to 789

Notice how you specify the format of the whole string first, then the missing bits, each of which
was indicated in the format string by a specfier, %something. The format specifier for a single
character is %c; for a string of characters, %s. The special character \n is a newline; \t is a tab;
\" gives a double quote; \\ gives a single backslash. The command

printf("%f %e %g \n" , x , y , z) ;

prints the floating point numbers x, y, and z as follows: x is printed as a floating point number
with a default number of digits (six) shown after the decimal point; y is printed in scientific
(exponential) notation; z is printed using whichever makes more sense, fixed floating point or
scientific notation. The program Printf.cc on the website illustrates more examples. I usually
use the format

printf("%12.6g %12.6g %12.6g" , x , y , z) ;

to print my real numbers – this format gives each of them 12 columns, and shows 6 digits of
precision.

15

Part IB Computing Course Session 4: PLANET

Physics objectives: to better understand Newton’s laws, circular motion, angular momen-
tum, planets’ orbits, Rutherford scattering, and questions about spacemen throwing tools
while floating near space shuttles.

Computing objectives: structures, arrays, using gnuplot; simulation methods for differential
equations (Euler, leapfrog).

You are encouraged to work in pairs, with the weaker programmer doing all the typing.

Task

Simulate Newton’s laws for a small planet moving near a massive sun. For ease of plotting,
assume the planet and its velocity both lie in a two-dimensional plane. Put the sun at the origin

(0, 0) and let the planet have mass m and inital location x(0) = (x1, x2) and initial velocity

v(0) = (v1, v2). The equations of motion are:

dx
dt = v(t)

m dv
dt = f(x, t),

(1)

where, for a standard inverse-square law (gravity or electrodynamics) the force f is:

f(x, t) = A
x

(
√

∑i x2
i

)3
, (2)

with A = −GMm for gravitation, and A = Qq/(4πǫ0) for electrodynamics with two charges
Q and q.

Try to write your programs in such a way that it’ll be easy to switch the force law from
inverse-square to other force laws. For example, Hooke’s law says:

f(x, t) = kx. (3)

How should we simulate Newton’s laws (1) on a computer? One simple method called
Euler’s method makes small, simultaneous steps in x and v. We repeat lots of times the following
block:

EULER’S METHOD

1: Find f = f(x, t)
2: Increment x by δt × v

3: Increment v by δt × 1
m f

4: Increment t by δt

We might hope that, for sufficiently small δt, the resulting state sequence (x, v) in the computer
would be close to the true solution of the differential equations.

Euler’s method is not the only way to approximate the equations of motion.
An equally simple algorithm can be obtained by reordering the updates. In the following

block, the updates of f and x have been exchanged, so the force is evaluated at the new location,
rather than the old.

16

A: Increment x by δt × v
B: Find f = f(x, t)
3: Increment v by δt × 1

m f
4: Increment t by δt

It’s not at all obvious that this minor change should make much difference, but often it does.
This second method, in which position and velocity are updated alternately, is called the
Leapfrog method. Here is a precise statement of the leapfrog method.

LEAPFROG METHOD

Repeat
{

Increment x by 1
2δt × v

Increment t by 1
2 δt

Find f = f(x, t)
Increment v by δt × 1

m f

Increment x by 1
2δt × v

Increment t by 1
2 δt

}
In this version, we make a half-step of x, a full-step of v, and a half-step of x. Since the end of
every iteration except the last is followed by the beginning of the next iteration, this algorithm
with its half-steps is identical to the previous version, except at the first and last iterations.

When simulating a system like this, there are some obvious quantities you should look at:
the angular momentum, the kinetic energy, the potential energy, and the total energy.

Techniques to use:

1. Represent the vectors x, v, and f using arrays. Arrays were mentioned at the end of the
first term’s tutorial, but we didn’t use them in any exercises. Make sure you look at some
simple examples of arrays before using them for planets.

2. Put all the variables and arrays associated with a single object (such as a planet) in a
structure. Structures are a really useful programming tool; they were explained in the
first term’s tutorial, but we didn’t use them in any exercises. Make sure you look at some
simple examples of structures.

What to do

There’s a lot of choice. This is a self-directed and self-assessed course, and I’d like you to choose
a planet-simulating activity that interests you.

Here are some suggestions. You don’t have to do all of these. The more you do, the more
educational it’ll be. But do take your pick, and feel free to steal working code (e.g. from the
course website) if you’d prefer to focus your energy on experimenting with working code,
rather than writing and debugging your own.

1. Write code that implements Euler’s method and the Leapfrog method. Get it going for

one initial condition, such as x(0) = (1.5, 2), v(0) = (0.4, 0). Before running your program,
predict the correct motion, roughly. Compare the two methods, using gnuplot to look at
the resulting trajectories, the energies, and the angular momenta. (If you’d like more
detailed guidance through a possible approach to this task, see the appendix on p. 27. A
worked solution for this first part is also available.)

17

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3
Figure 1: The initial condition x(0) = (1.5, 2), v(0) = (0.4, 0).

2. Once you have a trustworthy simulation: take a collection of similar initial conditions,
all having the same initial position and initial energy but differing in the direction of the
initial velocity. What happens? Show all the evolving trajectories in a single movie.

3. Or take initial conditions that differ slightly in their initial position or velocity, such as
“the spaceshuttle and the spaceman who is 100 yards from the spaceshuttle, both orbit-
ting the earth” (in what direction does he need to nudge himself in order to get home?).
Or “the spaceman and the hammer” – if he throws his hammer ‘forwards’, where does it
end up going? If he throws it ‘back’ or ‘sideways’, where does it end up going? (Here the
idea is to simulate two planets orbitting a single sun; to get the spaceman analogy, think
of the spaceman and his shuttle being like the two planets, and the earth playing the role
of the sun.)

4. Get an initial condition that leads to a perfectly circular orbit. Now perturb that initial
condition by giving a little kick of momentum in 8 different directions. Show all nine
resulting trajectories in a single movie. Which kicks lead to the period of the orbit chang-
ing? Which kicks lead to the period of the orbit staying the same? Which kicks lead to
orbits that come back to the place where the kick occurred? If an object is in an elliptical
orbit, what kicks do you give it in order to make the orbit larger and circular? What kicks
do you give it to make the orbit smaller and circular? What’s the best time, in an elliptical
orbit, to give the particle a kick so as to get the particle onto an orbit that never comes
back, assuming we want the momentum in the kick to be as small as possible?

5. Take initial conditions coming in from a long way away, particles travelling along equally-
spaced parallel lines. What happens? (The distance of the initial line from the sun is called
the impact parameter of the initial condition.)

6. People who criticise Euler’s method often recommend the Runge–Kutta method. Find
out what Runge–Kutta is (Google knows), implement it, and compare with the leapfrog
method. Choose a big enough step-size δt so that you can see a difference between
the methods. Given equal numbers of computational operations, does Runge–Kutta or
leapfrog do a better job of making an accurate trajectory? For very long runs, and again
assuming equal numbers of computational operations, does Runge–Kutta or leapfrog do
a better job of energy conservation? Of angular momentum conservation?

18

Part IB Computing Course Session 5: BONKERS

Physics objectives: to better understand collisions, conservation laws, and statistical physics,
especially equipartition, properties of ideal gases, the concept of temperature, and the
Boltzmann distribution; also the way in which microscopic physics leads to macroscopic
phenomena; what happens when a piston compresses an ideal gas; adiabatic expansion;
fluctuations and dissipation, equilibration of systems with different temperatures.

Computing objectives: structures, arrays, using gnuplot; memory allocation.

You are encouraged to work in pairs, with the weaker programmer doing all the typing.

Task

We’re going to simulate hard spheres colliding with each other elastically in a box. An incredi-
ble range of interesting physics phenomena can be studied in this way.

The heart of this computing exercise is going to be a single function – let’s call it collide –
which receives two particles with masses m1 and m2 and velocities u1 and u2, and returns the
new velocities v1 and v2 of the two particles after an elastic collision between the two.

You could start by writing a function that implements this elastic collision. Check your
function with special cases that you’ve solved by hand, and by putting in a range of initial
conditions and evaluating whether total momentum and total energy are indeed conserved as
they should be.

An elegant approach to this programming task uses a structure to represent each particle –
something like this, for a particle moving in one dimension:

struct particle {

double x ; // position

double p ; // momentum

double im ; // inverse mass

double v ; // velocity

double T ; // kinetic energy

double a ; // radius of particle

} ; // Note the definition of a structure ends with a semicolon

At this stage it’s not crucial, but at some point I recommend making sure all references to the
particle’s mass use the inverse mass, rather than the mass – this allows you to treat the walls of
the box as standard particles that just happen to have infinite mass (that is, inverse-mass zero).

Once you have defined a struct like particle, you may define an array of particles in
just the same way that you define arrays of other objects like ints or doubles. For example

a = new particle[N] ;

19

What to do next

There’s a lot of choice. This is a self-directed and self-assessed course, and I’d like you to choose
a bonking-simulating activity that interests you.

Here are some suggestions. You don’t have to do all of these. The more you do, the more
educational it’ll be. But do take your pick, and feel free to steal working code (e.g. from the
course website) if you’d prefer to focus your energy on experimenting with working code,
rather than writing and debugging your own.

1. Write code that uses a one-dimensional collide function to simulate the motion of N
particles in a one-dimensional box. Each particle can collide only with its immediate
neighbours; each of the two end particles can collide with one wall too. To simulate the
dynamics, you must identify the times at which collisions occur, and (assuming you want
to make a realistic movie for showing in gnuplot) spit out the state of the simulation at
equally spaced times. A suggested strategy is to take the current state and figure out which
pair of adjacent particles will collide next. Then advance the simulation exactly to the
moment of that next collision (stopping if appropriate at intermediate times along the
way, so as to spit out the required states for the movie, equally spaced in time). Collisions
should be handled by passing the pair of particles to the collide function. Motion in be-
tween collisions is simple (since there are no forces) and it should be handled by another
function, leapForward, say. Printing out of the state at certain times of interest should
be handled by another function, showState, say. (A worked solution for this first part is
available on the course website.)

[A possible difficulty with this approach of computing all collisions that occur is that
it is conceivable that the true number of collisions in a finite time might be very large,
a phenomenon known as chattering. You can get the idea of chattering by imagining
quickly squashing a moving ping-pong ball between a table-tennis bat and a table.]

2. Testing: Put just two particles in a box, with equal masses. Check that the dynamics are
right. Make the two masses unequal. Make a scatter-plot of the positions of the two
particles. Make a scatter-plot of the velocities of the two particles. Use more masses.
Check that kinetic energy is conserved.

3. Put quite a few unequal masses in the box (say, 10 masses, with a variety of masses span-
ning a range of a factor of 4 in magnitude), run the simulation for a long time, and make
histograms of the velocities of two of the particles whose masses are in the ratio 4:1. What
do you find? Make histograms of the positions of the particles. If you make some of the
particles really heavy compared to their neighbours, what happens to the histogram of the
positions of the neighbours? For example, make all the particles except for the two end
particles be much larger; or make half the particles (those on the left hand side) heavy,
and the other half light. (In all simulations make sure no two adjacent particles have
identical masses.)

4. What happens if the right-hand wall (with infinite mass) is moved at constant speed
towards or away from the other wall?

Ye have heard it said that, under some circumstances, pVγ = constant. What is γ for a
one-dimensional ideal gas? How should the total energy vary with V under these condi-
tions?

20

5. Set up N1 light masses to the left of a single big heavy mass, and N2 more light masses to
the right of the heavy mass. Call the heavy mass a piston, if you like, and think of it as
separating two ideal gases from each other. The light masses don’t need to be identical
to each other. An example set of masses for N1 = N2 = 5 could be (1.1, 1.2, 1.1, 1.3,
1.1, 100.0, 4.1, 4.2, 4.1, 4.8, 4.4) where the 100-mass is the piston. Give randomly chosen
velocities to the particles. What should happen? How long does it take for ‘equilibrium’
to be reached? Give an enormous velocity to the piston and small velocities to the other
particles. What should happen? How long does it take for ‘equilibrium’ to be reached?
Can you get the piston to oscillate roughly sinusoidally (before ‘equilibrium’ is reached)?
What is the frequency of such oscillations? Predict the frequency using the theory of
adiabatic expansion/compression of gases.

 0

 1

 2

 3

 4

 5

 0 1 2 3

tim
e

position

w
al

l

m
as

s=
3

m
as

s=
1

w
al

l The first six collisions
between two particles of
masses 3 and 1 and two
walls.

21

Part IB Computing Course Session 6: TSUNAMIS

Physics objectives: to better understand waves, superposition, linearity, dispersion relations
and dispersion, wavepackets.

Computing objectives: structures, arrays, matrices (handled using arrays of pointers), using
gnuplot; memory allocation

One of the key ideas of physics is superposition. If a system is linear then a solution for its
motion can be represented by the superposition of a linear combination of simple solutions of
its motion. This idea is the central idea of normal modes, of waves, and of quantum physics.

What happens when a pebble is thrown in a pond?
The idea of this exercise is to simulate the motion of a water surface corresponding to a

stretch of shallow water, or of deep water, or of water with surface tension, for any initial
condition; or to simulate a homogeneous medium with almost any properties you like. We’ll
assume periodic (wrap-around) boundary conditions. One simple motion that such a surface
can always make is a standing wave, where the surface is at all times a perfect sinusoid with
wavelength λ = L/m where L is the box length and m is a positive integer. The amplitude
of the standing wave varies sinusoidally in time. The frequency ω of the temporal oscillation
depends on the wavenumber k ≡ 2π/λ in a way that depends on the springiness properties
and inertial properties of the medium. The function ω(k) is called the dispersion relation.

Now, the astonishing assertion of superposition is that the complex motion resulting from
any initial condition (for example a little cluster of ripples running away from the point of
impact of a pebble) can be represented by a superposition of the simple standing waves.

This astonishing idea can be fruitfully explored on the computer. Take care not to use too
much memory, nor to write too-big files to disc. A 1000 × 1000 matrix of doubles takes about
8 megabytes of memory in a program. Written to file, a million doubles might make a file of
size 12 megabytes or so. As a rule of thumb, you usually don’t want your program to use more
than about 64 megabytes of memory, and it’s probably good to keep most file sizes below a
megabyte or so. You can use bigger things if you want, but performance may get sluggish.

If writing lots of files, or big files, for plotting with gnuplot, it may be a good idea
to write them to the /tmp filesystem, which is a local filesystem on your machine.
Files in /tmp are usually deleted when the computer reboots, so copy any impor-
tant outputs into your normal filespace. You can find the size of the /tmp file
system with the unix command df /tmp (df means ‘disc free’). Don’t ever expect to
find your files in /tmp next time you log in.

You are encouraged to work in pairs, with the weaker programmer doing all the typing.
As usual, you don’t have to do everything listed here.

1. Make a program that represents a surface by the displacements yn of N equally-spaced
points, and that creates an M × N matrix containing M sinusoidal functions representing
M standing waves. (As you can confirm, the biggest possible value of M is N or N − 1,
depending whether you allow the zero-wavenumber sinusoid. If you try to make more

22

sinusoids than this, you’ll find the extra ones are identical to ones you already made.)
Make sure the sinusoidal functions are orthonormal. Confirm (for small N) that you
can decompose any displacement y into a linear combination of N sinusoids. Pick a

dispersion relation – for example ω = ck (shallow water, or slinky) or ω ∝
√

k (infinitely
deep water). Take y as an initial condition and evolve it forward in time by imagining
that each sinusoid oscillates at its own frequency (as defined by the dispersion relation),
and re-superposing the sinusoids. Make an initial condition that looks like a small bump.
What happens? What happens for each dispersion relation? So far the initial conditions
have been static displacements, y; include an initial velocity v too. (A worked solution
for this first part is available on the course website.)

2. Simulate a tsunami (caused by a bit of earth moving underneath the sea, or by a meteor
hitting the ocean). Describe what happens from the point of view of someone in a boat
a long way from the initial disturbance. Compare your description with first-hand ac-
counts of recent tsunamis. Use the dispersion relation for deep, but not infinitely deep
water. (A depth of 5 km might be reasonable.)

 0 200 400 600 800 1000
Figure 2: The function sin(kx) exp(−(x − x0)

2/(2r2)), with k = 2π/30, r = 70, and x0 = 250.

3. Simulate a wavepacket – a disturbance of finite extent where the surface looks locally
approximately sinusoidal. What happens for each dispersion relation – for example ω =

ck (shallow water) or ω ∝
√

k (infinitely deep water)? Look in detail at the evolution of

the wavepacket for ω ∝
√

k. Do the crests move at the same speed as the wavepacket?
Does the wavepacket’s width remain constant? Look carefully at the spatial frequency of
the parts of the wave at the front and rear of the wavepacket – is the spatial frequency the
same at both ends?

23

Part IB Computing Course Session 7: RECURSION

This is an optional extra.

Physics objectives: to better understand statistical physics by counting some interesting things.

Computing objectives: recursion.

Recursion means defining a function f in terms of the function f . For example we could
define the factorial function f (x) by:

1. if x > 1 then return x × f (x − 1)

2. otherwise return 1.

A recursive function in a computer program is one that calls itself. Here’s an example, follow-
ing the above definition closely.

// factorial calculator - recursive

#include <iostream>

using namespace std;

int factorial (int a)

{

if (a > 1)

return (a * factorial (a-1));

else

return (1);

}

int main ()

{

int number;

cout << "Please type a number: ";

cin >> number;

cout << number << "! = " << factorial(number) << endl;

return 0;

}

Errors in the definition of recursive functions often lead to disaster, since it’s all too easy to
write a function that keeps calling itself and never stops.

Some programmers find recursion an elegant way to express many programming tasks.
Here is an example. The task is ‘print all ternary strings of length L’. For L = 1 the output
should be

0, 1, 2.

For L = 2 the output should be

00, 01, 02, 10, 11, 12, 20, 21, 22

Here is a solution.

24

// allStrings.cc

// Enumerate all ternary strings by recursion

#include <iostream>

using namespace std;

void appendAllStrings(char *prefix , int remainingLength)

{

if (remainingLength == 0)

cout << prefix << endl ;

else {

int lp = strlen(prefix) ;

for (int i = 0 ; i <= 2 ; i ++) { // Extend prefix by one character.

prefix[lp] = i+’0’ ; // By adding i to the character ’0’

// we get the characters ’0’, ’1’, ’2’

appendAllStrings(prefix , remainingLength-1);

}

prefix[lp] = ’\0’ ; // Remove what was added

// [’\0’ is the null character]

}

return ;

}

int main ()

{

int length;

cout << "Please type a length: ";

cin >> length;

char *prefix ;

prefix = new char[length] ; // Assume this memory is all-null

appendAllStrings(prefix , length) ;

delete [] prefix ; // Free the memory

return 0;

}

The function strlen returns the length of the string generated so far; the line

prefix[lp] = ...

extends the string by one character. The algorithm proceeds by starting from the null string,
and extending it by all possible single characters, extending each in turn by all possible char-
acters, and so forth.

Such ‘branching processes’ are the type of problem for which recursion is especially recom-
mended.

Recursion exercises

Solve each of these tasks using a recursive function.

25

1. Write a function called twos that takes a single integer as its argument and returns the
number of factors of 2 in the number. (Hint: odd numbers have no factors of 2, numbers
that are twice an odd number have one, numbers that are four times an odd have two,
and so on.) For example: twos(-12); should return 2.

2. Write a function called printWithCommas that takes a single nonnegative long integer
argument and displays it with commas inserted in the conventional way. For example:

• printWithCommas(12045670); displays 12,045,670.

• printWithCommas(1); displays 1.

3. INTERESTING PROPERTIES OF A HARD SPHERE GAS.

A legal state of four particles in a
10 × 10 box.

A square box of size H × H lattice-points contains one big particle and T = 3 little par-
ticles. The big particle occupies 4 × 4 lattice points. Each little particle occupies 2 × 2
lattice points. Particles may not overlap. All legal states of this T + 1-particle system are
equiprobable. How probable are the alternative locations of the big particle? Find the
answer for H = 10 (by recursively enumerating all legal states, and keeping count). It
is a good idea to spit out the answer for smaller values of T along the way towards the
answer for the biggest value of T.

If not all locations of the big particle are equiprobable then we can describe the effect of
the little particles in terms of an effective ‘force’ acting on the big particle. Such forces are
called ‘entropic forces’. Entropic forces in hard-sphere mixtures with a variety of sizes of
spheres are an area of industrial research interest.1

1Y. Mao, P. Bladon, H. N. W. Lekkerkerker, and M. E. Cates. Mol. Phys. 92, 151 (1997).
R. Dickman, P. Attard, and V. Simonian. ‘Entropic Forces in Binary Hard-Sphere Mixtures: Theory and Simula-

tion’, J. Chem. Phys. 107, 205–213 (1997).
‘Entropic Attraction and Repulsion in Binary Colloids Probed with a Line Optical Tweezer’ J. C. Crocker, J. A.

Matteo, A. D. Dinsmore, and A. G. Yodh. Physical Review Letters, 82, 4352–4355 (1999).

26

Appendices

PLANET: step by step guidance

1. Chop the problem into small pieces.

2. Define a structure that contains the state of the planet. (See page 11 of this tutorial and
page 60 of the first term’s tutorial.) Your structure could be as simple as:

struct particle {

double x[2] ; // (x,y) coordinates

double v[2] ; // velocity

} ;

but as you continue, you will probably think of other sensible things to add to the struc-
ture. You might find it elegant to give a name to the dimensionality of the position space,
say D.

#define D 2 // number of dimensions

struct particle {

double x[D] ; // (x,y) coordinates

double v[D] ; // velocity

} ; // Note the definition of a structure ends with a semicolon

If you then use D everywhere, it makes the meaning of your code clearer (compared with
using ‘2’), and it makes it easier to update your simulation’s dimension (say from 2 to 3
dimensions).

3. Write a simple main that defines a particle, and check that it compiles and runs.

int main()

{

particle a ;

a.v[0] = 0.4;

a.v[1] = 0.0;

a.x[0] = 1.5;

a.x[1] = 2;

return 0;

}

27

4. Write a function showState that prints out the particle’s position and velocity. Call it from
main and check that your program compiles and runs correctly. Here is an example of a
function that does the right sort of thing:

void showState (particle &a)

{

int i=0;

cout << "some of the state: " << a.x[i] << endl ;

}

This could be called by main using a command such as

showState(a) ;

Notice the use of the ampersand in the function definition

void showState (particle &a).

This ampersand means that we are passing the particle by reference, rather than by value.
(See page 45 of last term’s tutorial.)

5. Remember the tips from last term about debugging your code. (1) Use a makefile. (2)
Switch on all the compiler warnings. (3) Whenever you think that your code ought to
compile, check that it does so. (4) If you have code that compiles ok, but that doesn’t
behave as expected when you run it, run it in a debugger (for example, kdbg). Even if it
seems to be running as expected, it might be a good idea to run it in a debugger. When I
use kdbg, the main things I click on are ‘set breakpoint’ (right click), ‘run’, and the ‘step

over’ icon.

6. Write a function that computes the squared-distance from the origin.

7. Write a function Force that computes the force acting on the particle, or the acceleration
of the particle. (Perhaps the force or acceleration should be in your structure?)

8. Write a function PositionStep that makes a change of a particle’s position in the direction
of its velocity. One of the arguments of this function should be the required time step size.

9. Write a function VelocityStep that makes a change of a particle’s velocity in the direction
of its acceleration.

10. Write a function that computes the energy (kinetic and potential) of the particle.

11. Write a function that computes the angular momentum about the origin.

12. Write a leapfrog simulator with a loop that calls the above functions appropriately.

13. Write the simulated trajectory to a file using a function like showState. To plot the trajec-
tory from a file whose columns are

time, x1, x2, v1, v2,

28

the following gnuplot commands may be useful.

set size ratio -1 ; ## this makes units on the x and y axes have equal size

plot ’tmp’ u 2:3 w l, ’tmp’ every 10 u 2:3:4:5 w vector

this plots (x1,x2) with lines, and plots every 10th state using a vector

of length (v1,v2) based at the point (x1,x2)

gnuplot’s plot command is very versatile. The website shows how you can make a
gnuplot animation using a single data file containing a trajectory.

14. Be aware of the size of the files you are writing. If you give gnuplot a file of more than 1
megabyte, you should expect it to be sluggish. Maybe it would be a good idea to reduce
the amount of information written to file. You may be able to get better performance by
using the local filesystem of the machine at which you are sitting. You can write anything
you want into the folder /tmp. For example,

ls > /tmp/mylist

The /tmp folder is a good place to put anything large and anything that you want to
access frequently or quickly. But don’t leave anything important in /tmp – after you log
out, the /tmp folder may be cleaned up.

Twenty-nine useful unix commands

This guide, based on a University computing service leaflet, is intended to be as generally valid
as possible, but there are many different versions of Unix available within the University, so if
you find a command option behaving differently on your local machine you should consult the
on-line manual page for that command. Some commands have numerous options and there is
not enough space to detail them all here, so for fuller information on these commands use the
relevant on-line manual page.

The names of commands are printed in bold, and the names of objects operated on by these
commands (e.g. files, directories) are printed in italics.

29

Twenty-nine useful unix commands – index

1. cat - display or concatenate files

2. cd - change directory

3. chmod - change the permissions on a file or directory

4. cp - copy a file

5. date - display the current date and time

6. diff - display differences between text files

7. file - determine the type of a file

8. find - find files of a specified name or type

9. ftp - file transfer program

10. grep - searches files for a specified string or expression

11. gzip - compress a file

12. help - display information about bash builtin commands

13. info - read online documentation

14. kill - kill a process

15. lpr - print out a file

16. ls - list names of files in a directory

17. man - display an on-line manual page

18. mkdir - make a directory

19. more - scan through a text file page by page

20. mv - move or rename files or directories

21. nice - change the priority at which a job is being run

22. passwd - change your password

23. ps - list processes

24. pwd - display the name of your current directory

25. quota - disk quota and usage

26. rm - remove files or directories

27. rmdir - remove a directory

28. sort - sort and collate lines

29. ssh - secure remote login program

30

1. cat – display or concatenate files

cat takes a copy of a file and sends it to the standard output (i.e. to be displayed on your
terminal, unless redirected elsewhere), so it is generally used either to read files, or to string
together copies of several files, writing the output to a new file.

cat ex
displays the contents of the file ex.

cat ex1 ex2 > newex
creates a new file newex containing copies of ex1 and ex2, with the contents of ex2 following the
contents of ex1.

2. cd – change directory

cd is used to change from one directory to another.

cd dir1
changes directory so that dir1 is your new current directory. dir1 may be either the full path-
name of the directory, or its pathname relative to the current directory.

cd
changes directory to your home directory.

cd ..
moves to the parent directory of your current directory.

3. chmod – change the permissions on a file or directory

chmod alters the permissions on files and directories using either symbolic or octal numeric
codes. The symbolic codes are given here:-

u user + to add a permission r read
g group − to remove a permission w write
o other = to assign a permission explicitly x execute (for files), access (for directories)

The following examples illustrate how these codes are used.

chmod u=rw file1
sets the permissions on the file file1 to give the user read and write permission on file1. No
other permissions are altered.

chmod u+x,g+w,o-r file2
alters the permissions on the file file2 to give the user execute permission on file2, to give mem-
bers of the user’s group write permission on the file, and prevent any users not in this group
from reading it.

chmod u+w,go-x dir1
gives the user write permission in the directory dir1, and prevents all other users having access
to that directory (by using cd. They can still list its contents using ls.)

chmod g+s dir2
means that files and subdirectories in dir2 are created with the group-ID of the parent directory,
not that of the current process.

31

4. cp – copy a file

The command cp is used to make copies of files and directories.

cp file1 file2

copies the contents of the file file1 into a new file called file2. cp cannot copy a file onto itself.

cp file3 file4 dir1

creates copies of file3 and file4 (with the same names), within the directory dir1. dir1 must
already exist for the copying to succeed.

cp -r dir2 dir3

recursively copies the directory dir2, together with its contents and subdirectories, to the direc-
tory dir3. If dir3 does not already exist, it is created by cp, and the contents and subdirectories
of dir2 are recreated within it. If dir3 does exist, a subdirectory called dir2 is created within it,
containing a copy of all the contents of the original dir2.

5. date – display the current date and time

date returns information on the current date and time in the format shown below:-

Wed Jan 9 14:35:45 GMT 2002

It is possible to alter the format of the output from date. For example, using the command line

date ’+The date is %d/%m/%y, and the time is %H:%M:%S.’

at exactly 3.10pm on 9th January 2002, would produce the output

The date is 09/01/02, and the time is 15:10:00.

6. diff – display differences between text files

diff file1 file2 reports line-by-line differences between the text files file1 and file2. The de-
fault output will contain lines such as ‘ n1 a n2,n3 ’ and ‘ n4,n5 c n6,n7 ’, (where
‘ n1 a n2,n3 ’ means that file2 has the extra lines n2 to n3 following the line that has the
number n1 in file1, and ‘ n4,n5 c n6,n7 ’ means that lines n4 to n5 in file1 differ from lines n6
to n7 in file2). After each such line, diff prints the relevant lines from the text files, with < in
front of each line from file1 and > in front of each line from file2.

There are several options to diff, including diff -i , which ignores the case of letters when
comparing lines, and diff -b , which ignores all trailing blanks.

diff -cn produces a listing of differences within n lines of context, where the default is three
lines. The form of the output is different from that given by diff, with + indicating lines
which have been added, − indicating lines which have been removed, and ! indicating lines
which have been changed.

diff dir1 dir2 will sort the contents of directories dir1 and dir2 by name, and then run diff on
the text files which differ.

32

7. file – determine the type of a file

file tests named files to determine the categories their contents belong to.

file file1
can tell if file1 is, for example, a source program, an executable program or shell script, an
empty file, a directory, or a library, but (a warning!) it does sometimes make mistakes.

8. find – find files of a specified name or type

find searches for files in a named directory and all its subdirectories.

find . -name ’*.cc’ -print
searches the current directory and all its subdirectories for files ending in .cc, and writes their
names to the standard output. In some versions of Unix the names of the files will only be
written out if the -print option is used.

find /local -name core -user user1 -print
searches the directory /local and its subdirectories for files called core belonging to the user
user1 and writes their full file names to the standard output.

9. ftp – file transfer program

ftp is an interactive file transfer program. While logged on to one machine (described as the
local machine), ftp is used to logon to another machine (described as the remote machine)
that files are to be transferred to or from. As well as file transfers, it allows the inspection
of directory contents on the remote machine. There are numerous options and commands
associated with ftp, and man ftp will give details of those.
A simple example ftp session, in which the remote machine is the Central Unix Service (CUS),
is shown below:-

ftp cus.cam.ac.uk

If the connection to CUS is made, it will respond with the prompt:-

Name (cus.cam.ac.uk:user1) :

(supposing user1 is your username on your local machine). If you have the same username
on CUS, then just press Return; if it is different, enter your username on CUS before pressing
Return. You will then be prompted for your CUS password, which will not be echoed.

After logging in using ftp you will be in your home directory on CUS Some Unix commands,
such as cd, mkdir, and ls, will be available. Other useful commands are:-

help
lists the commands available to you while using ftp.

get remote1 local1
creates a copy on your local machine of the file remote1 from CUS. On your local machine this
new file will be called local1. If no name is specified for the file on the local machine, it will be
given the same name as the file on CUS.

send local2 remote2
copies the file local2 to the file remote2 on CUS, i.e. it is the reverse of get.

quit

33

finishes the ftp session. bye and close can also be used to do this.

Some machines offer a service called “anonymous ftp”, usually to allow general access to cer-
tain archives. To use such a service, enter anonymous instead of your username when you ftp to
the machine. It is fairly standard practice for the remote machine to ask you to give your email
address as a password. Once you have logged on you will have read access in a limited set of
directories, usually within the /pub directory tree. It is good etiquette to follow the guidelines
laid down by the administrators of the remote machine, as they are being generous in allowing
such access. See leaflet G72 for more detailed examples of using ftp.

WARNING! When you use ftp the communications between the machines are not encrypted.
This means that your password could be snooped when you use it make an ftp connection.
If available, the commands sftp (secure file transfer program) or scp (secure remote file copy
program) are preferable, as they provide encrypted file transfer. Use man scp to get the syntax,
which is like cp’s. To copy file1 from a remote machine to your local machine and name it file2:

scp user@pwf.cam.ac.uk:file1 file2

To copy file2 from here to your home directory on a remote machine:

scp file2 user@pwf.cam.ac.uk:~

10. grep – searches files for a specified string or expression

grep searches for lines containing a specified pattern and, by default, writes them to the stan-
dard output.

grep motif1 file1
searches the file file1 for lines containing the pattern motif1. If no file name is given, grep acts
on the standard input. grep can also be used to search a string of files, so

grep motif1 file1 file2 ... filen

will search the files file1, file2, ... , filen, for the pattern motif1.

grep -c motif1 file1
will give the number of lines containing motif1 instead of the lines themselves.

grep -v motif1 file1
will write out the lines of file1 that do NOT contain motif1.

11. gzip – compress a file

gzip reduces the size of named files, replacing them with files of the same name extended by
.gz. The amount of space saved by compression varies.

gzip file1
results in a compressed file called file1.gz, and deletes file1.

gzip -v file2
compresses file2 and gives information, in the format shown below, on the percentage of the
file’s size that has been saved by compression:-

34

file2 : Compression 50.26% -- replaced with file2.gz

To restore files to their original state use the command gunzip. If you have a compressed
file file2.gz , then

gunzip file2

will replace file2.gz with the uncompressed file file2.

12. help – display info about bash builtin commands

help gives access to information about builtin commands in the bash shell. Using help on its
own will give a list of the commands it has information about. help followed by the name of
one of these commands will give information about that command. help history, for example,
will give details about the bash shell history listings.

13. info – read online documentation

info is a hypertext information system. Using the command info on its own will enter the info
system, and give a list of the major subjects it has information about. Use the command q to
exit info. For example, info bash will give details about the bash shell.

14. kill – kill a process

To kill a process using kill requires the process id (PID). This can be found by using ps.
Suppose the PID is 3429, then

kill 3429

should kill the process. If it doesn’t then sometimes adding -9 helps. . .

kill -9 3429

15. lpr – print out a file

lpr is used to send the contents of a file to a printer. If the printer is a laserwriter, and the file
contains PostScript, then the PostScript will be interpreted and the results of that printed out.

lpr -Pprinter1 file1

will send the file file1 to be printed out on the printer printer1. To see the status of the job on
the printer queue use

lpq -Pprinter1

for a list of the jobs queued for printing on printer1. (This may not work for remote printers.)

35

16. ls – list names of files in a directory

ls lists the contents of a directory, and can be used to obtain information on the files and direc-
tories within it.

ls dir1
lists the names of the files and directories in the directory dir1, (excluding files whose names
begin with .). If no directory is named, ls lists the contents of the current directory.

ls -a dir1
will list the contents of dir1, (including files whose names begin with .).

ls -l file1
gives details of the access permissions for the file file1, its size in kbytes, and the time it was
last altered.

ls -l dir1
gives such information on the contents of the directory dir1. To obtain the information on dir1
itself, rather than its contents, use

ls -ld dir1

17. man – display an on-line manual page

man displays on-line reference manual pages.

man command1
will display the manual page for command1, e.g man cp, man man.

man -k keyword
lists the manual page subjects that have keyword in their headings. This is useful if you do not
yet know the name of a command you are seeking information about, but can produce a lot of
output. To refine the output you could, for example, use man -k keyword | grep ’(1’ to get a list
of user commands with keyword in their headings (user commands are in section 1 of the man
pages). The | means that the output of man -k is piped to (i.e. is used as the input for) grep.

man -Mpath command1
is used to change the set of directories that man searches for manual pages on command1

18. mkdir – make a directory

mkdir is used to create new directories. In order to do this you must have write permission in
the parent directory of the new directory.

mkdir newdir
will make a new directory called newdir.

mkdir -p can be used to create a new directory, together with any parent directories required.

mkdir -p dir1/dir2/newdir
will create newdir and its parent directories dir1 and dir2, if these do not already exist.

36

19. more – scan through a text file page by page

more displays the contents of a file on a terminal one screenful at a time.

more file1
starts by displaying the beginning of file1. It will scroll up one line every time the return key
is pressed, and one screenful every time the space bar is pressed. Type ? for details of the
commands available within more. Type q if you wish to quit more before the end of file1 is
reached.

more -n file1
will cause n lines of file1 to be displayed in each screenful instead of the default (which is two
lines less than the number of lines that will fit into the terminal’s screen).

20. mv – move or rename files or directories

mv is used to change the name of files or directories, or to move them into other directories.
mv cannot move directories from one file-system to another, so, if it is necessary to do that, use
cp instead – copy the whole directory using cp -r oldplace newplace then remove the old one
using rm -r oldplace.

mv name1 name2
changes the name of a file called name1 to name2.

mv dir1 dir2
changes the name of a directory called dir1 to dir2, unless dir2 already exists, in which case dir1
will be moved into dir2.

mv file1 file2 dir3
moves the files file1 and file2 into the directory dir3.

21. nice – change the priority at which a job is being run

nice causes a command to be run at a lower than usual priority. nice can be particularly useful
when running a long program that could cause annoyance if it slowed down the execution of
other users’ commands. An example of the use of nice is

nice gzip file1
which will execute the compression of file1 at a lower priority.

If the job you are running is likely to take a significant time, you may wish to run it in the back-
ground, i.e. in a subshell. To do this, put an ampersand &, after the name of your command or
script. For instance,

rm -r mydir &
is a background job that will remove the directory mydir and all its contents.

The command jobs gives details of the status of background processes, and the command fg
can be used to bring such a process into the foreground.

22. passwd – change your password

Use passwd when you wish to change your password. You will be prompted once for your
current password, and twice for your new password. Neither password will be displayed on
the screen.

37

23. ps – list processes

ps displays information on processes currently running on your machine. This information
includes the process id, the controlling terminal (if there is one), the cpu time used so far, and
the name of the command being run.

ps
gives brief details of your own processes in your current session.

To obtain full details of all your processes, including those from previous sessions use:-
ps -fu user1
using your own user name in place of user1.

ps is a command whose options vary considerably in different versions of Unix. Use man ps
for details of all the options available on the machine you are using.

24. pwd – display the name of your current directory

The command pwd gives the full pathname of your current directory.

25. quota – display disk quota and usage

quota gives information on a user’s disk space quota and usage.

On some systems using quota without options will only give details of where you have ex-
ceeded your disk quota on local disks, in which case, use the -v option

quota -v
to get details of your quota and usage on all mounted filesystems.

26. rm – remove files or directories

rm is used to remove files. In order to remove a file you must have write permission in its
directory, but it is not necessary to have read or write permission on the file itself.

rm file1
will delete the file file1. If you use

rm -i file1
instead, you will be asked if you wish to delete file1, and the file will not be deleted unless you
answer y. This is a useful safety check when deleting lots of files.

rm -r dir1
recursively deletes the contents of dir1, its subdirectories, and dir1 itself, and should be used
with suitable caution.

rm -rf dir1
is like rm -r, except that any write-protected files in the directory are deleted without query.
This should be used with even more caution.

38

27. rmdir – remove a directory

rmdir removes named empty directories. If you need to delete a non-empty directory rm -r
can be used instead.

rmdir exdir
will remove the empty directory exdir.

28. sort – sort and collate lines

The command sort sorts and collates lines in files, sending the results to the standard output.
If no file names are given, sort acts on the standard input. By default, sort sorts lines using
a character by character comparison, working from left to right, and using the order of the
standard character set.

sort -d
uses “dictionary order”, in which only letters, digits, and white-space characters are consid-
ered in the comparisons.

sort -r
reverses the order of the collating sequence.

sort -n
sorts lines according to the arithmetic value of leading numeric strings. Leading blanks are
ignored when this option is used, (except in some System V versions of sort, which treat leading
blanks as significant. To be certain of ignoring leading blanks use sort -bn instead.).

29. ssh – secure remote login program

ssh is used for logging onto a remote machine, and provides secure encrypted communications
between the local and remote machines using the SSH protocol. The remote machine must be
running an SSH server for such connections to be possible. For example,

ssh -X linux.phy.pwf.cam.ac.uk
will commence a login connection to the Physics PWF server.

You can connect using your password for the remote machine, or you can set up a system of
passphrases to avoid typing login passwords directly (see the man page for ssh-keygen for
information on how to create these).

If you have a different user-id on the remote machine, use

ssh -X YourUserID@linux.phy.pwf.cam.ac.uk

The optional -X flag makes it possible for the remote machine to open X windows on your
local machine.

39

